
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 967380, 14 pages
doi:10.1155/2012/967380

Research Article

A Computationally Efficient, Exploratory Approach to
Brain Connectivity Incorporating False Discovery Rate Control,
A Priori Knowledge, and Group Inference

Aiping Liu,1 Junning Li,2 Z. Jane Wang,1 and Martin J. McKeown1, 3

1 Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
2 Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA
3 Division of Neurology, Department of Medicine and Pacific Parkinson’s Research Centre, University of British Columbia,
Vancouver, BC, Canada V5Z 1M9

Correspondence should be addressed to Z. Jane Wang, zjanew@ece.ubc.ca

Received 18 March 2012; Revised 6 July 2012; Accepted 10 July 2012

Academic Editor: Tianzi Jiang

Copyright © 2012 Aiping Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Graphical models appear well suited for inferring brain connectivity from fMRI data, as they can distinguish between direct
and indirect brain connectivity. Nevertheless, biological interpretation requires not only that the multivariate time series are
adequately modeled, but also that there is accurate error-control of the inferred edges. The PCfdr algorithm, which was developed
by Li and Wang, was to provide a computationally efficient means to control the false discovery rate (FDR) of computed edges
asymptotically. The original PCfdr algorithm was unable to accommodate a priori information about connectivity and was designed
to infer connectivity from a single subject rather than a group of subjects. Here we extend the original PCfdr algorithm and
propose a multisubject, error-rate-controlled brain connectivity modeling approach that allows incorporation of prior knowledge
of connectivity. In simulations, we show that the two proposed extensions can still control the FDR around or below a specified
threshold. When the proposed approach is applied to fMRI data in a Parkinson’s disease study, we find robust group evidence of
the disease-related changes, the compensatory changes, and the normalizing effect of L-dopa medication. The proposed method
provides a robust, accurate, and practical method for the assessment of brain connectivity patterns from functional neuroimaging
data.

1. Introduction

The interaction between macroscopic brain regions has been
increasingly recognized as being vital for understanding
the normal brain function and the pathophysiology of
many neuropsychiatric diseases. Brain connectivity pat-
terns derived from neuroimaging methods are therefore of
great interest, and several recently published reviews have
described different modeling methods for inferring brain
connectivity from fMRI data [1, 2]. Specifically, graphical
models which represent statistical dependence relationships
between time series derived from brain regions, such as
structural equation models [3], dynamic causal models [4],
and Bayesian networks [5], appear to be well suited for
assessing connectivity between brain regions.

Graphical models, when applied to functional neu-
roimaging data, represent brain regions of interest (ROIs)
as nodes and the stochastic interactions between ROIs as
edges. However, in most nonbrain imaging graphical model
applications, the primary goal is to create a model that fits the
overall multivariate data well, does not necessarily accurately
reflect the particular connections between nodes. Yet in the
applications of graphical models to brain connectivity, the
neuroscientific interpretation is largely based on the pattern
of connections inferred by the model. This places a premium
on accurately determining the “inner workings” of the model
such as accounting for the error rate of the edges in the
model.

The false discovery rate (FDR) [6, 7], defined as the
expected ratio of spurious connections to all learned
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connections, has been suggested as a suitable error-rate
control criterion when inferring brain connectivity. Com-
pared with traditional type I and type II statistical error
rates, the FDR is more informative in bioinformatics and
neuroimaging, since it is directly related with the uncertainty
of the reported positive results. When selecting candidate
genes for genetic research, for example, researchers may want
70% of selected genes to be truly associated with the disease,
that is, an FDR of 30%.

Naively controlling traditional type I and type II error
rates at specified levels may not necessarily result in rea-
sonable FDR rates, especially in the case of large, sparse
networks. For example, consider an undirected network with
40 nodes, with each node interacting, on average, with 3
other nodes; that is, there are 60 edges in the network. An
algorithm with the realized type I error rate of 5% and
the realized power of 90% (i.e., the realized type II error
rate = 10%) will recover a network with 60 × 90% = 54
correct connections and [40 × (40 − 1)/2 − 60] × 5% =
36 false connections, which means that 36/(36 + 54) =
40% of the claimed connections actually would not exist
in the true network! This example, while relatively trivial,
demonstrates that the FDR may not be kept suitably low by
simply controlling traditional type I and type II error rates.

Recent work in the machine learning field has started to
investigate controlling the FDR in network structures using a
generic Bayesian approach and classical FDR assessment [8].
This work was subsequently extended to look specifically at
graphical models where the FDR was assessed locally at each
node [9].

Li and Wang proposed a network-learning method that
allows asymptotically control of the FDR globally. They
based their approach on the PC algorithm (named after
Peter Spirtes and Clark Glymour), a computationally effi-
cient and asymptotically reliable Bayesian network-learning
algorithm. The PC algorithm assesses the (non)existence
of an edge in a graph by determining the conditional
dependence/independence relationships between nodes [10].
However, different from the original PC algorithm, which
controls the type I error rate individually for each edge
during conditional independence testing, the Li and Wang
algorithm, referred as the PCfdr algorithm, is capable of
asymptotically controlling the FDR under prespecified levels
[11]. The PCfdr algorithm does this by interpreting the
learning of a network as testing the existence of edges, and
thus the FDR control of edges becomes a multiple-testing
problem, which has a strong theoretical basis and has been
extensively studied by statisticians [11].

Beside giving an introduction of these recent advance-
ments, this paper will present two extensions to the original
PCfdr algorithm, the combination of which leads to a multi-
subject brain connectivity modeling approach incorporating
FDR control, a priori knowledge and group inference. One
extension is an adaptation of a priori knowledge, allowing
users to specify which edges must appear in the network,
which cannot and which are to be learned from data.
The resulting algorithm is referred to as PC+

fdr algorithm
in this paper. Many applications require imposing prior
knowledge into network learning. For example, analyzing

causal relationship in time series may forbid backward
connections from time t + 1 to t, such as that in dynamic
Bayesian networks. In some situations, researchers may want
to exclude some impossible connections based on anatomical
knowledge. Incorporating a priori knowledge into PCfdr

algorithm allows for more flexibility in using the method
and potentially leads to greater sensitivity in accurately
discovering the true brain connectivity.

