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Abstract: Insights from single-molecule tracking in mammalian cells have the potential to 

greatly contribute to our understanding of the dynamic behavior of many protein families 

and networks which are key therapeutic targets of the pharmaceutical industry. This is 

particularly so at the plasma membrane, where the method has begun to elucidate the 

mechanisms governing the molecular interactions that underpin many fundamental 

processes within the cell, including signal transduction, receptor recognition, cell-cell 

adhesion, etc. However, despite much progress, single-molecule tracking faces challenges 

in mammalian samples that hinder its general application in the biomedical sciences.  

Much work has recently focused on improving the methods for fluorescent tagging  

of target molecules, detection and localization of tagged molecules, which appear as 

diffraction-limited spots in charge-coupled device (CCD) images, and objectively 

establishing the correspondence between moving particles in a sequence of image frames 

to follow their diffusive behavior. In this review we outline the state-of-the-art in the field 

and discuss the advantages and limitations of the methods available in the context of 

specific applications, aiming at helping researchers unfamiliar with single molecules 

methods to plan out their experiments. 

Keywords: single molecule tracking; mammalian cells; experimental methods; fluorescent 

labels; feature detection 
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1. Introduction 

Single molecule tracking provides a direct way to quantify dynamic biological events at the  

single-molecule level without being obscured by the averaging inherent in ensemble experiments. The 

method can be a powerful method to study, with high spatial and temporal resolution, the dynamic and 

mechanistic features of molecular interactions that are important for biological function.  

Single-molecule imaging was first applied to investigations of molecular interactions involving 

purified biomolecules immobilized on glass or in artificial lipid bilayers, where sample backgrounds 

are inherently very low and the density of molecules per unit area easy to control. Among the 

breakthroughs that followed one can cite, for example, the direct observation of kinesin stepping by 

optical trapping interferometry [1], or recycling in stationary membrane tubes [2], the measurement  

of the power stroke size of Myosin V on actin with nanometer accuracy [3], the revelation of a  

DNA-scrunching mechanism during initial transcription [4], and diffusional migration in single 

stranded DNA-binding proteins [5]. For more information, see for example [6]. 

Single-molecule techniques were soon extended to imaging in bacterial cells, e.g., Escherichia coli, 

where controlling gene expression, and therefore the number of proteins per cell can be readily 

achieved [7]. Cell autofluorescence can also be easily minimized, for example, by growing cells in 

low-background culture media [8]. These advantages, together with the fact that the entire cell volume 

(2 μm long and 0.5 μm in diameter [9]) can be within the depth of focus of a standard high numerical 

aperture (NA) objective (depth of focus 300–700 nm), meant that single molecule detection could be 

accomplished using standard widefield epifluorescence microscopy. Examples of breakthroughs 

include the direct observation of steps in rotation of the bacterial flagellar motor [10], determining the 

stoichiometry and turnover in single, functioning membrane protein complexes [11], the demonstration 

of translational bursts from a repressed promoter [12], the measurement of the search time for a 

transcription factor to reach its target site in a living bacterial cell [13], and the stoichiometry and 

architecture of active DNA replication machinery [14]. For a useful review see [15]. 

Mammalian cells are much larger than bacterial cells, typically >10 μm × 10 μm long and  

several μm in depth. They also have significant levels of background autofluorescence, mostly due to 

the intrinsic fluorescence of molecules like NADPH and flavins [16]. Because mammalian cell depth 

is much larger than the depth of focus of standard high NA objectives, if imaged using epifluorescence 

illumination they will produce significant amounts of out of focus autofluorescence background  

that will swamp the emission from any single molecule of interest. The use of total internal  

reflection fluorescence (TIRF) [17] (see Section 2.4) together with the availability of brighter and  

more photostable fluorescence probes, new sample preparation and labeling methods and improved 

algorithms for feature detection and tracking have allowed single molecule tracking to become in the 

last decade an important tool to obtain direct information on how molecules diffuse and interact with 

each other in the mammalian cellular context. This has been particularly so at the plasma membrane, a 

heterogeneous entity with different structures at the nano and meso (<200 nm) scales [18]. Here, not 

only has single-molecule tracking allowed unprecedented observations of membrane protein 

interactions at the molecular level, but it has also significantly contributed to the recent plasma 

membrane paradigm shift from inert continuum fluid to a partitioned dynamic assembly that plays a 

key role in mediating protein interactions [19].  
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Because the fluorescence emission of single molecules is very weak, their detection is  

critically dependent upon the ability to minimize unwanted background signals. In addition,  

the diffraction-limited resolution of optical microscopy requires molecular densities of ~less  

than 1 molecule per μm2 so that the ~250 nm diameter image spots from single molecules do not 

overlap. This means that, for single molecule imaging in mammalian cells, considerable care is 

required in the selection of cell lines, fluorescence labeling, experimental design, and data analysis. In 

this review, we summarize the experimental choices facing biologists unfamiliar with single molecule 

experiments in a mammalian cell system. We also outline the type of information content that can be 

extracted from the data and give a few examples where these choices were paramount for the success 

of the experiment. 

