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Abstract
Gene regulation is a complicated process. The interaction of many genes and their products forms
an intricate biological network. Identification of this dynamic network will help us understand the
biological process in a systematic way. However, the construction of such a dynamic network is
very challenging for a high-dimensional system. In this article we propose to use a set of ordinary
differential equations (ODE), coupled with dimensional reduction by clustering and mixed-effects
modeling techniques, to model the dynamic gene regulatory network (GRN). The ODE models
allow us to quantify both positive and negative gene regulations as well as feedback effects of one
set of genes in a functional module on the dynamic expression changes of the genes in another
functional module, which results in a directed graph network. A five-step procedure, Clustering,
Smoothing, regulation Identification, parameter Estimates refining and Function enrichment
analysis (CSIEF) is developed to identify the ODE-based dynamic GRN. In the proposed CSIEF
procedure, a series of cutting-edge statistical methods and techniques are employed, that include
non-parametric mixed-effects models with a mixture distribution for clustering, nonparametric
mixed-effects smoothing-based methods for ODE models, the smoothly clipped absolute deviation
(SCAD)-based variable selection, and stochastic approximation EM (SAEM) approach for mixed-
effects ODE model parameter estimation. The key step, the SCAD-based variable selection of the
proposed procedure is justified by investigating its asymptotic properties and validated by Monte
Carlo simulations. We apply the proposed method to identify the dynamic GRN for yeast cell
cycle progression data. We are able to annotate the identified modules through function
enrichment analyses. Some interesting biological findings are discussed. The proposed procedure
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is a promising tool for constructing a general dynamic GRN and more complicated dynamic
networks.
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Differential equations; Network graph; NLME; Nonparametric mixed-effects model;
Saccharomyces cerevisiae; SAEM; SCAD; Time course microarray data; Two-stage smoothing-
based method; Yeast cell cycles

1. Introduction
Gene regulation plays a fundamental role in biological activities, such as cell growth,
division, development, response to environmental stimulus and so on. Genes carry out their
functions through DNA transcription and protein synthesis. Reversely, some proteins, like
transcription factors, regulate the activity of genes by binding to their promoters or even
encoding the proteins themselves. In addition, some noncoding RNAs, the direct transcript
replicates of certain DNA segments regulate genes at some important levels of genome
function, including chromatin structure, chromosome segregation, transcription, RNA
processing, RNA stability, and translation (Carthew and Sontheimer, 2009). The gene
regulatory network (GRN) is a complex system, which should be more appropriately
modeled in a dynamic way (Hecker et al., 2009).

Owing to the advancement of new high-throughput technologies such as DNA microarray,
we are able to observe the dynamic feature of gene expression profiles on a genome scale.
This type of data is composed of experimental measurements of all interested genes
simultaneously at different time points. Statistical methods for analyzing high-dimensional
time course data are subject to active research currently. For example, clustering genes with
similar expression profiles based on time course microarray data is particularly useful for
identifying co-expressed genes as well as predicting functions of gene products with
unknown functions. Several clustering methods have been developed to account for the
temporal order of time course data including curve-based nonparametric clustering methods
(James and Sugar, 2003; Luan and Li, 2004; Heard et al., 2006) and functional ANOVA
methods (Ma et al., 2006; Ma and Zhong, 2008). The identification of differentially
expressed genes under different conditions or treatments is another important research topic
of time course gene expression data. For example, Yuan and Kendziorski (2006) employed a
hidden Markov model, Storey et al. (2005) introduced a curve-based method, Tai and Speed
(2009) used a multisample multivariate empirical Bayes method to rank microarray time
course data, Chi et al. (2007) applied a Bayesian hierarchical modeling approach and Yao et
al. (2005); Hong and Li (2006); Müller et al. (2008); Liu and Yang (2009) proposed
functional data analysis approaches to identify temporally differentially expressed genes.

The time course gene expression data also allow investigators to study gene regulatory
networks from a dynamic point of view. Currently, several models have been proposed for
GRN construction, such as information theory models (Steuer et al., 2002; Stuart et al.,
2003); Boolean networks (Kauffman, 1969; Thomas, 1973; Bornholdt, 2008); Bayesian
Networks (Heckerman, 1996; Friedman et al., 2000; Hartemink et al., 2001; Imoto et al.,
2003; Zou and Conzen, 2005; Needham et al., 2007; Werhli and Husmeier, 2007); vector
autoregressive (VAR) and state space models (SSM) (Hirose et al., 2008; Shimamura et al.,
2009; Kojima et al., 2009); and differential equation models (Voit, 2000; Holter et al., 2001;
DeJong, 2002; Yeung et al., 2002). The information theory model is basically a correlation
network and too simple to model a complex network. In addition, it does not accommodate
multiple genes with dynamic expressions. The Boolean model is a discrete dynamic model
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in which the state of a gene is represented by only two states: on or off, so that the time
course nature of gene expression profiles is not taken into account efficiently. The Bayesian
network makes use of the Bayes’ rule by combining different types of data and prior
knowledge. However, the challenge for establishing a Bayesian network comes from the
high computational cost to optimize the network from a large number of combinatory
candidates. The VAR and SSM models are discrete dynamic models which usually require
equally-spaced and intensive time-series data in order to obtain reliable inference results for
model parameters. In most cases, only the first-order and linear autoregressive model is used
in practice due to the complications in computations and theoretical justifications although it
can be theoretically extended to more general cases. Another problem is the identifiability
problem embedded in the state space model. Hirose et al. (2008) made the assumption that
the covariance matrix of the state equation is fixed as an identity matrix in order to make the
model identifiable.