The second extension to PCfdr algorithm is a combina-
tion of the PCfdr algorithm and a mixed-effect model to
robustly deal with intersubject variability. As neuroimaging
research typically involves a group of subjects rather than
focusing on an individual subject, group analysis plays an
important role in final biological interpretations. However,
compared with the extensive group-level methods available
for analysis of amplitude changes in blood-oxygen-level-
dependent (BOLD) signals (e.g., Worsley et al. [12], Friston
et al. [13]), the problem of group-level brain connectivity
analysis is less well studied. This is likely due to the fact
that it requires not only accommodating the variances and
the correlations across subjects, but also accounting for the
potentially different structures of subject-specific brain con-
nectivity networks. The proposed group-level exploratory
approach for brain connectivity inference combines the
PCfdr algorithm (or the extended PC+

fdr algorithm if a priori
knowledge is available) and a mixed-effect model, a widely
used method for handling intersubject variability.

Several methods have been proposed to infer group
connectivity in neuroimaging. Bayesian model selection [14]
handles intersubject variability and error control; however,
its current proposed implementation does not scale well,
making it more suitable for confirmatory, rather than an
exploratory research. Varoquaux et al. [15] propose a data-
driven method to estimate large-scale brain connectivity
using Gaussian modeling and deals with the variability
between subjects by using optimal regularization schemes.
Ramsey et al. [16] describe and evaluate a combination of a
multisubject search algorithm and the orientation algorithm.

The major distinguishing feature of the proposed
approach compared to these aforementioned approaches is
that the current data-driven approach aims at controlling the
FDR directly at the group-level network. We demonstrate
that in simulations that, with a sufficiently large subject
size, the proposed group-level algorithm is able to reliably
recover network structures and still control the FDR around
prespecified levels. When the proposed approach, referred
as the gPC+

fdr algorithm, is applied to real fMRI data
with Parkinson’s disease, we demonstrate evidence of direct
and indirect (i.e., compensatory) disease-related connec-
tivity changes, as well as evidence that L-dopa provides a
“normalizing” effect on connectivity in Parkinson’s disease,
consistent with its dramatic clinical effect.

2. Materials and Methods

2.1. Preliminaries. Graphical models, such as Bayesian net-
works, encode conditional independence/dependence rela-
tionships among variables graphically with nodes and edges
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according to the Markov properties [17]. The concept
of conditional (in)dependence is very important for the
inference of brain connectivity, as it assists in distinguishing
between direct and indirect connectivity. For example, the
activities in two brain regions are initially correlated, but
become independent after all possible influences from other
brain regions are removed, then this is an example of indirect
connectivity, as the initial activity was actually induced by
common input from another region(s). On the other hand,
if the activities of two brain regions are correlated even
after all possible influences from other regions are removed,
then very likely there is a direct functional connection
between them and hence is an example of direct connectivity.
Conditional dependence is the real interest in learning brain
connectivity because it implies that two brain regions are
directly connected.

Since a graphical model is a graphical representation
of conditional independence/dependence relationships, the
nonadjacency between two nodes is tested by inspecting
their conditional independence given all other nodes. As
multiple edges are tested simultaneously, FDR-control pro-
cedures should be applied to correct the effect of multiple
testing.

Given two among N random variables, there are 2N−2

possible subsets of the other N − 2 variables upon which
the two variables could be conditionally independent. To
avoid exhaustively testing such an exponential number
of conditional independence relationships, the following
proposition [10] can be employed [9, 11].

Proposition 1. Given a multivariate probability distribution
whose conditional independence relationships can be perfectly
encoded as a Bayesian network according to the Markov
property, two nodes a and b are nonadjacent if and only if there
is a subset C of nodes either all in the neighbors of a or all in the
neighbors of b such that a and b are conditionally independent
on given C.

Based on Proposition 1, nodes a and b can be dis-
connected once they are found conditionally independent
upon a conditional node set C. As the tests of adjacency
progress for every node pair, the neighborhood of nodes
keeps shrinking, so an exhaustive search of the conditional
node set C is avoided. This greatly reduces computation,
especially for a sparse network.

2.2. Brain Connectivity Inference Incorporating False Discovery

Rate Control and A Priori Knowledge

2.2.1. PC+
fdr Algorithm. The initial version of Li and Wang’s

[11] method, called the PCfdr algorithm, was proved to
be capable of asymptotically controlling the FDR. Here
we present an extension of the PCfdr algorithm which can
incorporate a priori knowledge, which was not specified in
the original PCfdr algorithm. We name the extension as the
PC+

fdr algorithm where the superscript “+” indicates that
it is an extension. The pseudocode of the PC+

fdr algorithm
is given in Algorithm 1, and its Matlab implementation
is downloadable at http://www.junningli.org/software. It

handles prior knowledge with two inputs: Emust, the set
of edges assumed to appear in the true graph, and Etest,
the set of edges to be tested from the data. The original
PCfdr algorithm can thus be regarded as a special case of
the extended algorithm, by setting Emust = ∅ and Etest =
{all possible edges}.

2.2.2. Asymptotic Performance. Before we present theorems
about the asymptotic performance of the PC+

fdr algorithm
and its heuristic modification, let us first introduce the
assumptions related to the theorems.

(A1) The multivariate probability distribution P is faithful
to a directed acyclic graph (DAG) whose skeleton is
Gtrue.

(A2) The number of vertices is fixed.

(A3) Given a fixed significance level of testing conditional
independence, the power of detecting conditional
dependence approaches 1 at the limit of large sample
sizes.

(A4) The union of Emust, the edges assumed to be true, and
Etest, the edges to be tested, covers Etrue, all the true
edges; that is, Etest ∪ Emust ⊇ Etrue.

Assumption (A1) is generally assumed when graphical
models are applied, and it restricts the probability distri-
bution P to a certain class. Assumption (A2) is usually
implicitly stated, but here we emphasize it because it
simplifies the proof. Assumption (A3) may seem overly
restrictive, but actually can be easily satisfied by standard
statistical tests, such as the likelihood ratio test introduced
by Neyman and Pearson [18] and the partial-correlation test
by Fisher [19], if the data are identically and independently
sampled. Assumption (A4) relates to prior knowledge, which
interestingly does not require that the assumed “true” edges
Emust be a subset of the true edges Etrue, but just that all true
edges are included in the union of the assumed “true” edges
and the edges to be tested.