2. Experimental Design  

2.1. Choosing a Cell Line  

Single molecule imaging is ideally suited to investigations in cells expressing low physiological 

numbers of the protein of interest because this avoids fluorescence from multiple molecules merging 

and preventing single molecule detection. Molecules must be separated by a distance greater than the 

point spread function (PSF) of the microscope if they are to be individually resolved. Figure 1A 

illustrates this effect. Two or more fluorescence emitters located within the PSF will not be detected as 

individual molecules. The experimenter should aim for molecule densities where clearly separated 

fluorescent spots are visible, with a significant degree of dark space between them. An example single 

molecule image from a sample with a good density of fluorescent molecules is shown in Figure 1B. 

Although the choice of cell model ultimately depends on the biological question(s), as a general guide 

one typically would like to find a cell line that expresses the protein of interest at a low number of 

copies per cell. As a rule of thumb, 20,000 protein copies per cell or fewer typically allows the labeling 

of a significant number of the protein copies at the plasma membrane without their image  

spots overlapping. [20,21]. It is, however, possible to apply single molecule imaging to cells  

that overexpress the protein(s) of interest. For example, the epithelial carcinoma A431 cell  

line overexpresses HER1 (aka epidermal growth factor receptor (EGFR)/ErbB1)), a tyrosine kinase 

receptor implicated in the onset and development of unregulated cell growth [22], to a level  

of ~2–3 × 106 copies per cell [23], of which 30% are located at the cell surface [24]. This cell line was 

the first employed for single molecule studies in mammalian cells [25]. The compromise that has to be 

made is that only a small fraction of surface receptors can be labeled with fluorophore. This can be a 

limitation to investigate protein interactions because the lower the fraction of fluorescent proteins the 

lower the chances of detecting colocalization events. It has also been reported that overexpression can 

alter protein dynamics at the cell surface [26], so a parallel control on a lower expression system may 

be required to validate the results. An alternative elegant way to derive single-molecule trajectories in 

cells overexpressing the protein of interest is to combine photoactivated localization microscopy 

(PALM) with live-cell single-particle tracking, which uses switchable probes allowing a small fraction 

of probes to be phototactivated at any one time [27].  



Int. J. Mol. Sci. 2012, 13 14745 

 

Figure 1. (A) Simulated intensity cross sections through a pair of single molecule 

fluorescence emitters with varying separations. Individual features can only be resolved 

when the molecules are separated by a distance greater than the point spread function of 

the microscope; (B) Single molecule TIRF image of EGFR in the plasma membrane of 

HeLa cells (expressing approximately 50,000 EGFR molecules per cell). EGFR are 

labelled with their ligand EGF, conjugated with the fluorophore Atto 647N (bar 8 µm). The 

white line shows the approximate cell borders. 

 

On some occasions it may be eminently possible to find a cell line with the desired level of 

expression of the protein of interest. For example, in the case of HER1-4, a receptor family implicated 

in the development and progression of most solid tumors, including non-small cell lung cancer, head 

and neck, breast, colon [28], a significant number of wild-type and stably transfected inmortalised cell 

lines with various expression levels are available (see for example [29–31]. If finding a cell line with 

required numbers of protein copies per cell is not possible, then the relevant plasmid DNA has to be 

transfected into an appropriate cell model. Popular non-viral transient transfection strategies include 

the use of liposomal based (e.g., Lipofectamine (Life Technologies, Grand Island, NE, USA) and  

non-liposomal reagents (e.g., FuGENE® HD (Promega, Madison, WI, USA). Optimizing of 

transfection efficiency for single molecule imaging may, however, be nontrivial. The strength of the 

promoter is an important consideration because most promoters are optimized for high protein yields. 

Other parameters to consider are the ratio of transfection reagent to DNA, the amount of transfected 

nucleic acid, and the length of time cells are exposed to the transfection reagent. Imaging cells only a 

few hours after transfection, instead of waiting the normal >12–24 h for protein to be expressed, can 

give good results [32]; however, care should be taken to ensure the cells have recovered from exposure 

to the transfection reagents, which are toxic (see for example [33,34]). Other options include the use of 

a viral transfection system which, because of their high levels of gene transfer, compared to non-viral 

vectors, can result in a much larger fraction of cells labeled at the desired low level (see for  

example [35]), and the use of DNA transposons, which are a mobile genetic element that efficiently 

transposes between vectors and chromosomes via a “cut and paste” mechanism (see for example [36]). 

For long term experiments the best option could be to stably transfect cells with a vector encoding the 
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protein of interest expressed from an inducible promoter; the level of protein expression can then be 

controlled using different concentrations of an antibiotic (see for example [37]).  

2.2. Fluorescent Probes for Single Molecule Tracking 

Because native proteins are invisible under the optical microscope a probe must be attached for 

fluorescence detection. Probes of interest include organic molecular dyes, fluorescent proteins (FPs) 

and quantum dots (QDs), which are semiconductor nanocrystals. The choice of fluorescent probe is 

guided by a number of general considerations; good probes must have high extinction coefficients, 

high quantum yields, and good photostability [38]. In multicolour applications narrow excitation and 

emission spectra are also an advantage (Table 1). 

Table 1. Characteristics of fluorescent probes. 

 Resistance to 

photo-bleaching 
Brightness 

Level of 

blinking 

Emission 

range (nm) 

Suitable for 

polarization 

Narrow 

fluorescence bands 

Quantum dots √√√ √√√ √ 400–800 NO 
√ (excit.)  

√√√ (emiss.) 