The focus of this paper is on the ordinary differential equation (ODE) modeling approach
for the GRN. The ODE approach models the dynamic change of a gene expression (the
derivative of the expression) as a function of expression levels of all related genes. So it is a
directed network graph model and the dynamic feature of the GRN is automatically and
naturally quantified. Both positive and negative as well as the feedback effects of gene
regulations can be appropriately captured by the ODE model. A general ODE model for
GRN can be written as:

(1.1)

where X(t) = (x1(t), …, xn(t))T is a vector representing the gene expression level of gene 1,
…, n at time t. F serves as the link function that quantifies the regulatory effects of other
genes on the expression change of gene i which depends on parameter θ. In general F can
take any linear or non-linear function forms. However, the non-linear specification of F
usually needs prior information on biological mechanisms and requires high computational
cost, so that the nonlinear ODE model is only feasible for a small-scale network containing
only a few to dozens of genes (Weaver et al., 1999; Sakamoto and Iba, 2001; Spieth et al.,
2006). Many GRN models are based on linear ODEs due to its simplicity and usefulness in
practical applications. However, we also recognize that the dynamics of gene expression
may exhibit complex patterns, which may not be completely captured by a linear model. A
simple linear ODE model can be written as

(1.2)

where parameters θ = {θij}i,j=1,· · ·,n quantify the regulation effects of the genes in the
network. For a small-scale ODE-based GRN model (i.e. n is small), some standard statistical
methods such as the standard least squares method or likelihood-based method can be used
to perform statistical inference for the dynamic parameters θ from time course gene
expression data. However, for a large-scale GRN ODE model that involves hundreds or
even thousands of genes, the standard statistical methods may fail due to the curse-of-
dimensionality.

We employ two methods to deal with the high-dimensional problem. The first one is the
dimension reduction by clustering. We notice that many genes usually behave similarly
during the experimental period, which makes it difficult to distinguish the expression
patterns of these genes based on the time course microarray data. In this case, investigators

LU et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2012 November 29.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



have proposed clustering methods to group these similarly behaved genes (co-expressed
genes) into functional modules (Luan and Li, 2004; Ma et al., 2006; Ma and Zhong, 2008).
Consequently, our GRN model can be based on the functional modules instead of individual
genes. Thus, the dimension of our ODE model can be significantly reduced. We can write
the ODE model for functional modules as

(1.3)

where p is the number of functional modules from clustering. In addition, from the
sparseness principle (Arnone and Davidson, 1997), each gene or module may be regulated
by only a few other genes or modules, i.e., most coefficients βkj, that quantify the regulation
effects, are zeros. The model selection approaches for ODE models can be used to determine
the significance of parameters so that the dimension of the parameter space can be reduced
significantly. We emphasize that the clustering and ODE model selection based on the
sparseness principle and regularization are the two key steps for dimension reduction in the
proposed GRN construction.

Another important feature of the proposed procedure is the use of mixed-effects modeling
approach to deal with the data sparseness in several steps. In the first step, to cluster time
course microarray data into functional modules, we adopt the nonparametric mixed-effects
smoothing spline model under the framework of a mixture distribution proposed by Ma and
Zhong (2008). In the second step, we employ the nonparametric mixed-effects model
(NPME) smoothing approach to estimate the mean function and its derivative for each
functional module. Then, we use a nonlinear mixed-effects modeling approach to refine the
parameter estimates in the ODE models. The mixed-effects modeling approach allows us to
borrow information across genes with similar expression patterns, which is more efficient.

In this article, we propose a roadmap to identify dynamic GRNs based on time course
microarray data by combining a series of cutting-edge statistical techniques for ODE models
and mixed-effects modeling approaches. In Section 2, we provide details of the proposed
five-step procedure to identify the dynamic GRN. We applied the proposed method to the
cell cycle gene regulatory network identification for yeast in Section 3. In Section 4 we
present a simulation study to validate the key steps of the proposed procedure. We conclude
the paper with some remarks in Section 5. The theoretical properties and a sketch of the
proof for the SCAD estimator of the ODE model are given in the Appendix.

2. A Five-Step Procedure: CSIEF
In this section, we propose a roadmap for dynamic GRN identification with five steps. Step
I) Clustering individual genes into functional modules: clustering time course microarray
data into functional modules using mixed-effects nonparametric models with a mixture
distribution (Luan and Li, 2004; Ma et al., 2006; Ma and Zhong, 2008). Step II) Smoothing
the time course data to obtain the population (mean) expression pattern and its derivative for
each of the functional modules independently. Step III) Identifying significant connections
(regulations) among different functional modules: the two-stage estimation method for ODE
models (Varah, 1982; Chen and Wu, 2008b,a; Liang and Wu, 2008), coupled with the
smoothly clipped absolute deviation (SCAD) technique for high-dimensional variable
selection (Fan and Li, 2001; Kim et al., 2008) is employed. Step IV) Refining the parameter
estimates for the functional module-based GRN using stochastic approximation EM
(SAEM) for mixed-effects ODE models (Delyon et al., 1999; Kuhn and Lavielle, 2005;
Samson et al., 2006; Donnet and Samson, 2007). Step V) Performing function enrichment
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analyses for the identified GRN using Gene Ontology (GO). We coin this five-step
procedure as the Clustering-Smoothing-Identification-Estimation-Function enrichment
analysis (CSIEF) method. The roadmap for the CSIEF procedure is provided in Figure 1.
The details for each step are given below. For convenience, we also provide a list of all
notations in Table S1 of the supplementary materials.

2.1. Step I: Clustering
It is important to cluster individual genes into groups or functional modules if the expression
patterns of genes are similar during the experimental period. The concept of functional
modules is crucial for understanding the proposed GRN construction strategy. It is not only
that the expression profiles of the genes in the same module cannot be distinguished from
the time course microarray data, but also the genes in the same module may share particular
biological functions during the biological process. Thus, clustering individual genes into
functional modules based on their expression patterns can help to reduce the dimension of
the model, and is also biologically justifiable (Luan and Li, 2004; Ma et al., 2006; Ma and
Zhong, 2008).