The detection power of the PC+
fdr algorithm and its

heuristic modification at the limit of large sample sizes is
elucidated in Theorem 2.

Theorem 2. Assuming (A1), (A2), and (A3), both the PC+
fdr

algorithm and its heuristic modification, the PC+
fdr∗ algorithm,

are able to recover all the true connections in Etest with
probability one as the sample size approaches infinity:

lim
m→∞P

(
E′true ⊆ E′stop

)
= 1, (1)

where E′true denotes the set of true edges in Etest; that is, E′true =
Etrue ∩ Etest, E′stop denotes the set of edges inferred by the
algorithm about Etest; that is, E′stop = Estop∩Etest, and m denotes
the sample size.

It should be noted that Theorem 2 does not need
Assumption (A4), which implies that the true edges in
Etest are still able to be recovered by the algorithms with
probability one at the limit of large sample sizes, even if

http://www.junningli.org/software
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Input: the data D, the undirected edges Emust that are assumed to exist in the true undirected graph Gtrue

according to prior knowledge, the undirected edges Etest (Emust ∩ Etest = ∅) to be tested from the data D,
and the FDR level q for making inference about Etest.
Output: an undirected graph Gstop, that is, the value of G when the algorithm stops, or equivalently, Estop,
the edges in Gstop.
Notations: D denotes the multivariate input data. a, b denote the vertices. E, C denote the vertex sets. a ∼ b
denotes an undirected edge. adj(a,G) denotes vertices adjacent to a in graph G. a ⊥ b|C denotes the
conditional independence between a and b given C.

(1) Form an undirected graph G from Etest ∪ Emust.
(2) Initialize the maximum p values associated with the edges in Etest as Pmax = {pmax

a∼b = −1 | a ∼ b ∈ Etest}.
(3) Let depth d = 0.
(4) repeat
(5) for each ordered pair of vertices a and b that a ∼ b ∈ E ∩ Etest and |adj(a,G) \ {b}| ≥ d do
(6) for each subset C ⊆ adj(a,G) \ {b} and |C| = d do
(7) Test hypothesis a ⊥ b | C and calculate the p value pa⊥b|C .
(8) if pa⊥b|C > pmax

a∼b , then
(9) Let pmax

a∼b = pa⊥b|C .
(10) if every element of Pmax has been assigned a valid p value by step 9, then
(11) Run the FDR procedure, Algorithm 2, with Pmax and q as the input.
(12) if the non-existence of certain edges are accepted, then
(13) Remove these edges from G.
(14) Update G and E.
(15) if a ∼ b is removed, then
(16) break the for loop at line 6.
(17) end if
(18) end if
(19) end if
(20) end if
(21) end for
(22) end for
(23) Let d = d + 1.
(24) until |adj(a,G) \ {b}| < d for every ordered pair of vertices a and b that a ∼ b is in E ∩ Etest.

A heuristic modification, named the PC+
fdr∗ algorithm, at step 14 removes pmax

a∼b from Pmax as well once a ∼ b
is removed from G.

Algorithm 1: The PC+
fdr algorithm.

the edges assumed to be present by users are not completely
correctly specified.

The FDR of the PC+
fdr algorithm at the limit of large

sample sizes is elucidated in Theorem 3.

Theorem 3. Assuming (A1), (A2), (A3), and (A4), the FDR
of the set of edges inferred by the PC+

fdr algorithm about Etest

approaches a value not larger than the user-specified level q as
the sample size m approaches infinity:

lim sup
m→∞

FDR
(
E′stop,E′true

)
≤ q, (2)

where FDR(E′stop,E′true) is defined as

FDR
(
E′stop,E′true

)
= E

⎡
⎣
∣∣∣E′stop \ E′true

∣∣∣
∣∣∣E′stop

∣∣∣

⎤
⎦,

Define

∣∣∣E′stop \ E′true

∣∣∣
∣∣∣E′stop

∣∣∣
= 0, if E′stop = ∅.

(3)

Theorem 3 concerns the PC+
fdr algorithm, and it requires

Assumption (A4). We are still not sure whether similar

FDR performance can be proved for the PC+
fdr∗ algorithm.

Assumption (A4) does not require that the assumed “true”
edges Emust is a subset of the true edges Etrue but only that all
true edges are included in the union of the assumed “true”
edges and the edges to be tested. This is particularly useful
in practice, since it does not require users’ prior knowledge
to be absolutely correct, but allows some spurious edges to
be involved in Emust, once all true edges have been included
in either Emust or Etest. Assumption (A4) can be satisfied by
making Etest ∪ Emust large enough to cover all the true edges,
but as shown in (4) this will increase the computational cost
of the algorithm.

Theorems 2 and 3 address the performance of the PC+
fdr

algorithm and its heuristic modification at the limit of large
sample sizes. Because the PC+

fdr algorithm is derived from the
PCfdr algorithm, its performance should be very similar. The
numerical examples of the PCfdr algorithm in Li and Wang’s
[11] work may provide helpful and intuitive understanding
on the performance of the PC+

fdr algorithm with moderate
sample sizes.

The detailed proofs of Theorems 2 and 3 are provided in
Appendix A.



Computational and Mathematical Methods in Medicine 5

Input: a set of p values {pi | i = 1, . . . ,H}, and the threshold of the FDR q
Output: the set of rejected null hypotheses
(1) Sort the p-values of H hypothesis tests in the ascendant order as p(1) ≤ · · · ≤ p(H).
(2) Let i = H , and H∗ = H (or H∗ = H(1 + 1/2, . . . , +1/H), depending on the assumption of the dependency among
the test statistics).
(3) while

H∗

i
p(i) > q and i > 0, (�)

do
(4) Let i = i− 1.
(5) end while
(6) Reject the null hypotheses associated with p(1), . . . , p(i), and accept the null hypotheses associated with p(i+1), . . . , p(H).

Algorithm 2: FDR setup [6].

2.2.3. Computational Complexity. The majority of the com-
putational effort in the PC+

fdr is utilized in performing
statistical tests of conditional independence at step 7 and the
FDR at step 11. If the algorithm stops at the depth d = dmax,
then the number of conditional independence tests required
is bounded by

T = 2|Etest|
dmax∑

d=0

Cd
Δ−1 ≤ |Etest|2Δ, (4)

where |Etest| is the number of edges to be tested, Δ is the
maximum degree of graph Ginit (the graph formed at step
1) whose edges are Emust ∩ Etest, and Cd

Δ−1 is the number of
combinations of choosing d unordered and distinct elements
from Δ−1 elements. The bound usually is very loose, because
it assumes that no edge has been removed until d = dmax.