Organic dyes √√ √√ √ 400–800 YES √√√ 

Fluorescent 

proteins 
√ √ √ 450–650 YES 

√√ (excit.)  

√√√ (emiss.) 

Among the organic dyes, several groups of probes have been used in single molecule tracking 

experiments, including xanthenes (e.g., Rhodamine), cyanines (e.g., Cy3 and Cy5), and other groups 

better known by their trademark names, like the Alexa (Life Technologies, Grand Island, NE, USA) 

and Atto (Atto-Tec, Siegen, Germany) dye series. Because of the inherent background fluorescence of 

mammalian cells, most studies have used probes that absorb light at wavelengths longer than 450 nm. 

Currently, the palette of most available probes extends to excitations up to the far red (i.e., <660 nm) 

(Table 1) although near infrared dyes have also successfully been employed [39]. Advantages of 

organic dyes are: (i) their small size (typically <1 kDa), which reduces the chances of sterically 

hindering protein-protein interactions; (ii) their wide commercial availability; (iii) their wide 

availability in many colors (see for example [40]), although care must be taken to choose dyes whose 

emission spectra do not overlap to minimize bleedthrough between channels in multicolour tracking 

applications; (iv) different dyes can display different degrees of sensitivity to the environment (e.g., 

ionic concentration, pH, viscosity etc.) (see for example [41,42]), which can be useful to interrogate 

some sample properties; (v) they can be covalently linked to proteins using commercially available 

kits; and (vi) they have dipolar moments that make them suitable for polarization measurements (see 

for example [43,44]). A limitation of organic dyes is their tendency to stick to the cell substrate; this 

can be a big challenge in single molecule tracking, where the aim is to derive the diffusion rates of 

different protein species, because non-specifically bound probes are immobile and can contaminate 

results [45,46]. In practice, the suitability of a dye will strongly depend on the reagents, sample 

preparation procedures and the aims of the particular application. 

Fluorescent proteins (FPs) are genetically encoded fluorescence markers and can be monomeric 

(25–30 kDa in size) or multimeric, the latter being proportionally brighter [47]. Best known is the 
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prototypical green fluorescence protein (GFP), in which a fluorescent chromophore  

4-(p-hydroxybenzyliden)-5 imidazoline forms within a rigid beta barrel during the maturation of the 

protein in the cell from a tripeptide (Ser65-Try66-Gly67) [48]. A big advantage of FPs is that they can 

be attached to most proteins using standard molecular biology methods [49]. Most commonly,  

plasmid vectors are used, introduced into the host cells using lipid vesicles, a process known as 

lipofection [50]. Details of plasmid design are beyond the scope of this review, but more information 

can be found in [51], for example. Transfections are either transient, in which expression of the 

fluorescent gene fusion product occurs several hours after transfection, continuing for 72 to 96 h after 

introduction of the DNA, or stable, where the cells continue to produce the fluorescent protein 

indefinitely. Stable cell lines can be selected using antibiotic markers introduced into the plasmid [52]. 

Creation of stable cell lines is usually achieved by using more efficient techniques at the initial 

transfection stage, such as electroporation, a method that uses high voltage pulses to introduce pores 

into the plasma membrane [53]. Probably the most important aspect to consider when attempting to 

use fluorescent proteins for single molecule work is to keep the expression level low enough to enable 

individual molecules to be distinguished.  

To investigate protein-protein interactions it is advantageous to choose FP versions that do not 

oligomerise in order to prevent the FP itself being the driver of the dimerisation of the protein of 

interest, although in practice this means compromising the brightness of probes that are already not too 

bright. If the resulting SNR is too low, one option to ameliorate the loss in signal is to fuse tandems of 

monomeric FPs to the protein of interest [54]. In recent years, the color palette has also been enriched 

through mutations in GFP, creating a number of orange, red and far-red FPs, like for example 

mOrange2, tagRFP, mKate2, etc., which have not only higher extinction coefficients, but also more 

pH-stability, higher brightness and photostability (for a review see [55]). There are also several 

photoactivatable and photoswitchable FPs available, e.g., Dendra2, mEos2, etc., ideal for  

super-resolution methods (see for example [56]). 

One key limitation shared by organic dyes and FPs is their poor resistance to photobleaching ([38] 

and references therein). The most photostable among them typically undergo about 105–106  

excitation-deexcitation events prior to bleaching, which means they emit a maximum of  

105–106 photons. The finite number of photons available implies that single-molecule fluorescence 

measurements are generally limited by shot noise [57]. This means that the signal-to-noise ratio (SNR) 

is equal to √N, where N is the number of photons recorded in a frame of data. A number of factors 

contribute to achieving the highest SNR, and these need to be optimized for the particular type of 

experiment being performed. Important factors include the excitation intensity, the length of the 

frames, the efficiency of the detector, the total number of frames and the lag time between them, and 

the photophysical characteristics of the dye or fluorescent protein. For example, increasing the photon 

emission rate via stronger illumination will allow faster frame rates at a high SNR but only at the 

expense of speeding up the eventual bleach. Of course, frame rate selection is also dependent on the 

behavior of the features being tracked, so, for example, more rapidly diffusing molecules require faster 

tracking and therefore higher frame rates. Depending on the duration of the phenomena under 

investigation, the optimal illumination power must be carefully chosen to balance out SNR, frame rate 