Several methods have been proposed to cluster time course data which include
nonparametric smoothing-based approaches (James and Sugar, 2003; Luan and Li, 2004).
Recently Ma et al. (2006) and Ma and Zhong (2008) successfully applied the nonparametric
mixed-effects smoothing spline model under the framework of a mixture distribution to
cluster time course gene expression data. We adopt this approach for the first step of our
proposed procedure. Denote Gi = (gi(t1), · · ·, gi(tni))

T as the expression data vector for the
ith gene. We assume the following mixture normal distribution with p components (clusters)
for Gi,

(2.4)

where n is the total number of genes; wk is the proportion of cluster k; μk(.) is the mean
curve of cluster k; Ti = (ti1, · · ·, ti,ni)

T is the vector of measurement times for gene i and
usually all genes share the same measurement times in the same experiment. Since different
genes may have different expression patterns and because it is difficult to find a common
parametric model for the time course expression profiles for all genes, a mixed-effects
nonparametric smoothing splines approach is employed, i.e., a measurement model for Gi
for the kth cluster can be written as

(2.5)

where the random effect bi quantifies the deviation of gene i from the mean curve μk of the
kth cluster and is r × 1 vector following a mean zero normal distribution, (0, Ωk). Zi is ni ×
r design matrix for the random effects. Measurement error εi is assumed to follow (0, σ2I)
and independent of bi. Thus, we have Σk = ZiΩkZi

T + σ2I.

The maximum penalized likelihood approach can be used to estimate the parameters in
models (2.4) and (2.5). Ma et al. (2006) also proposed a variation of the EM algorithm to
estimate the cluster proportion parameters wk and assign genes to appropriate clusters. To
alleviate the computational cost and to stabilize the algorithm, the rejection-controlled EM
algorithm is used to implement the proposed method. The number of clusters is determined
by the BIC criterion. See more details for the implementation of this clustering procedure in
Ma et al. (2006) and Ma and Zhong (2008).
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2.2. Step II: Smoothing
From Step I, we can cluster all genes into functional modules. The expression pattern for all
the genes within each module is similar. Thus, we can treat the time course data for all genes
within the same module as longitudinal measurements of the expression level for the
functional module. To facilitate the identification of significant regulations using the
variable selection approach for ODE models in the next step, we need to estimate the mean
curve and its derivative for each module independently. The mixed-effects modeling
approach for the longitudinal data can be applied for this purpose. In this step, we employ a
nonparametric mixed-effects (NPME) model as introduced in Wu and Zhang (2002, 2006)
and by others to the data for each functional module to obtain the estimates of the mean
expression and its derivative for the module.

Denote tij, i = 1, · · ·, n, j = 1, · · ·, ni as the design time points and gki(tij) is the gene
expression level at tij for gene i within the kth functional module, then we can write a
nonparametric mixed-effects (NPME) model as

(2.6)

where Mk(t) is the mean expression curve for the kth module and its derivative is denoted by

, and Vki(t) are random-effects functions that quantify the departure of the
ith gene expression level from the mean expression of the module Mk(t).

Over the past decade, many nonparametric smoothing techniques have been proposed to fit
the NPME model, which include smoothing spline, regression spline, penalized spline, and
local polynomial smoothing (Brumback and Rice, 1998; Wang, 1998; Gu, 2002; Gu and Ma,
2005; Wu and Zhang, 2002). We omit the details of these standard smoothing methods for
the NPME model. A good review on these methods can be found in Wu and Zhang (2006).

We can apply any of these smoothing techniques to obtain the estimates of Mk(t) and ,
k = 1, …, p.

2.3. Step III: Identification of Significant Regulations
In this step, we propose a method to identify significant regulations (coefficients) in model
(1.3) using a high-dimensional variable selection technique, the smoothly clipped absolute
deviation (SCAD) method (Fan and Li, 2001; Kim et al., 2008). First, following the similar
idea from Chen and Wu (2008b,a) and Liang and Wu (2008), we plug the estimated mean

expression curves and their derivatives, M̂k(t) and , into the ODE model (1.3) to form a
regression model,

(2.7)

where  and xj(t) = M̂j(t). Error term εk(t) is the model approximation error due to
the substitutions of the differential equation variables by their estimates from Step II. Since

M̂k(t) and  in the above model are estimated continuously at any time point t from Step
II, we may not need to take t = t1, t2, …, tN as the same time points as the original
observation times. In fact, investigators (D’Haeseleer et al., 1999; Wessels et al., 2001;
Bansal et al., 2006) have augmented the data for the above ODE-based regression model
(2.7) in order to better estimate the ODE coefficients βkj, where N is the number of time
points for augmented data. We adopt a similar data augmentation strategy in this step.
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If we treat model (2.7) as a standard high-dimensional linear regression model, many model
selection methods are available for use, such as, stepwise and subset selection, penalized
approaches including bridge selection (Frank and Friedman, 1993), least absolute shrinkage
and selection operator (LASSO) (Tibshirani, 1996), smoothly clipped absolute deviation
(SCAD) (Fan and Li, 2001) and so on. However, traditional approaches such as stepwise
and subset selection methods estimate parameters separately from the model selection stage,
which ignore stochastic errors inherited in the stage of model selection and their sampling
properties are difficult to derive (Breiman, 1996). On the other hand, the recent work on
penalized variable selection approaches such as LASSO and SCAD have demonstrated good
properties and advantages to handle high-dimensional models.

The SCAD procedure has been paid great attention because of its desirable properties:
unbiasedness, sparsity, and continuity (Fan and Li, 2001). Recently Kim et al. (2008)
developed a new computational algorithm, coupled with the concave convex procedure
(CCCP) (An and Tao, 1997), to implement the SCAD in an efficient way. This algorithm
was confirmed to be less sensitive to the initial value, faster, more stable, and always
guaranteed to converge to a minimum, and in addition the oracle property is still ensured in
the case where the dimension of covariates is allowed to grow at a certain polynomial rate
provided that the true model is sparse. These properties are not attainable for other methods
such as LASSO (Meinshausen and Bühlmann, 2006; Zou, 2006). In this paper, we employ
Kim et al.’s (2008) idea in our ODE model selection, although it is not trivial to establish the
theoretical properties for our ODE model.

Consider the penalized objective function

(2.8)

where Jλ(|β|) is the SCAD penalty proposed by Fan and Li (2001), which can be expressed
as:

(2.9)

where a = 3.7. Note that here β = (β1, β2, …, βp)T and we drop the subscript k for notational
simplicity, since we will apply the variable selection technique to each of the p modules
separately.

The main idea of the CCCP-SCAD algorithm is to decompose (2.8) as the sum of the
convex and concave functions, and then use the CCCP algorithm (An and Tao, 1997) for
implementation. The key idea of the CCCP algorithm is to update the solution with the
minimizer of the tight convex upper bound of the objective function obtained at the current
solution. Thus, even though the objective function given in (2.8) is not convex, it can be
decomposed into the sum of a convex function and a concave function, and then the CCCP
algorithm can be applied. The most attractive feature of the CCCP-SCAD is that this
algorithm is guaranteed to converge to the local minimum and has been shown to have the
oracle property for high-dimensional linear models.