The computational complexity of the FDR procedure,
Algorithm 2, invoked at step 11 of the PC+

fdr algorithm is
O(H log(H)) when it is invoked for the first time, where H =
|Etest| is the number of input p values and is O(H) later, with
the optimization suggested in Appendix B. In the worst case
that pa⊥b|C is always larger than pmax

a∼b , the complexity of the
computation spent on the FDR control in total is bounded
by O(|Etest| log(|Etest|) + T|Etest|) where T is the number of
performed conditional independence tests (see (4)). This is a
very loose bound because it is rare that pa⊥b|C is always larger
than pmax

a∼b .
In practice, the PC+

fdr algorithm runs very quickly,
especially for sparse networks. In our experiments (see
Section 3.1), it took about 10 seconds to infer the structure
of a first-order dynamic network with 20 nodes from data of
1000 time points.

2.2.4. Miscellaneous Discussions. It should be noted that
controlling the FDR locally is not equivalent to controlling
it globally. For example, if it is known that there is only one
connection to test for each node, then controlling the FDR
locally in this case will degenerate to controlling the point-
wise error rate, which cannot control the FDR globally.

Listgarten and Heckerman [8] proposed a permutation
method to estimate the number of spurious connections in
a graph learned from data. The basic idea is to repetitively

apply a structure learning algorithm to data simulated
from the null hypotheses with permutation. This method
is generally applicable to any structure learning method,
but permutation may make the already time-consuming
structure learning problem even more computationally
cumbersome, limiting its use in practical situations.

2.3. FDR-Controlled Group Brain Connectivity Inference with
or without A Priori Knowledge. In this section, we propose
another extension to the PCfdr algorithm: from the single
subject level to the group level. Assessing group-level activity
is done by considering a mixed-effect model (Step 7 of
Algorithm 3), and we name it the gPCfdr algorithm where “g”
indicates that it is an extension at the group level. When also
incorporating a priori knowledge, the resulting algorithm is
named the gPC+

fdr algorithm.
Suppose we have m subjects within a group. Then for

subject i, the conditional independence between the activities
of two brain regions a and b given other regions C can be
measured by the partial correlation coefficient between Xa(i)
and Xb(i) given XC(i), denoted as rab|C(i). Here X• denotes
variables associated with a vertex or a vertex set, and index i
indicates that these variables are for subject i. By definition,
the partial correlation coefficient rab|C(i) is the correlation
coefficient between the residuals of projectingXa(i) andXb(i)
onto XC(i) and can be estimated by the sample correlation
coefficient as

r̂ab|C(i) = Cov
[
Ya|C(i),Yb|C(i)

]
√

Var
[
Ya|C(i)

]
Var
[
Yb|C(i)

] , (5)

where

βa|C(i) = arg min
β

∣∣Xa(i)− XC(i)β
∣∣2,

βb|C(i) = arg min
β

∣∣Xb(i)− XC(i)β
∣∣2,

Ya|C(i) = Xa(i)− XC(i)βa|C(i),

Yb|C(i) = Xb(i)− XC(i)βb|C(i).

(6)

For clarity, in the following discussion we omit the
subscript “ab | C” and simply use index “i” to emphasize
that a variable is associated with subject i.
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Input: the multisubject data D, undirected complete graph G, complete vertex set E and the FDR controlled
level q for making inference about E.
Output: the recovered undirected graph Gstop.
Notations: a, b denote the vertices. E, C denote the vertex set. a ∼ b denotes an undirected edge. adj(a,G)
denotes vertices adjacent to a in graph. a ⊥ b | C denotes the conditional independence between a and b given C.

(1) Form an undirected graph G on the vertex set E.
(2) Initialize the maximum p values associated with the edges in E as Pmax = {pmax

a∼b = −1 | a ∼ b ∈ E}.
(3) Let depth d = 0.
(4) repeat
(5) for each ordered pair of vertices a and b that a ∼ b ∈ E ∩ E and |adj(a,G) \ {b}| ≥ d do
(6) for each subset C ⊆ adj(a,G) \ {b} and |C| = d do
(7) Test hypothesis a ⊥ b | C for each subject and calculate the p value pa⊥b|C at the group level.
(8) if pa⊥b|C > pmax

a∼b , then
(9) Let pmax

a∼b = pa⊥b|C .
(10) if every element of Pmax has been assigned a valid p value by step 9, then
(11) Run the FDR procedure, Algorithm 2, with Pmax and q as the input.
(12) if the non-existence of certain edges are accepted, then
(13) Remove these edges from G.
(14) Update G and E.
(15) if a ∼ b is removed, then
(16) break the for loop at line 6.
(17) end if
(18) end if
(19) end if
(20) end if
(21) end for
(22) end for
(23) Let d = d + 1.
(24) until |adj(a,G) \ {b}| < d for every ordered pair of vertices a and b that a ∼ b is in E.

Note: When a priori knowledge is available, we can also incorporate the prior knowledge into the gPCfdr

algorithm to obtain the gPC+
fdr algorithm, where the inputs are updated as follows: the multisubject data D,

the undirected edges Emust that are assumed to appear in the true undirected graph Gtrue according to prior
knowledge, the undirected edges Etest whose existences are to be tested from the data, and the FDR controlled
level q for making inference about Etest.

Algorithm 3: The gPCfdr algorithm.

To study the group-level conditional independence rela-
tionships, a group-level model should be introduced for ri.
Since partial correlation coefficients are bounded and their
sample distributions are not Gaussian, we apply Fisher’s
z-transformation to convert (estimated) partial correlation
coefficients r to a Gaussian-like distributed z-statistic z,
which is defined as

z = Z(r) = 1
2

ln
(

1 + r

1− r

)
, (7)

where r is a (estimated) partial correlation coefficient and z
is its z-statistic.

The group model we employ is

zi = zg + ei, (8)

where ei follows a Gaussian distribution N(0, σ2
g ) with zero

mean and σ2
g variance. Consequently, the group-level testing

of conditional independence is to be used to test the null
hypothesis zg = 0.