and bleaching times. Using illumination powers of <2 mW, the best organic dyes can last up to a few 

minutes and the best FPs up to a few tens of seconds (see for example [44,58]). Another key limitation 
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is the susceptibility to blinking, defined as intercalated periods where the fluorescence intensity 

reversibly drops to zero [59]. As with photobleaching, blinking can often be related to the presence of 

a long-lived dark triplet state. Blinking is undesirable in single molecule tracking as features cannot be 

detected for the duration of the off periods. Given that the methods used to palliate blinking, like the 

introduction of redox cocktails [60,61], are not generally applicable to the physiological-like 

conditions of live cell work, the photophysical properties of the tag are key criteria when choosing an 

organic dye or FP for single molecule tracking experiments. (It should be noted that the presence of 

significant blinking is in contrast an advantage when employed in other super-resolution imaging 

techniques such as PALM and STORM [62–64]). 

Because of their exceptional resistance to photobleaching and their very high extinction coefficient 

and brightness, QDs have been widely used in biology [65,66]. QDs provide big advantages in single 

molecule tracking when the inherent SNR is poor (for example to follow intracellular processes where 

TIRF illumination cannot be used [67]) and when molecular behavior needs to be monitored for 

extended periods (see for example [68,69]). QDs also have a broader excitation spectrum [70] which 

can be both an advantage if one wants to simultaneously excite different probes with the same laser 

source, and a limitation if multiplexing is required. Their narrower, size-tunable emission spectra are 

ideal for applications in which many colors are required, for example to distinguish several protein 

species. Limitations of QDs include their relatively large size (~20 nm), which may interfere with 

some protein-protein interactions, that they display significant blinking, and that it is difficult to label 

the protein of interest at a 1:1 stoichiometric ratio [71], although in some systems this could be an 

advantage [72]. An elegant method of conjugating QDs to surface proteins in living cells is via the use 

of E. coli biotin ligase [73]. 

2.3. Labeling the Proteins of Interest 

If fluorescent proteins cannot be used to label the proteins of interest, other ways must be used to 

attach fluorescent molecules. Some integral plasma membrane proteins (e.g., transmembrane receptor 

tyrosine kinases, G-protein coupled receptors, cytokine receptors, ion channels, etc.) can be labeled at 

their extracellular domains by adding to the culture medium a fluorescent derivative of a high-affinity 

protein ligand that can avidly recognize a specific site in the receptor with a known stoichiometry.  

The ligand carrying the fluorescent probe can be, among others, a receptor agonist (e.g., a growth 

factor ligand, (e.g., [25]), a cytokine (e.g., [74], etc.), an antagonist (e.g., an affibody [75], a  

small drug compound or antibiotic [20]), or a genetically engineered antibody mimetic protein  

(e.g., DARP in [76]). If the objective of the experiment is to determine the stoichiometry of a complex, 

or measure the number of molecules in a cluster, it is important that the ligand is labeled in a specific 

residue at a 1:1 stoichiometry. In this way, one avoids steric variations from one labeled ligand to 

another. On the other hand, for tracking experiments it may be preferable to increase the labeling ratio 

so that longer tracks can be recorded before the label is completely photobleached. 

Ligands can be chemically labeled using, for example, succinimidyl ester derivatives of fluorescent 

dyes that provide an efficient and convenient way to covalently cross-link the fluorophore specifically 

to primary amines (R–NH2) in the ligand, found in lysine residues and at the N-terminus. Similarly, 

maleimide derivatives can be used to label thiol groups (R–S–H), present in cysteine residues  
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(Figure 2A). The desired 1:1 dye/ligand stoichiometry is easy to achieve if ligands do not have any 

lysine residues, such as, for example, the epidermal growth factor (EGF) ligand which binds the 

extracellular domain of HER1, because the dye can only bind the N-terminus. Similarly, 1:1 

stoichiometry can be easily obtained with ligands that have a single cysteine residue, such as, for 

example, affibody ligands. If two cysteines are present, it is often possible to mutate one to another 

small amino acid whilst maintaining good affinity for the receptor.  

Figure 2. Illustration of methods used for fluorescence labelling. (A) Conjugation of 

fluorophores to ligands and antibodies; (B) The use of combined methods for multiple 

labelling of proteins with different ligands: The intracellular domain is labelled with green 

fluorescent protein and/or SNAP tags, while the extracellular domain is labelled using a 

combination of MCP, ACP, and CLIP tags, and chemically-conjugated ligand. 

 

If the proteins cannot be labeled by adding fluorescent probes to the culture medium one requires 

molecular biology methods to engineer protein-tag fusions. Protein tagging techniques involve the 

addition of a peptide sequence to the protein of interest. The peptide sequence is designed to be 

susceptible to a specific chemical reaction, in the case of fluorescence measurements enabling the 

attachment of a specific fluorophore. The SNAP tag is a 20 kDa mutant of the DNA repair protein  

O6-alkylguanine-DNA alkyltransferase [77]. It reacts specifically with derivatives of benzylguanine, 
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which can be used to covalently attach a fluorescent probe. Similar to the SNAP tag is the CLIP tag. 

This is a version of the SNAP tag that has been modified to react with a different substrate,  

O2-benzylcytocystine [78]. By using combinations of CLIP and SNAP tags, it is possible to label a 

single fusion protein with two different fluorescent probes. Many of the substrates of CLIP and  

SNAP tags are membrane-permeable, so they can be used for labeling of intracellular as well as 

extracellular proteins. 