Note that Jλ(|β|) = J̃λ(|β|) + λ|β| and |β| is a convex function, where
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and J̃λ(|β|) is a differentiable concave function. Thus C(β) in (2.8) can be rewritten as

which is the sum of convex and concave functions. We apply the CCCP algorithm as
follows. Given a current solution βc, the tight convex upper bound is given as

(2.10)

We then update the current solution of βc with the minimizer of (2.10). We minimize (2.10)
by using the algorithm proposed by Rosset and Zhu (2007) as Kim et al. (2008) suggested,
because Q(β) is a piecewise quadratic function.

Note that there is a closed-form solution to a linear ODE model, which is a summation of
exponential terms (a nonlinear model). However, it will be difficult to estimate the
parameters in a high-dimensional nonlinear model and very challenging if not impossible to
perform model selection for a high-dimensional nonlinear model. The proposed two-step
smoothing-based method transforms this nonlinear regression model into a linear regression
model so that standard variable selection approaches for high-dimensional linear regression
models can be applied. The computation is easier for the linear model and we can also show
that the proposed SCAD estimator has an oracle property under our ODE setting. The
theoretical results and the proof are provided in the Appendix.

2.4. Step IV: SAEM for Refining Parameter Estimates
In Step III, we can obtain the estimates of coefficients βkj from model (2.7) while the
variable selection is performed using the SCAD approach, which is another advantage of the
penalized variable selection methods. However, these estimates are the so-called pseudo-
least squares (PsLS) estimates which were investigated by Liang and Wu (2008). As noted
by Liang and Wu (2008), the PsLS estimation method is computationally efficient and easy
to implement for our variable selection purpose in Step III, but the PsLS estimates are not
the most efficient in terms of estimation accuracy. This is because the estimates of the mean
expression curves, in particular, their derivatives from Step II may inherit a large error if the
data are sparse with a large noise. To overcome this problem, we invoke a nonlinear mixed-
effects (NLME) modeling approach to refine the parameter estimates based on the selected
model from Step III. The PsLS estimates from the previous step can be used as the initial
estimates for the NLME estimates.

The genes in each of the functional module can be treated as “subjects”. Thus, the gene
expression data for each module can be considered as a longitudinal data set. The mixed-
effects ODE model for module k can be written as
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(2.11)

where xki is the gene expression level for the ith gene in the kth module, nk is the number of
genes in the kth module, M[kj](t) are mean expression levels of the modules that have
significant effects (non-zero coefficients determined by the SCAD method in Step III) on the
kth module, mk is the number of modules that have significant effect on the kth module.
That is, we assume that the ith gene in the kth module is regulated by the mean effects of
genes in other modules. To fit model (2.11) and obtain the maximum likelihood estimates of
non-zero coefficients βkij, we suggest to use the Stochastic Approximation EM (SAEM)
algorithm (Delyon et al., 1999; Kuhn and Lavielle, 2005; Donnet and Samson, 2007).

Denote gki(t) as the expression measurement of gene i at time t in module k; the population
parameters βk = (βk1, · · ·, βkmk)T for the kth module and individual parameters βki = (βki1, ·
· ·, βkimk)T. We have a longitudinal measurement model:

(2.12)

where the measurement error εki(t) is assumed to follow an independent normal distribution
with mean zero and variance σ2. The between-gene variation can be modeled by random
effects of parameters:

(2.13)

where random effects bki characterize the deviation of individual genes from the population
level of the module. We assume that bki ~ (0, Dk). Note that xki(t) is a solution after
integrating ODE (2.11) separately for each module k = 1, · · ·, p, which requires M[kj](t) to
be known. We use the nonparametric estimates of M[kj](t) from Step II. Since xki(t) in (2.12)
is the solution to ODE (2.11) which is a nonlinear function of βkij and M[kj](t), the response
variable gki(t) is nonlinearly related to βkij and M[kj](t). Thus, we are dealing with a
nonlinear mixed effects (NLME) model in this step.

The SAEM approach is very efficient and generally applicable to obtain the maximum
likelihood estimates (MLE) for the unknown parameters in mixed-effects ODE models from
longitudinal data. Delyon et al. (1999) has shown that this algorithm converges very well
under very general conditions. When the conditional distribution of random effects has no
closed-form expression, a Markov chain Monte Carlo (MCMC) method can be used. Kuhn
and Lavielle (2005) also established the convergence of the SAEM estimates to the MLE.
Donnet and Samson (2007) applied this method to a dynamic ODE model where ODEs are
solved by a local linearization scheme. Samson et al. (2006) extended the method to deal
with censored data. However, the SAEM approach, similar to other likelihood-based
methods for nonlinear models, requires supply of the initial values of the unknown
parameters. If these initial values are too far from the true values, the computational
algorithm may suffer a convergence problem or may converge to a local maximum, in
particular for a high-dimensional parameter space. As aforementioned, the rough estimates
of the unknown parameters in the model selection step (Step III) can be served as good
starting values for our SAEM algorithm.