Because zi is unknown and can only be estimated, the
inference of zg should be conducted with ẑi = Z(r̂i). If

Xa(i), Xb(i), and XC(i) jointly follow a multivariate Gaussian
distribution, then ẑi asymptotically follows a Gaussian
distributionN(zi, σ2

i ) with σ2
i = 1/(Ni−p−3), whereNi is the

sample size of subject i’s data and p represents the number of
variables in XC(i). Therefore, based on (8), we have

ẑi = zg + ei + εi, (9)

where εi follows N(0, σ2
i ) and ei follows N(0, σ2

g ). This
is a mixed-effect model where εi denotes the intrasubject
randomness and ei denotes the intersubject variability. At
the group level, ẑi follows a Gaussian distribution N(zg , σ2

i +
σ2
g ). Note that unlike regular mixed-effect models, the

intrasubject variance σi2 in this model is known, because Ni

and p are known given the data X(i) and C. In general, σ2
i =

1/(Ni − p− 3) is not necessarily equal to σ2
j for i /= j, and the

inference of zg should be conducted in the manner of mixed
models, such as estimating σ2

g with the restricted maximum
likelihood (ReML) approach. However, if the sample size of
each subject’s data is the same, then σ2

i equals σ2
j . For this

balanced case, which is typically true in fMRI applications
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Figure 1: Simulation results for the PC+
fdr algorithm. (a) Simulation results for the network with 10 nodes and 23 edges. (b) Simulation

results for the network with 20 nodes and 56 edges. In the networks, solid arrows represent edges from time t to t + 1, and dashed arrows
represent edges with no time lag (i.e., from time t to t). For the FDR and detection power curves, the blue solid lines represent the PCfdr

algorithm, the red solid lines represent the PC+
fdr algorithm, the x-axis means the sample sizes, and the y-axis means the FDR or detection

power.

and as well the case in this paper, we can simply apply a t-test
to ẑi’s to test the null hypothesis zg = 0.

Replacing Step 7 of the single-subject PCfdr algorithm
(i.e., the intrasubject hypothesis test) with the test of zg = 0,
we can extend the single-subject version of the algorithm
to its group-level version. We will employ this t-test in our
simulations and in the real fMRI data analysis presented later
in this paper. Such a testing approach significantly simplifies
the estimation process, and our simulation results presented
later demonstrate that this method can still control the FDR
at a user specified error rate level.

3. Experiments

3.1. Simulations for the PC+
fdr Algorithm. Here we compare

the performances of the proposed PC+
fdr algorithm and the

original PCfdr algorithm, using time series generated from
two dynamic Bayesian networks in Figure 1. One network
has 20 nodes (10 channels) and 23 edges, and the other has
40 nodes (20 channels) and 56 edges. The dynamic Bayesian
networks are assumed Gaussian, with connection coefficients

uniformly distributed in [0.2, 0.6] with Gaussian noise whose
amplitudes are uniformly distributed in [0.5, 1.1]. We use
partial correlation coefficients to test conditional indepen-
dence relationships. The target FDR for both methods is set
as 5%. For the PC+

fdr algorithm, one-third of the nonexisting
connections are excluded as prior knowledge.

Figure 1 shows the estimated FDR and detection power
results, at sample sizes of 125, 250, 500, and 1000 time points
and with 50 repetitive trials for each sample size. As shown in
graphs (a) and (b), the PC+

fdr and PCfdr algorithms can both
control the FDR under or around 5%. For both methods,
the detection power increases as the sample size increases.
However, we can see that the PC+

fdr algorithm yields higher
detection power and lower FDR than the original PCfdr

algorithm does. As mentioned earlier in the Introduction
Section, the PC+

fdr algorithm has the advantage of providing
researchers more flexibility in using the method and higher
accuracy in discovering brain connectivity.

3.2. Simulations for the gPCf dr Algorithm. The simulations
here serve two purposes: first, to verify whether the proposed
gPCfdr algorithm for modeling brain connectivity can control
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the FDR at the group level, and second, to compare the
gPCfdr algorithm with the single-subject PCfdr algorithm
proposed in [11] and the state-of-art IMaGES algorithm
investigated in Ramsey et al. [16] for inferring the structure
of the group connectivity network.

The simulations were conducted as follows. First, a
connectivity network is generated as the group-level model.
Individual subject-level networks are then derived from
the group-level model by randomly adding or deleting
connections with a small probability, and subject-specific
data are generated according to individual subject networks.
Next, the network-learning methods, that is, the proposed
gPCfdr algorithm, the single-subject PCfdr method with
pooling together the data from all subjects, and the IMaGES
algorithm, are applied to the simulated data. Finally, the
outputs of the algorithms are compared with the true group-
level network to evaluate their accuracy.

The data generation process is as follows.

(1) Randomly generate a directed acyclic graph (DAG)
as the group-level network and associate each con-
nection with a coefficient. The DAG is generated
by randomly connecting nodes with edges and then
orienting the edges according to a random order of
the nodes. The connection coefficients are assigned
as random samples from the uniform distribution
U(β1,β2), where β1 and β2 characterize the coefficient
strength.

(2) For each subject, a subject-level network is derived
from the group-level network by randomly adding
and deleting connections. More specifically, for each
of the existing connections, the connection is deleted
with probability 0.05, and for each of the absent
connections, a connection is added with probability
0.01. The corresponding connection coefficients are
randomly sampled from the uniform distribution
U(β1,β2).

(3) Given a subject-level network, the subject-specific
data are generated from a Gaussian Bayesian net-
work, with the additional Gaussian noise following
the standard Gaussian distribution N(0, 1).

In the first simulation, we compare the performances of
the proposed gPCfdr algorithm, the original PCfdr algorithm,
and the IMaGES algorithm [16], when using different
connection coefficient strengths. In this example, the group-
level network is the DAG in Figure 2(a). From this model,
twenty subject-level models are derived, and for each subject,
data with three hundred samples are simulated. To test the
performances of the algorithms with a range of connection
strengths, we vary the connection coefficient generating dis-
tribution U(β1,β2) gradually from U(0.2, 0.3) to U(0.7, 0.8).
At the network-learning stage, we set the target FDR to be
5% for the gPCfdr algorithm. For reliable assessment, this
procedure is repeated thirty times.