A slightly different approach is taken with another two tags, ACP and MCP. In this case, the  

protein is fused to an acyl carrier protein. The fusion protein can then be labeled with derivatives of 

Coenzyme A (CoA), via a post-translational modification catalysed by the enzyme AcpS. An 

advantage of the ACP tag is its relatively small size (9 kDa) [79]. A mutant of ACP, known as MCP, is 

modified by the enzyme Sfp, but not by AcpS, allowing, in a similar way to SNAP and CLIP tags, the 

labeling of a single fusion protein with two fluorophores. Unlike SNAP and CLIP, the substrates of 

ACP and MCP tags are not membrane permeable, so are only suitable for labeling proteins on the 

surface of the cell. The principles of labeling with protein-tag fusions are illustrated in Figure 2B. 

Although the tags described above are smaller than fluorescent proteins, they are still relatively 

large and have the potential to interfere sterically with protein function. Other tags, known as FlAsH 

(green) and ReAsH are smaller, but have relatively poor labelling specificity and can be toxic to  

cells [80]. Recently, other methods have been demonstrated for the specific labelling of proteins within 

cells. Probe Incorporation Mediated by Enzymes (PRIME) uses a mutant “fluorophore ligase” that is 

able to attach the blue fluorophore 7-hydroxycoumarin to proteins fused to a specific recognition 

sequence [81]. Similarly, a two-step method has been described that uses E. coli lipoic acid ligase to 

site-specifically ligate a trans-cyclooctene derivative onto the protein of interest, followed by 

derivitization with a tetrazine-fluorophore conjugate [82]. These methods have the potential to 

overcome some of the difficulties associated with conventional tag-labelling, but have not so far been 

applied in single molecule studies. 

2.4. Optical Set up  

One of the major challenges in imaging single molecules in mammalian cells is obtaining data with 

sufficiently high SNR in the presence of high levels of background fluorescence. To detect single 

molecules cell autofluorescence must therefore be minimized. In mammalian cells, this is almost 

always accomplished by the use of total-internal-reflection fluorescence (TIRF) [83] (Figure 3A). 

Because of the difference in refractive index between the glass substrate and the cell culture medium, 

light that hits the glass-water interface at or beyond the so-called critical incidence angle cannot 

propagate towards the sample and is totally internally reflected. TIRF illumination creates an 

evanescent excitation field on the glass coverslip to which the cells adhere which reduces 

exponentially with depth, penetrating ~200 nm axially into the sample. The evanescent field 

differentially excites molecules in the vicinity of the cell surface reducing intracellular 

autofluorescence background to a level where single-molecule detection becomes possible [84]. In the 

case of mammalian cells this means that fluorescence excitation is restricted to membrane proteins and 

proteins in the close vicinity of the plasma membrane, with minimal fluorescence from molecules 

deeper inside the cell (Figure 3B). 
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Figure 3. (A) Illustration of the principle of Total Internal Reflection Fluorescence (TIRF) 

microscopy. (B) Effect of TIRF illumination on fluorescent molecules in the plasma 

membrane of adherent cells; molecules close to the cover slip receive more intense 

illumination, and there is no illumination beyond a depth of approximately 200 nm. 

 

TIRF illumination can be achieved in one of two ways. Prism-based TIRF microscopy uses a prism 

attached to the coverslip to direct a light beam towards the glass-water interface at the critical  

angle [17]. In objective-based TIRF microscopy, an objective with very high numerical aperture  

(NA > 1.45) is used to achieve illumination at the critical angle, by placing the laser illumination off 

the centre of the objective’s back focal plane [85]. The latter method is now more commonly 

employed because of convenience of sample handling and ease of adjustment of the incident angle. 

The layout of a typical objective-based TIRF single-molecule microscope is shown in Figure 4  

(see for example [86]). This microscope is designed for excitation of fluorescence at three 

wavelengths, and its detection in three channels. A typical use of a system of this type might be the 

investigation of interactions between three different protein species diffusing on the surface of a cell. 

Lasers of different colors can be delivered to the sample in a number of ways, including via the use  

of a polarisation maintaining wavelength multiplexer, a laser engine, or a supercontinuum laser  

source [87]. The combined laser output is launched into a polarisation maintaining single mode fiber, 

which is plugged into an inverted microscope through a polarisation dependent TIRF slider that allows 

both TIRF and epifluorescence illumination. Maintaining the polarization of the laser(s) not only 

reduces losses at the TIRF slider but also allows delivery of polarization components along the z and x 

axis with respect to the sample that can be used to derive protein orientation information [44]. TIRF 

attachments are available from all major microscope manufacturers, although it is also possible to 

custom-build optics for TIRF illumination (see for example [88]). The laser beam is reflected into the 

high NA objective by suitable triple band filter sets. Fluorescence from the sample is imaged onto the 

entrance aperture of an Optosplit III image splitter (Cairn Research). This divides the image into three 
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spectrally distinct but spatially identical components, which are imaged side by side on an electron 

multiplication CCD (EMCCD) camera. To date, EMCCDs are the most suitable detectors for single 

molecule imaging because of their combination of high signal-to-noise with relatively fast readout 

speeds [89]. 