2.5. Step V: Function Enrichment Analysis
Based on the variable selection results from Step III and the refined estimates of non-zero
coefficients in ODE models from Step IV, we can build the gene regulatory network (GRN)
and interpret the results using function enrichment analyses (FEA). The FEA allows us to
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study what functions of the genes in each module typically perform. Annotating modules
appropriately is critical for explaining the constructed GRN. Fortunately, the biological
functions of many genes are known and documented in publicly accessible databases such as
Gene Ontology Consortium (2000). Genes within a module may perform multiple biological
functions. However, a certain function may be over-represented in a module compared to the
population of genes in an organism or a biological process which consists of thousands of
genes. Therefore, a module can be annotated by enriched function(s).The process of
detecting over-represented functions in a module is called function enrichment analysis
(Gene Ontology Consortium, 2000). A great deal of genes’ functions have been discovered
for many model organisms. Such information provides a platform for measuring the degree
of enrichment of certain function(s) in a module. The over-representation of a function in the
module can be tested by a hypergeometric distribution (Sokal and Rohlf, 1995),

(2.14)

where T is the population size, i.e., the total number of genes in an organism or an interested
biological process; S is the number of genes that share the same function in the population;
nk is the number of genes clustered in the kth module; and z is the number of genes that
share the same function in the module. This formula quantifies the probability of finding the
over-represented function in a functional module. In fact, the enrichment test is similar to
Fisher’s exact test in a 2 × 2 contingency table where the null hypothesis is that a particular
function is not represented in a module more than that in the population. By summing over
all the probabilities of the extreme or more extreme than the observed data from (2.14), the
p-value can be obtained. Since all categories of gene functions are tested for the same set of
genes, a correction is necessary to alleviate the false discovery rate in multiple tests.
Bonferroni correction is a conservative way to control the error in this case. The over-
represented function is then annotated for each module and the biological interactions of
gene functions in a GRN can be interpreted.

3. Identification of Dynamic Gene Regulatory Network for Yeast Cell Cycle
3.1. Time Course Microarray Data for Yeast Cell Cycle-Regulated Genes

The first time course gene expression data set for yeast cell cycle regulated genes were
collected by Spellman et al. (1998) and this data set has been analyzed using different
approaches by many investigators (Friedman et al., 2000; Holter et al., 2001; DeJong, 2002;
Yeung et al., 2002; Yao et al., 2005; Ma et al., 2006; Werhli and Husmeier, 2007). Cell
cycle progression in Saccharomyces cerevisiae (yeast) is controlled in part by the sequential
transcription of specific gene clusters whose expression peaks at different times during the
cell cycle. Such regulation might be required for the proper functioning of mechanisms that
maintain orders during cell divisions. Spellman et al. (1998) carried out a series of
experiments aimed at objectively identifying all protein-encoding gene transcripts in the
genome of Saccharomyces cerevisiae that are cell cycle regulated. They used DNA
microarrays to analyze gene expression levels in cell cultures that had been synchronized by
three independent methods. They analyzed the data by deriving a numerical score based on a
Fourier algorithm (testing periodicity) and using a correlation function, and they found that
800 genes were cell cycle regulated which constitutes > 10% of all protein-coding genes in
yeast genome. The gene expression levels were measured at 18 equally spaced time points
during two cell cycles. In this paper, we intend to apply differential equation models and the
proposed methods in the previous section to establish a dynamic regulatory network among
functional modules (instead of individual genes) for the yeast cell cycle.
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3.2. Application of the CSIEF Approach
We consider the 800 genes that were identified as cell cycle-regulated by Spellman et al.
(1998). Among these 800 genes, many of them showed a similar expression pattern during
the two-cell-cycle experiments. It is legitimate to apply the clustering method in Step I of
the proposed CSIEF procedure to group these genes into functional modules. The
nonparametric mixed-effects smoothing splines method with a mixture distribution (Ma et
al., 2006; Ma and Zhong, 2008) was applied to the data and 41 functional modules were
identified. The raw data for the 41 modules along with the fitted mean expression curves
using the proposed approaches are presented in Figure 2. We can see that these functional
modules differ from each other in terms of gene expression patterns, but all genes in the
same module behave similarly.

In the second step, we smoothed the data for each of the modules using the nonparametric
mixed-effects smoothing splines technique again to obtain the estimates of the mean
expression curves and their derivative curves for each module, separately. These estimates
were plugged in model (2.7) to formulate a regression-like model in the third step, and then
the SCAD approach (Step III of the CSIEF) was used to identify significant regulations
(connections) among the 41 functional modules. The SAEM approach was applied to the
identified sparse ODE model to refine the parameter estimates for each of the modules in
Step IV. We obtained the fitted curves for all modules by integrating 41 ODEs concurrently
with parameters estimated from the SAEM approach in Step IV. We overlayed the fitted
mean expression curves with the raw data and the smoothed mean curves from Step II in
Figure 2 (note that the initial values for the fitted ODE models are taken as M̂k(0) from Step
II which are smoothing estimates of Mk(0)). From this figure, we can see that the proposed
method fits the data quite well and the fitted mean curves from ODE models (Step IV) for
each module also coincide well with the smoothed mean curves from the smoothing splines
approach in Step II. We notice that the proposed ODE models not only can fit the simple
monotonic curves well, but also can fit complex and periodical curves quite reasonably
without invoking any periodical functions explicitly.

Finally we applied the function enrichment analysis (Step V) to each of the 41 functional
modules based on Gene Ontology Consortium (2000). The function enrichment analysis is
implemented with the whole yeast genome as a population for annotating the modules.
These results are reported in Table 1.

3.3. Results and Biological Implications
First we notice that 41 functional modules were identified from Step I of the CSIEF
procedure (Figure 2 and Table 1). The number of genes in each functional module ranges
from 1 to 39 (Column 2 in Table 1). The function annotation results are listed in Column 3
in Table 1. The fourth and fifth columns in Table 1 list all the modules, identified by the
SCAD method from Step III, that have significant impact on (inward influence) or are
impacted by (outward influence) respectively. If a module effect is negative (inhibitory), we
indicate it by a superscript ‘-’ in Columns 4 and 5. A list of the regulation parameter (ODE
coefficient) estimates can be found in Table S2 of the supplementary materials.

Figure 2 shows that some of the 41 modules, such as Modules 3 and 14, exhibited a
monotonic expression pattern although most of them exhibited a periodical pattern during
the two cell cycles. As shown in Table 1, the function annotation suggests that the genes in
the identified functional modules may participate in broad activities in a cell cycle such as
DNA replication, repair and maintenance, protein synthesis and modification, nucleic acid
transportation, nuclear chromatin assembly, cytoskeleton and cell wall organization, cell
fusion and division etc..
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We also note that the functions of five modules cannot be identified from the function
annotation analysis(denoted as ‘N/A’ in ‘Function Annotation’ column in Table 1). But the
genes in each of these five modules exhibited similar expression patterns, which indicate
that the genes in these modules may share some common functions that have not been
discovered to date. We would suggest that experimental biologists explore the genes in these
five modules which may lead to new discoveries in cell cycle progression.