Figures 2(b), 2(c), and 2(d) show the FDR and the
type I error rate, and the detection power results as a
function of connection strength. We note that all methods
are relatively invariant to connection strength. The proposed

gPCfdr algorithm steadily controls the FDR below or around
the desired level and accurately makes the inference at the
group level. The detection power of IMaGES algorithm is
higher than that of gPCfdr algorithm, but it fails to control
the FDR under the specified 5% level. Its higher detection
power is achieved by sacrificing FDR. This is reasonable,
since IMaGES is not specifically designed to control the FDR
error rate.

In the second simulation, we test the performances of the
algorithms as a function of the number of subjects within the
group. The group-level network is the DAG in Figure 3(a),
and the number of subjects increases from eight to twenty-
five. At the network-learning stage, we set the target FDR to
be 5%. This procedure is repeated thirty times.

Figure 3(b) demonstrates the FDR results as a function
of the number of subjects within the group. It is noted
that the proposed gPCfdr algorithm is able to keep the FDR
below or around the specified level. The detection power
gradually increases as the number of subjects increases.
When there are more than 15 subjects, the gPCfdr algorithm
seems that it can achieve higher (better) detection power and
lower (better) FDR and type I error rate than the IMaGES
algorithm does. It suggests that when the number of subjects
is large enough, the proposed gPCfdr algorithm can jointly
address efficiency, accuracy, and intersubject variability. The
original PCfdr algorithm of simply pooling the data together
fails to control the FDR, and the resulting FDR does not
decrease as the number of subject increases, probably due
to the increasing heterogeneity within the group. In order
to investigate the effects of the number of ROIs, we also
investigate two networks with 15 and 25 nodes, respectively,
and repeat the simulations (not shown here). The results are
qualitatively similar to what we show here.

3.3. fMRI Application. In order to assess the real-world
application performance of the proposed method, we apply
the gPC+

fdr algorithm for inferring group brain connectivity
network to fMRI data collected from twenty subjects. All
experiments were approved by the University of British
Columbia Ethics Committee. Ten normal people and ten
Parkinson’s disease (PD) patients participated in the study.
During the fMRI experiment, each subject was instructed to
squeeze a bulb in their right hand to control an “inflatable”
ring so that it smoothly passed through a vertically scrolling a
tunnel. The normal controls performed only one trial, while
Parkinson’s subjects performed twice, once before L-dopa
medication and the other approximately an hour later, after
taking medication.

Three groups were categorized: group N for the normal
controls, group Ppre for the PD patients before medication,
and group Ppost for the PD patients after taking L-dopa
medication. For each subject, 100 observations were used
in the network modeling. For details of the data acquisition
and preprocessing, please refer to Palmer et al. [20]. 12
anatomically defined regions of interest (ROIs) were chosen
based on prior knowledge of the brain regions associated
with motor performance (Table 1).

We utilized the two extensions of the PCfdr algorithm and
learned the structures of first-order group dynamic Bayesian
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Figure 2: Simulation 1: assessing the effects of connection strength on the learned group networks. (a) The group-level network, with 20
nodes and an average of two connections per node. (b) The FDR curves (with standard deviation marked) of the gPCfdr algorithm, the
original PCfdr algorithm by pooling all subject data together, and the IMaGES algorithm. (c) The type I error rate curves. (d) The detection
power curves. The x-axis represents the generating distribution U(β1,β2) for sampling the connection coefficients.

networks from fMRI data. Because the fMRI BOLD signal
can be considered as the convolution of underlying neural
activity with a hemodynamic response function, we assumed
that there must be a connection from each region at time t
to its mirror at time t + 1. We also assumed that there must
be a connection between each region and its homologous
region in the contralateral hemisphere. The TR interval (i.e.,
sampling period) was a relatively long, 1.985 seconds; we
restricted ourselves to learn only connections between ROIs
without time lags. In total, there are 12 + 6 = 18 pre-
defined connections and 12 × (12 − 1) ÷ 2 − 6 = 60
candidate connections to be tested. The brain connectivity

networks (with the target FDR of 5%) learned for the
normal (group N) and PD groups before (group Ppre) and
after (group Ppost) medication are compared in Figure 4.
Note the connection between the cerebellar hemisphere and
contralateral thalamus in the normal subjects and between
the supplementary motor area (SMA) and the contralateral
putamen, consistent with prior knowledge. Interestingly, in
Ppre subjects, the left cerebellum now connects with the
right SMA, and the right SMA ↔ left putamen connection
is lost. Also, there are now bilateral primary motor cortex
(M1) ↔ putamen connections seen in the Ppre group,
presumably as a compensatory mechanism. After medication
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Figure 3: Simulation 2: assessing the effects of increasing the number of subjects on the learned group networks. (a) The group-level
network, with 20 nodes and an average of two connections per node. (b) The FDR curves (with standard deviation marked) of the proposed
gPCfdr algorithm, the original PCfdr algorithm by pooling all subject data together, and the IMaGES algorithm. (c) The type I error rate
curves. (d) The detection power curves. The x-axis represents the number of subjects within the group.

(Ppost), the left SMA ↔ left thalamus connection is restored
back to be normal.

4. Discussion

Up to now, graphical models to infer brain connectivity
from fMRI data have implicitly relied on the unrealistic
assumption that if a model accurately represented the

overall activity in several ROIs, the internal connections
of such a model would accurately reflect underlying brain
connectivity. The PCfdr algorithm was designed to loosen this
overly restrictive assumption and asymptotically control the
FDR of network connections inferred from data.

In this paper, we first presented the PC+
fdr algorithm,

an extension of the PCfdr algorithm, which allows for
incorporation of prior knowledge of network structure into
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Figure 4: (a) Learned brain connectivity for the normal group (group N). (b) Learned brain connectivity for the PD group before medication
(group Ppre). (c) Learned brain connectivity for the PD group after medication (group Ppost). Here “L” and “R” refer to the left and right
sides, respectively. The solid lines are predefined connectivity, and the dashed lines are learned connectivity.

Table 1: Brain regions of interest (ROIs).