Figure 4. Schematic view of a microscope set up for 3-colour single molecule  

TIRF microscopy. 

 

Finally, it should be noted that the increased molecular contrast provided by the limited depth of 

TIRF illumination could also be considered as a limitation if there is a need to image molecules that 

are located in the cell cytoplasm or nucleus, not close enough to the plasma membrane to fall within 

the TIRF illumination field. Besides using QDs [67], a way forward for intracellular single molecule 

imaging might be to use fluorescent probes which are excited by infrared radiation, at wavelengths 

where little cell autofluorescence occurs. A recent publication has showed the use of conventional 

epifluorescence illumination to image single molecules labeled with infrared probes, inside cells [39].  

2.5. Feature Detection, Localisation and Analysis  

Data analysis is a key part of any single molecule experiment. It is beyond the scope of this review 

to cover all the aspects of single molecule data analysis, but in this section we briefly discuss some of 

the more important points for single molecule detection, localization, and tracking. We refer to a 

number of papers in which the reader may find more detailed information if required. 

Significant effort has been applied in the last few years to the development of data analysis methods 

suitable for single molecule tracking studies in cells. The general approach, outlined below, can be 

divided into two steps: (i) the detection and measurement of features in each image frame; and (ii) the 

inferring of information on individual molecular movement (tracks) from the changes in these features 

through time. Key challenges include the presence of crowded fields, fluorophore blinking, low SNRs 

and poor signal-to-background ratios, the latter because signals from single molecules are 
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superimposed on out-of-focus fluorescence from other molecules and residual cell autofluorescence 

not completely eliminated by TIRF illumination. In addition, because fluorophores located at varied 

axial distances in the cell membrane experience different excitation field strengths, a side effect of the 

limited depth of the evanescent field is that the SNR ratio varies from molecule to molecule.  

To detect single molecules these have to be distinguished from the surrounding background. This is 

often a non-trivial procedure as the background may be neither flat nor smooth, and may show features 

that resemble single molecules. Single molecules can be considered single point emitters because their 

size is much smaller than the optical wavelengths employed. Feature detection relies on the knowledge 

that the diffraction-limited spot image of a single molecule is equal to the point spread function (PSF) 

of the microscope. Features are therefore only considered to arise from a single molecule if they have a 

size equal to the PSF of the microscope. Even though the true theoretical profile of the PSF is actually 

an Airy disc, a Gaussian profile with fixed known width has normally been adopted as an 

approximation for the PSF of the microscope (see for example [90–93]). This is because a Gaussian is 

significantly easier to use and computationally faster to evaluate, while the results are often 

indistinguishable. Deconvolution of the Gaussian profile allows determination of the position of the 

single molecule emitter with precision of up to 1–2 nm depending on SNR and the amount of 

background present [3]. (It should be noted that, in combination with the availability of 

photoactivatable probes, this is the principle behind the development of super-resolution microscopy; 

for a recent review see for example [94]).  

If the SNR and signal-to-background ratio are reasonably good, popular single molecule feature 

detectors use combinations of thresholding methods and step detection (single molecules photobleach 

in one step and this allows counting of the molecules in a PSF and distinguishing them from the 

background) (e.g., [18,20,21,32]). At low SNRs, tracking algorithms that perform best incorporate 

likelihood-based feature detection algorithms [95] or Bayesian segmentation [96], which objectively 

compare the probabilities of a feature being present with the null hypothesis of just background. One 

key remaining challenge of feature detection is how to satisfactorily address the high particle density 

typical of mammalian cell images, which is often present even in cells that express low numbers of 

protein copies per cell when a substantial fraction of these proteins are labeled [20,21]. Towards this 

goal, a feature detector from astronomy was recently shown to perform well when applied to crowded 

conditions [97].  

Tracking is the process of following molecules through time to derive the time course of their 

intensity and position. This enables single molecule data to be analyzed in live cells to derive 

information on the characteristics of the molecular movement over many frames and measure diffusion 

rates for individual molecules. When performed in two of more color channels, tracking can also 

determine the presence of molecular interactions and their kinetic rates. The latter requires the use of 

multicolor feature detection and tracking, which typically requires the application of highly precise 

channel registration procedures (e.g., [98]). Exploiting the temporal information from the data is often 

achieved by tracking detected features from frame to frame and interpreting the resulting position and 

intensity traces versus time. In some cases though, information on protein diffusive behavior can be 

derived by measuring correlation properties without first calculating temporal tracks [99] or by 

separately considering the cases of moving and non-moving proteins and performing simple  
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tracking [90]. The correlation method is computationally cheap, robust, and can be applied to high 

particle densities, without the requirement for a priori knowledge of the dynamic coefficients. 

One key challenge in tracking is that the particles under observation exhibit temporary 

disappearance, e.g., from blinking, detection failure, merging and splitting events from  

dimer-monomer transition, or because the separation between features goes below and then above the 

diffraction limit. As a result, the feature detector may not detect features in all frames, leading to tracks 

with ‘gaps’ from which the “true” tracks have to be recovered. Given that the global spatio-temporal 

solution that would address this challenge is computationally prohibitive, most feature trackers use a 

number of heuristic algorithms to derive a computationally tractable global spatial solution. However, 

this approach tends to optimize for longest track length as it is impossible to determine the relative 

likelihood of a set of short tracks rather than one tracked formed by linking them [100]. This problem 

was statistically addressed by Sergé et al. [101], who looked at the probability of tracks forming a set 

of tracks with maximum likelihood. Jaqaman et al. [95] proposed a maximum likelihood method of 

parameter selection and developed a set of heuristics for determining these models and joining the 

tracks together. Despite the progress made, a computationally tractable, global spatio-temporal 

solution still remains to be found. 