The findings from our module-based network modeling are biologically interesting. For
instance, the dynamic expression of Module 1 was inhibited (negatively affected) by
Modules 9, 15, 18 and 30. We noticed that Module 1’s function is related to nucleic acid
transportation, which seems to be inhibited by modules with functions of cell wall
organization (the function of Module 9), conjugation with cell fusion (the function of
Module 15), meiotic mismatch repair (the function of Module 18), and amino acid
myristoylation in protein modification process (the function of Module 30). This seems
reasonable since the nucleic acid is transported for DNA synthesis. When a cell is ready to
undergo fusion or division, DNA does not participate in such a process. In contrast, the
pause of DNA synthesis may help alleviate the burden of accumulating materials and energy
for cell fusion or division. In addition, the expression level of Module 1 is almost flat
(Figure 2), which seems to be inhibited by some modules such as those identified from Step
III of our CSIEF procedure (i.e., Modules 9, 15, 18 and 30). Biological interpretations of
function annotations and module interactions for other modules are also interesting, but are
omitted here due to space limitation.

One important feature of the identified GRN is that most modules are regulated by only a
few other modules (ranging from 3 to 6 modules), which reflects the fact of sparseness of
the network connections. However, all the 41 modules are connected via a few important
modules that appear to be key players (‘hubs’) in the network. We found that 13 out of 41
modules had the function to regulate other modules. Among them, two modules (Modules
14 and 41) had effects on about 80% of all other modules; five modules (Modules 9, 18, 25,
30, and 32) regulated about 50% of all other modules; and three modules (Modules 8, 15,
and 38) regulated about 25% of all other modules. In fact, all 41 modules were regulated and
connected by these 10 key modules. In addition, one module (Module 20) regulated 4 other
modules and two modules (Modules 7 and 34) regulated one other module by each. We also
noticed that very few modules had a feedback loop (the module is regulated by itself). In
fact, only two big ‘hubs’, Modules 14 and 41 as well as Module 15 had a negative feedback
loop (Table 1).

For the two biggest ‘hubs’, Module 14 only contains one gene with a function of mating
pheromone activity and Module 41 contains 15 genes with an annotated function of nuclear
chromatin assembly/disassembly. This may suggest that knocking out the gene in Module 14
or some genes in Module 41 may have a significant effect on the yeast cell cycle-regulated
gene network, which can be validated via future experiments. Also notice that, among the
five modules whose functions were not identified from the GO function annotation (labeled
as ‘N/A’ in Column 3 of Table 1), two of them (Modules 32 and 8) are among the second
and third largest ‘hubs’ which had an effect on 50% and 25% of all other modules,
respectively. This finding provides additional evidence for our suggestion that these 5
modules with unidentified functions are worth more attention from experimental biologists.
Recent work published in Nature (Orlando1 et al., 2008) did knock out one gene, cyclin, in a
similar yeast cell cycle-regulated gene study. They showed that cells lacking the gene cyclin
are blocked at the G1/S border, however, nearly 70% of periodic genes continued to be
expressed periodically and on schedule. This suggests that, although the cyclin gene has a
function in the regulation of cell-cycle transcription, it is not solely responsible for
establishing the global periodic transcription system. This result agrees well with our
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findings that the gene cyclin was clustered in Module 20 in our analysis and Module 20 is
not a big hub although it affects 4 other modules in the network.

Transcription factors(TF) play key roles in regulating yeast gene transcription (Simon et al.,
2001). By employing genome-wide binding/location analysis, investigators have already
identified the interactions among TFs as well as interactions between TFs and other genes.
Lee et al. (2002) identified the binding capability of all 106 TFs of the complete yeast
genome which contains 6270 genes. They found that 37% of these genes are bound by one
or more of the 106 TFs. We explored the interactions between the 21 cell cycle related TFs
and the 800 cell cycle-regulated genes (41 modules). We found, on average, the 21 cell
cycle related TFs are more likely to bind to the 13 key modules (‘hubs’) as we have
identified, compared to other modules. In particular, among the identified biggest ‘hubs’,
Module 41, was affected by >50% of the 21 TFs, followed by Module 14 regulated by more
than 40% cell cycle related TFs. This fact suggests that the capability of genes in key
modules to regulate other genes is probably due to active transcription binding of cell cycle-
related TFs.

It is helpful to provide an intuitive visualization for the established GRN. We used R
function ‘igraph’ to plot the yeast GRN in Figure 3. From this figure, we can clearly see that
the large hubs, Modules 9, 14, 18, 25, and 41 are located in the center of the network. Some
other important hubs including Modules 30, 8, 15, and 38 can also be easily identified from
the graph.

4. Simulation Study: Evaluation of ODE Variable Selection and Parameter
Estimation

The proposed dynamic GRN construction procedure (CSIEF) is a complicated process
involving five steps. In this section, we design simulation experiments to validate some of
the key steps such as the ODE variable selection step (Step III) and ODE parameter
estimation step (Step IV). The statistical methods in other steps have been well studied in
statistical literature and will not be investigated here. We design our simulation study based
on the yeast data application in the previous section. We consider a ODE network model
with 41 variables (equations) which is the same as the module-based ODE model (1.3). The
estimated ODE model parameters (coefficients) are used as the true values in our simulation
study (see Table S2 in the supplementary materials). Note that for each of the 41 ODEs,
there are 3 to 6 non-zero coefficients and 35 to 38 zero coefficients so that we are mimicking
the scenarios of the yeast data application in the previous section. The initial values of the
ODE model are taken from the nonparametric smoothing estimates of the mean expression
curve Mk(t) at t = 0 for the kth module from Step II in the yeast data analysis. We simulated
the experimental data, gki(t) at different time points by solving the ODEs numerically and
then adding measurement errors using the following observation model,

(4.15)

where nk is the number of genes in the kth module which is set according to Table 1
(Column 2); bki is the random coefficient of gene i in the kth module to quantify the
departure of gene i from the mean expression of Module k, which is assumed to follow a
standard normal distribution. The measurement error eki(tj) is assumed to follow a normal
distribution with mean zero and variance δ2 and we simulated the data for two variance
levels, δ2 = 0.05 and 0.5. In order to compare the performance of the proposed method for
different sample sizes, we took the number of measurements N = 20, 100 and 300 with
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equally spaced time points for each gene respectively. The number of simulation runs is
taken as Nr = 100.