Full name of brain region Abbreviation

Left/right lateral cerebellar hemispheres lCER, rCER

Left/right globus pallidus lGLP, rGLP

Left/right putamen lPUT, rPUT

Left/right supplementary motor cortex lSMA, rSMA

Left/right thalamus lTHA, rTHA

Left/right primary motor cortex lM1, rM1

“l” or “r” in the abbreviations stands for “Left” or “Right,” respectively.

the learning process, greatly enhancing its flexibility in
practice. The PC+

fdr algorithm handles prior knowledge with
two inputs: Emust, which is the set of edges that are assumed
to appear in the true graph, and Etest, the set of edges that
are to be tested from the observed data. We proved that, with
mild assumptions and at the limit of large samples, the PC+

fdr
algorithm is able to recover all the true edges in Etest and also
curb the FDR of the edges inferred about Etest.

It is interesting that the PC+
fdr algorithm does not require

the assumed “true” edges Emust to be a subset of the true edges
Etrue, but only that all true edges are included in the union
of the assumed “true” edges and the edges to test. This is
very useful in research practice, since it allows some spurious
edges to be involved in Emust, as long as all the true edges have
been included in either Emust or Etest. Users can satisfy this
requirement by making Etest∪Emust large enough to cover all
the true edges.

When we compared the PC+
fdr algorithm with the original

PCfdr algorithm, both of them successfully controlled the
FDR under the target threshold in simulations, providing
a practical tradeoff between computational complexity and
accuracy. However, the PC+

fdr algorithm achieved better
detection power and better FDR than the original PCfdr algo-
rithm. Incorporating prior knowledge into PCfdr algorithm

therefore enhances inference accuracy and improves the
flexibility in using the method.

Another extension to PCfdr algorithm we described here
was the ability to infer brain connectivity patterns at the
group level, with intersubject variance explicitly taken into
consideration. As a combination of the PCfdr algorithm
and a mixed-effect model, the gPCfdr algorithm takes
advantage of the error control ability of the PCfdr algorithm
and the capability of handling intersubject variance. The
simulation results suggest that the proposed method was
able to accurately discover the underlying group network
and steadily control the false discovery rate. Moreover, the
gPCfdr algorithm was shown to be much more reliable than
simply pooling together the data from all subjects. This may
be especially important in disease states and older subjects.
Compared with the IMaGES algorithm, gPCfdr demonstrated
better control of the FDR.

As with all group models, a limitation of the proposed
gPCfdr algorithm is the requirement of a sufficient number
of subjects. While it is appreciated that in many biomedical
applications data collection is resource intensive, and if the
number of subjects is insufficient, the gPCfdr algorithm may
give unreliable results. Nevertheless, the group extension
to the PCfdr algorithm is one attempt to make brain con-
nectivity inference using error-rate-controlled exploratory
modeling.

When applying the proposed gPC+
fdr to fMRI data

collected from PD subjects performing a motor tracking
task, we found group evidence of disease changes (e.g.,
loss of left cerebellar ↔ SMA connectivity), compensatory
changes in PD (e.g., bilateral M1 ↔ contralateral putamen
connectivity), and evidence of restoration of connectivity
after medication (left SMA ↔ left thalamus). The tremen-
dous variability in clinical progression of PD is likely due
to variability not only in disease rate progression, but also
in variability in the magnitude of compensatory changes.
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This highlights the importance of the proposed method, as
it allows robust estimation of disease effects, compensatory
effects, and effects of medication, all with a reasonable
sample size, despite the enhanced intersubject variability
seen in PD.

Appendices

A. Proof of Theorems

To assist the reading, we list below notations frequently used
in the proof.

V : all the nodes in a graph,

Gtrue: the skeleton of the true underlying directed acyclic
graph (DAG),

Aa∼b: the event that edge a ∼ b is in the graph recovered by
the PC+

fdr algorithm,

AE′true : AE′true =
⋂

a∼b∈E′true
Aa∼b, the joint event that all the

edges in E′true, the true edges in Etest, are recovered by
the PC+

fdr algorithm,

pa∼b: the value of pmax
a∼b when the PC+

fdr algorithm stops,

C∗a∼b: a certain vertex set that d-separates a and b in the true
DAG and that is also a subset of either adj(a,Gtrue) \
{b} or adj(b,Gtrue) \ {a}, according to Proposition 1.
C∗a∼b is defined only for vertex pairs that are not
adjacent in Gtrue,

p∗a∼b: the p value of testing Xa ⊥ Xb | XC∗a∼b . The condi-
tional independence relationship may not be really
tested during the process of the PC+

fdr algorithm, but
p∗a∼b can still denote the value as if the conditional
independence relationship was tested,

H∗: the value in (�) in Algorithm 2 that is either H or
H(1 + 1/2, . . . , +1/H), depending on the assumption
of the dependency of the p values.

Lemma A.1. If Ai(m), . . . , AK (m) are a finite number of
events whose probabilities each approach 1 as m approaches
infinity

lim
m→∞P(Ai(m)) = 1, (A.1)

then the probability of the joint of all these events approaches 1
as m approaches infinity:

lim
m→∞P

⎛
⎝

K⋂

i=1

Ai(m)

⎞
⎠ = 1. (A.2)

For the proof of this lemma, please refer to Li and Wang’s
[11] work.

Lemma A.2. If there are F (F ≥ 1) false hypotheses among H
tested hypotheses and the p values of the all the false hypotheses
are smaller than or equal to (F/H∗)q, where H∗ is either H
or H(1 + 1/2, . . . , +1/H) depending on the assumption of the
dependency of the p values, then all the F false hypotheses will
be rejected by the FDR procedure, Algorithm 2.

For the proof of this lemma, please refer to Li and Wang’s
[11] work.

Proof of Theorem 2. If there is not any true edge in E′true, that
is, E′true = ∅, then the proof is trivially E′true = ∅ ⊆ E′.

In the following part of the proof, we assume E′true /=∅.
For the PC+

fdr algorithm and its heuristic modification,
whenever the FDR procedure, Algorithm 2, is invoked, pmax

a∼b
is always less than maxC∈V\{a,b}{pa⊥b|C}, and the number of
p values input to the FDR algorithm is always not more than
|Etest|. Thus, according to Lemma 5, if

max
a∼b∈E′true

{
max

C∈V\{a,b}
{
pa⊥b|C

}} ≤
∣∣E′true

∣∣
|Etest|

∑|Etest|
i=1 (1/i)

q,

(A.3)

then all the true connections will be recovered by the PC+
fdr

algorithm and its heuristic modification.
Let A′

a⊥b|C denote the event

pa⊥b|C ≤
∣∣E′true

∣∣
|Etest|

∑|Etest|
i=1 (1/i)

q, (A.4)

A′
E′true

denote the event of (A.3), and AE′true denote the event
that all the true connections in Etest are recovered by the PC+

fdr
algorithm and its heuristic modification.