3. Information Content  

Single molecule tracking is uniquely suited to investigate three molecular properties: First,  

from the quantum photobleaching of the fluorescence tag attached to the protein it can report on 

stoichiometry [11,102,103]; second, from the position of interacting molecules versus time it can 

identify the presence or absence of an interaction [20,21,69]; third, from the different modes of 

molecular diffusion it can provide information on the interaction of a molecule with its surroundings. 

Given that the latter property is the least intuitive of the three, we briefly introduce below some of the 

key concepts. 

The original model proposed to describe the diffusion of proteins in a lipid membrane is the 

Saffman-Delbrück theory [104]. This model describes a lipid membrane as a thin layer of viscous 

fluid, surrounded by a less viscous bulk liquid and predicts that molecular diffusion coefficients 

depend on the radius and height of the diffusing object and the viscosity of the membrane and its 

surrounding fluid. According to this model, the diffusion of membrane proteins would behave as 

stochastic molecular transport of the type that can be explained by Brownian motion. The prediction is 

consistent with diffusive processes at the plasma membrane being ergodic, i.e., one in which the 

statistical properties of the diffusion behavior (such as its mean and variance) should not be time 

dependent [105].  

Both single molecule and ensemble-averaged methods, like fluorescence recovery after 

photobleaching (FRAP) [106], have reported the diffusive properties of proteins. These experiments 

have demonstrated that diffusion is in fact non-ergodic and have shown the presence of anomalous 

diffusion not explained by the Saffman-Delbrück model [107]. Assuming that movement is random, 

and approximating the plasma membrane to a 2-D surface, one can derive the molecular mean square 

displacement (MSD) from the ensemble average diffusion coefficient (D). A Brownian particle in this 

space should display a motion described by a linear MSD, i.e., MSD ∞ Dt, where t is the time during 
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which molecules are observed). Motions other than normal diffusion will result in non-linear MSD 

plots (Figure 5). At the plasma membrane is often found that the power law governing MSD motion is 

sublinear, i.e., MSD ∞ Dtγ, where γ < 1. This diffusive behavior is referred to as confined motion, or 

anomalous subdiffusion. In some cases, it is also found that γ > 1, which is referred to as  

anomalous superdiffusion. Experimental and theoretical work suggests that possible reasons behind 

anomalous subdiffusion include obstruction due to macromolecular crowding, compartmentalization 

and fence-like structures at the plasma membrane [108–110], cholesterol-dependent membrane 

heterogeneity [111,112], and protein binding to the cell cytoskeleton (see for example [69,72,113]). 

Anomalous superdiffusion arises when the fluorescent molecule is being actively transported, e.g., on 

microtubules [114]. This gives rise to MSD plots similar to that shown in Figure 5A. 

Figure 5. (A) Simulated mean squared displacement plots for particle tracking. I shows 

diffusion for confined molecules, II shows obstructed diffusion, III normal diffusion, and 

IV shows MSD for directed motion; (B) shows example particle tracks for the motion 

types plotted in (A) [115]. 

 

The insights provided by single molecule tracking go beyond those derived from ensemble methods 

by allowing the investigation of transient events and positional inhomogeneity, which may ultimately 

explain the mechanism(s) behind hindered diffusion. From single molecule tracks the MSD can be 

derived for individual molecules from the sum of the square of the molecular displacements (jumps) 

per frame normalized by the total number of jumps. MSD can be calculated using the formula: 

ሻݐ∆ሺܦܵܯ ൌ ݐሺݎ|ۃ  ሻݐ∆ െ  (1) ۄሻ|ଶݐሺݎ

where |ݎሺݐ  ሻݐ∆ െ  ሻ| is the distance traveled by molecule i between time t and time t + ∆t, andݐሺݎ

the expectation value is over all pairs of time points separated by Δt in each molecular track. 

In cases where individual traces are too short for meaningful MSDs to be calculated, the MSD can 

instead be determined by pooling all the traces together. MSD data from single molecule experiments 

are already beginning to test the sizeable theoretical framework that has already being laid down to 

quantitatively explain the effects of lateral diffusion in the presence of immobile obstacles, finite  

and infinite hierarchy of traps (representing, for example, protein binding sites at the membrane), 

percolation thresholds, etc. (see for example [116,117]). The theory predicts how subtleties in the 

behavior of molecules may depend on the organization of its surrounding environment. For example, a 

suitable infinite hierarchy of traps leads to anomalous diffusion at all times, as the protein can never 
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escape from bouncing between traps; in contrast, a finite hierarchy of traps leads to anomalous 

diffusion at short times and normal diffusion at long times, for example, a protein crosses the barrier 

between a lipid raft full of traps and another area in the membrane where traps are not present.  