We applied the SCAD method (Step III) to perform variable selection for the simulated data.
Table 2 shows that the SCAD method can correctly select the variables for about 32% of the
worst cases (the largest variance and the smallest sample size) and 79% of the best case
scenarios (the smallest variance and largest sample size). For other cases, the performance of
the SCAD is in between the above two scenarios as we expected. In general, the SCAD
approach tends to select more variables (over-fitted). We believe that this problem can be
fixed using the adaptive LASSO or other related approaches that penalize more on over-
fitted models, but the detailed exploration of this is beyond the scope of this paper.

To evaluate the performance of the ODE parameter estimation from Step III and Step IV, we
calculated the average relative error (ARE) for all the parameter estimates in model (1.3),
which is defined as

(4.16)

where  is the estimate of parameter βkj in the kth module at the ith simulation run, q is the
number of non-zero coefficients in the model, and Nr is the number of simulation replicates
(Nr = 100 in our simulation study). We take the average of the AREs for all the parameter
estimates in all 41 equations to compare the estimates from Step III and Step IV.

From Step III of the proposed CSIEF method, rough estimates of ODE parameters can be
obtained via the smoothing-based estimation method (Liang and Wu, 2008) while the
variable selection is performed simultaneously. In Step IV, these estimates are refined using
the SAEM method to fit a nonlinear mixed-effects (NLME) model. We applied these
methods to the simulated data to evaluate their performance. Table 2 shows the average
estimation error for all parameters in model (1.3). The AREs range from 6% to 28% for the
smoothing-based SCAD estimates (Step 3) while the AREs are reduced to 3–15% for the
SAEM estimates (Step IV). This demonstrates that the SAEM parameter estimation
refinement step is necessary. In summary, the SCAD-based variable selection in Step III
works quite well for ODE models. The ODE parameter estimates are reasonable and the
SAEM estimation refinement in Step IV is necessary.

5. Concluding Remarks
We proposed a roadmap to construct a dynamic gene regulatory network (GRN) based on
ordinary differential equation (ODE) models. Statistical inference methods for ODE models
and mixed-effects modeling approaches as well as nonparametric smoothing and clustering
techniques for repeated measurement data were used to deal with the high-dimensional
problem and complex GRN. We successfully applied the proposed method to construct a
dynamic GRN for yeast cell cycle-regulated genes. The 800 cell cycle-regulated genes were
clustered into 41 functional modules. The functional module-based regulatory network was
established. With the help from functional enrichment analysis, we were able to annotate the
modules with specific functions. We described the extensive interactions among 41
functional modules and we suggest that some biological implications from our findings are
worth further exploration by experimental biologists. We also justified and validated the key
methods of the proposed procedure via investigating their theoretical properties and via
Monte Carlo simulations.
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One limitation of the proposed ODE models for a dynamic GRN is that only linear ODEs
are considered here due to the high computational cost and complexity of the variable
selection for nonlinear ODEs. The extension of linear ODE models to nonlinear ODE
models for dynamic GRN is conceptually straightforward, but the difficulties in computation
and variable selection as well as the nonlinear ODE parameter estimation may not be easily
overcome. More work in this direction is warranted. Alternative models for dynamic GRN
include boolean network, Bayesian network, and hidden Markov models among others. It is
interesting to compare these modeling approaches with the proposed ODE model method
from both perspectives of computational cost and likelihood to recover the true network. But
the computational cost for this comparison is beyond the limit of our current computational
power. In Step III, we employed a smoothing-based two-stage estimation method for ODE
model parameters (Liang and Wu, 2008) in order to simplify the SCAD-based variable
selection for ODE models. Some other more efficient estimation approaches for ODE
models such as the nonlinear least squares method (Xue et al., 2010) and generalized
profiling approach (Ramsay et al., 2007) are good for ODE parameter estimation, but these
methods may not be easily able to handle the variable selection, and thus were not used here.
We believe that it is worth future exploration along a similar line.

Gene regulation is a complex dynamic process. In addition, not only genes but also proteins,
RNAs, macro or micro molecules play important roles in this process. In theory, the
proposed ODE-based network modeling techniques are applicable to the complex network
involving more and different biological elements and entities if these data are available,
which may help us to reveal more detailed mechanisms of the gene regulatory network in
the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: ASYMPTOTIC RESULTS AND PROOF
For ease of presentation, we consider a local polynomial estimation for M(t) and M′(t) from
Step II. It is obvious that the same results apply for splines as well because splines and
kernels are asymptotically equivalent in some sense.

Let Tp,t be an n × (p + 1) design matrix, whose (i, j) entry is (ti − t)j−1 for p = 1 or 2, and Wt
= diag{Kh(t1 − t), …, Kh(tN − t)} be an N × N diagonal matrix of kernel weights, where
Kh(· ) = K(·/h)/h with K(·) being a symmetric kernel function, and h being a proper
bandwidth. As a consequence, the estimators M̂(t) and M̂′(t) can be expressed as

respectively, where ξ1 is the 2 × 1 vector having 1 in the first entry and zero in the 2nd
entry, while ξ2 is the 3 × 1 vector having 1 in the 2nd entry and zeros in the other entries;

 for j = 1, 2, with D and Ri being the covariance
matrices of the random-effect and measurement error terms (See Wu and Zhang (2006) for a
detailed description), and  is defined below.

Note that M̂′(t) is actually the slope of the local quadratic fit. Since model (2.7) is not a
standard linear regression model, the properties of the SCAD estimator may need to be
studied carefully for this ODE-based regression model. Here we study the oracle property of
the SCAD estimator for model (2.7).