4. Examples of Applications 

There are many examples of the successful application of single molecule tracking to investigate 

molecular behavior in the plasma membrane of mammalian cells in culture. To cite just a few, it has 

reported the binding dynamics of EGFR dimers [118], the stoichiometry of M1 muscarinic receptor 

complexes [20], different structures for high- and low-affinity EGFR [119], the diffusion dynamics of 

single kinesin molecules moving in microtubules [120], the kinetic rates and equilibrium constant of a 

chemotractant G-protein couple receptor (GPCR) [21], a retrograde transport of EGFR from filopodia 

to the cell body [68], the dimerization dynamics of EGFR and the enrichment of this receptor in  

the cell periphery in an actin and receptor-expression-dependent fashion [72], and how EGFR 

dimerization is promoted by domain co-confinement and stabilized by ligand-binding [69].  

In this section we use two of these examples to illustrate the variety of choices that can be made in 

the experimental design, data collection and data analysis to answer different biological questions. The 

first example is a bench mark for sample preparation technique [20]. In this work Hern et al. 

investigate the formation and dissociation of dimers of the M1 muscarinic receptor, a GPCR which is a 

subtype of the muscarinic acetylcholine receptor family [121]. The main biological question was 

whether M1 receptors existed as obliged dimers or higher oligomers. Single molecule tracking can 

provide this information because two molecules in a dimer will show two bleaching steps and one 

molecule one bleaching step. The number of traces of each kind can be counted in a histogram to 

derive the percentages of each species. Key to measure the stoichiometry of this interaction is their use 

of a high-affinity (35 pM) M1 antagonist (telenzepine) bound to one of the most photostable and long 

lasting organic dyes available, Cy3. The slow dissociation rate of telenzepine allowed long term 

systematic washing of samples to remove of non-specific probes bound to cells and glass, important to 

derive the proportion of monomers and dimers (note that non-specific probes will be static and show 

single step bleaching). Also critical for success was the use of CHO cells stably expressing receptors at 

low physiological levels (1 pmol receptor per milligram membrane protein) that together with the  

high-affinity of the probe allowed up to 97% of receptors to be labeled using probe concentrations in 

the range of 0.1–1 nM. The high fluorescent receptor fraction was crucial to quantify the population of 

dimers and monomers from molecular photobleaching and track colocalisation events and the low 

concentrations of probe required were in turn crucial to minimize non-specific binding.  

The second example is a benchmark in data analysis [69]. In this work, Low-Nam et al captured the 

dimerization of EGFR in real time and developed sophisticated analytical methods to extract reaction 

kinetics and characterize monomer and dimer behavior. The sample preparation consisted of using 

A431 cells overexpressing EGFR where some receptors were labeled with a QD either via an 

activating ligand or an antagonist. They investigated receptor dynamics by measuring the 

colocalization of QDs of two colors. The brightness of the QDs allowed nanometer-like precision in 

the determination of molecular position within each channel by deconvoluting the Gaussian profile of 

the PSF in each frame of each track. An accurate channel registration procedure was applied to achieve 
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this. As a result they were able to measure the separation between receptors versus time in the 

nanoscale and used these data to identify dimers from pairs of molecules tracking together where the 

separation between them was consistent with that expected in dimers from crystallographic data. 

Interestingly, other associations were also found in which receptors were co-confined at the plasma 

membrane but at a distance too far apart to be consistent with dimerization. Using drugs that disrupt 

actin polymerization they were able to identify that the plasma membrane architecture and interactions 

with actin are involved in co-confinement and promote repeated interactions. The photostability of the 

QD probes was critical for the latter as they allowed long term observations of the same molecules.  

5. Conclusions and Future Perspectives  

We have illustrated some experimental choices facing researchers using single molecule methods  

in mammalian cells in culture, summarized the advances made in optimizing methods in the fields  

of sample preparation, data acquisition and data analysis, and review a number of scientific 

achievements. Some key challenges still remain. It is necessary to improve transfection methods to 

make it easier (and quicker) to obtain the cellular expression levels optimal for different single 

molecule experiments. Improving the photostability and brightness of organic dyes and FPs and 

increasing the color palette of microscopes, toward hyperspectral imaging, will help to link single 

molecule methods with systems biology. There is also the need to improve feature detection and 

tracking to better cope with crowded fields and reduce the reliance on heuristics and a priori 

knowledge to fill in the voids between tracklets in a data set.  

Another challenge is posed by a new range of samples employed in single molecule experiments. 

Single-molecule visualization has now also been applied to differentiated cells (spermatozoa) [122], 

primary zebrafish embryonic stem cells [123], salivary gland cell nuclei of Chironomus tentans  

larvae [124], and plant cells in Arabidopsis leafs and roots, where it was hitherto believed that TIRF 

was not possible (see for example [125]). These developments have extended single molecule 

investigations to molecular phenomena in conditions as close as possible to physiological, i.e., in the  

multi-cellular and in vivo context, where the cell’s environment includes other cell types and 

extracellular matrix which affect molecular processes in order to maintain tissue specificity and 

homeostasis (Kleinman et al. 2003). This is an important step because molecular behaviour in cultures 

cells may not always be reflective of the behaviour in vivo. However, these new type of samples bring 

their unique experimental challenges, for example increased levels of autofluorescence, different 

requirements for molecular expression and sample labeling and, crucially, the need to get deeper into 

the sample, which in some cases precludes the use of TIRF methods. The next few years promise very 

exciting developments in the field. 
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