Let  = (x1, …, xN )T for xj = {x1(tj), …, xp(tj)}T,  = (Y1, …, YN)T for Yj = {y1(tj), …,
yp(tj)}T,  = (M1, …, MN )T for Mj = {M1(tj), …, Mp(tj)}T, j = 1, …, N. For the sparse
model, we consider a situation where most of the regression coefficients are exactly 0.
Without loss of generality, we assume that the first q regression coefficients are nonzero and
the remaining p – q regression coefficients are 0. Let  = ( , ), where  is the first N ×
q submatrix and  is the last N × (p − q) submatrix of . Similarly, we write β = (β(1),

β(2)). Let C  =  /N, C  =  /N,  and  for i, j = 1, 2.
In what follows, we denote λmax(A) and λmin(A) as the largest and smallest eigenvalues of
matrix A, respectively, and A,j and Aj, the jth column and row of a given matrix A. In
addition, in the following theoretical development we express pN = p and qN = q to
emphasize that p and q depend on sample size N. We now prove that the oracle estimator is
asymptotically a local minimum of C(β). Here the oracle estimator is defined by β̂o = (β̂(1)o,

0(2)), where β̂(1)o is the minimizer of , 0(2) is (pN – qN )-dimensional 0 vector,
and ||·||2 is the standard Euclidean norm on RN. We assume the following regularity
conditions:

Assumption A
i. The function M(3)(t) is continuous on [0, 1].

ii. The kernel function K is symmetric about zero and is supported on [−1, 1].

iii. The bandwidth h = hN = N−1/7aN is a sequence satisfying h → 0 as N → ∞, where
aN is a sequence tending to 0 slower than log−1 N.
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iv. ti are iid and have a common compact support and their density function, f (t), is
bounded away from zero and has bounded and continuous second derivatives.

Assumption B
i. There exists a positive constant D1 such that  for all k = 1, …, pN.

There exists a positive constant D2 such that λmin(C ) ≥ D2.

qN = O(Nc1) for some 0 < c1 < 1.

There exist positive constants c2 and D3 such that c1 < c2 ≤ 1 and N(1−c2)/2

min1≤j≤qN|βj| ≥ D3.

The foregoing regularity assumptions (B) were used by Zhao and Yu (2006) to prove the
model selection consistency of the LASSO estimator. The following proposition is the main
result.

Proposition 1
Assume that E(ei)2κ < ∞ for an integer κ > 0. Let (λN ) be the set of local minima of (2.8)
with the SCAD penalty and a regularization parameter λN. Under Assumptions A and B, we
have Pr{β̂o ∈ (λN )} → 1 as N → ∞ provided that λN = o(N−(1−c2+c1)/2) and

.

Before we prove the main result, we state the following preliminary fact under Assumptions
A and B and its proof can be found in Wu and Zhang (2006):

(A.17)

where bN = o(N−1/4aN ) with aN given in Assumption A (iii). Note that (A.17) and
Assumption B(ii) indicate that, for large enough N, λmin(C ) ≥ .5D2.

Proof of Proposition 1
The proof of Proposition 1 can be completed following the spirit of Theorem 1 of Kim et al.
(2008). However, the proof for our case is more complex due to the fact that the SCAD
estimator for the ODE model is not based on the observed iid data, instead it is derived from
nonparametric smoothing estimates of the functional curves and their derivatives. Here only
the key steps that are different from Kim et al.’s (2008) proof are given. Details are omitted
due to space limit, but can be obtained from the authors.

Let . Note that ∂Lλ(β)/∂βj is

where . By the second-order sufficiency of the Karush-
Kuhn-Tucker condition (see, e.g., Bertsekas, 1999, pp.320), any β to satisfy
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(A.18)

(A.19)

is an element of A(λ). Thus it suffices to show that β̂o satisfies (A.18) and (A.19) with λ =
λN.

Note that Sj(β̂o) = 0 for j ≤ qN holds trivially by the definition of the oracle estimator. So for
proving (A.18), it suffices to prove that as N → ∞,

(A.20)

Let  and . Note that

{M̂′(t1) − M′(t1), · · ·, M̂′(tN ) − M′(tN )}T = Ξ2  −  + Ξ2e and .

A direct calculation yields .
It follows that

(A.

21)

We now deal with the three terms on the right-hand side of (A.21) separately. Let

 and . It follows that

Recall λmin(C ) ≥ .5D2. We know that . On the other hand, using the
arguments similar to the proof of Theorem 1 in Liang and Wu (2008) yields that

. These statements indicate that

(A.22)

for some positive constant C. Note that . In addition,

. (A.17) indicates that each
element of  −  is o(N−1/4). An argument similar to the proof of (A.22) yields that each

element of  is of order o(N−1/4). In the same way, we can prove that each

element of  is of order o(N−1/4) as well. So the first two terms on the right-
hand side of (A.21) are order o(N−1/4). Note that |β̂jo| ≥ |βj| − |β̂jo − βj|. Because minj≤qN|βj |
= O(N−(1−c2)/2) and λN = o(N−(1−c2+c1)/2), it suffices to show that max1≤j≤qN|β̂jo − βj| =

op(N−(1−c2)/2). Let . It is equivalent to proving maxj≤qN|zj | = op(Nc2)/2).
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Using the arguments similar to the proof of Theorem 1 in Kim et al. (2008), we can easily
show that, for any η > 0,

and we complete the proof of (A.18) for the oracle estimator.

To show (A.19), we have |β̂jo| ≤ λN for j > qN, because β̂jo = 0 by definition. Thus it suffices
to show that

(A.23)

Note that {Sj(β̂o), for some j = 1 + qN, …, n} can be expressed as

Using the arguments similar to the proof for (A.18) yields that the first two terms are of
order o(N−1/4). Thus we are going to deal with

which is denoted by , for some j = 1 + qN, …, N, where h(2)j is the j – qN column

vector of H(2) and . Note that

, and all eigenvalues of 
are between 0 and 1, we have that ||h(2)j|| ≤ D1 for all j = qN + 1, …, pN. Recall that

. Thus  and . As a
consequence, we obtain (A.23), and thus complete the proof of Proposition 1.
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Figure 1.
A roadmap for the CSIEF approach of dynamic GRN Construction
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Figure 2.
Yeast cell cycle-regulated gene expression data (dots) for individual modules with
nonparametric smoothing estimates of mean expression curves (dashed lines) and the ODE
fitted curves (solid lines) by the SAEM approach.
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Figure 3.
Graph of yeast cell cycle GRN formed by 41 modules. Each module is represented as a
node. Arrow stands for the direction of influence.
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