∵ A′
E′true

is a sufficient condition for AE′true , according
to Lemma 5.

∴ AE′true ⊇A′
E′true

.

∴ P(AE′true ) ≥ P(A′
E′true

).

∵ A′
E′true

is the joint of a limited number of events as

A′
E′true

=
⋂

a∼b∈E′true

⋂

C⊆V\{a,b}
A′

a⊥b|C, (A.5)

and limm→∞P(A′
a⊥b|C) = 1 according to Assumption

(A3).

∴ According to Lemma 4, limm→∞P(A′
E′true

) = 1.

∴ 1 ≥ limm→∞P(AE′true ) ≥ limm→∞P(A′
E′true

) = 1.

∴ limm→∞P(AE′true ) = 1.

Lemma A.3. Given any FDR level q > 0, if the p value
vector P = [p1, . . . , pH] input to Algorithm 2 is replaced with
P′ = [p′1, . . . , p′H], such that (1) for the those hypotheses that
are rejected when P is the input, p′i is equal to or less than pi,
and (2) for all the other hypotheses, p′i can be any value between
0 and 1, then the set of rejected hypotheses when P′ is the input
is a superset of those rejected when P is the input.

For the proof of this lemma, please refer to Li and Wang’s
[11] work.

Corollary A.4. Given any FDR level q > 0, if the p value vector
P = [p1, . . . , pH] input to Algorithm 2 is replaced with P′ =
[p′1, . . . , p′H] such that p′i ≤ pi for all i = 1, . . . ,H , then the set
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of rejected hypotheses when P′ is the input is a superset of those
rejected when P is the input.

The corollary can be easily derived from Lemma 6.

Proof of Theorem 3. Let Pstop = {pa∼b} denote the value of
Pmax when the PCfdr-skeleton algorithm stops.

∵ The FDR procedure is invoked whenever Pmax is
updated, and Pmax keeps increasing as the algorithm
progresses.

∴ According to Corollary 7, E′stop is the same as
the edges recovered by directly applying the FDR
procedure to Pstop.

The theorem is proved through comparing the result of
the PC+

fdr algorithm with that of applying the FDR procedure
to a virtual p value set constructed from Pstop. The virtual p
value set P∗ is defined as follows.

For a vertex pair a ∼ b that is not adjacent in Gtrue, let
C∗a∼b denote a certain vertex set that d-separates a and b in the
true graph and that is also a subset of either adj(a,Gtrue)\{b}
or adj(b,Gtrue) \ {a}. Let us define P∗ = {p∗a∼b | a ∼ b ∈
Etest} as

p∗a∼b =
{
pa⊥b|C∗a∼b : a ∼ b /∈ E′true,

pa∼b : a ∼ b ∈ E′true.
(A.6)

Though pa⊥b|C∗a∼b may not be actually calculated during the
process of the algorithm, pa⊥b|C∗a∼b still can denote the value
as if it was calculated.

Let us design a virtual algorithm, called Algorithm∗, that
infers true edges in Etest by just applying the FDR procedure
to P∗, and let E∗ denote the edges in Etest claimed to be
true by this virtual algorithm. This algorithm is virtual and
impracticable because the calculation of P∗ depends on the
unknown E′true, but this algorithm exists because E′true exists.

For any vertex pair a and b that is not adjacent in Gtrue,
we have the following.

∵ Xa and Xb are conditional independent given XC∗a∼b .

∴ pa⊥b|C∗a∼b follows the uniform distribution on [0, 1].

∴ The FDR of Algorithm∗ is under q.

When all the true edges in the test set are recovered by the
PC+

fdr algorithm, that is, E′true ⊆ E′stop, all the edges in Gtrue are
included in Estop due to Assumption (A4). In this case, the
conditional independence between Xa and Xb given XC∗a∼b is
tested for all the falsely recovered edges a ∼ b ∈ E′stop \ E′true,
because for these edges, subsets of adj(a,Gtrue) \ {b} and
subsets of adj(a,Gtrue) \ {b} have been exhaustively searched
and C∗a∼b is one of them. Therefore, pa∼b ≥ p∗a∼b for all
a ∼ b ∈ E′stop when event AE′true happens. Consequently,
according to Lemma 6,

if event AE′true happens,E′stop ⊆ E∗. (A.7)

Let q(E′) denote the realized FDR of reporting E′ as the
set of true edges in Etest:

q(E′) =
⎧⎪⎨
⎪⎩

∣∣E′ \ E′true

∣∣
|E′| : E′ /=∅,

0 : E′ = ∅.
(A.8)

The FDRs of the PC+
fdr algorithm and Algorithm∗ are

E[q(E′stop)] and E[q(E∗)], respectively. Here E[x] means the
expected value of x.

∵ E[q(E′stop)] = E[q(E′stop)|AE′true ]P(AE′true ) +

E[q(E′stop)|AE′true ]P(AE′true ) ≤ Q + P(AE′true ), where
Q = E[q(E′stop)|AE′true ]P(AE′true ).

∴ lim supm→∞E[q(E′stop)] ≤ lim supm→∞Q +

lim supm→∞P(AE′true ).

∵ limm→∞P(AE′true ) = 1, according to Theorem 2.

∴ lim supm→∞P(AE′true ) = limm→∞P(AE′true ) = 0.

∴ lim supm→∞E[q(E′stop)] ≤ lim supm→∞Q.

∵ Q ≤ E[q(E′stop)].

∴ lim supm→∞Q ≤ lim supm→∞E[q(E′stop)].

∴ lim supm→∞E[q(E′stop)] = lim supm→∞Q =
lim supm→∞E[q(E′stop)|AE′true ]P(AE′true ).

Similarly, lim supm→∞E[q(E∗)] = lim supm→∞E[q(E∗)|
AE′true ]P(AE′true ).

∵ Event AE′true implies E′true ⊆ E′stop ⊆ E∗.

∴ Given event AE′true ,

q
(
E′stop

)
=
∣∣∣E′stop

∣∣∣− ∣∣E′true

∣∣
∣∣∣E′stop

∣∣∣
= 1−

∣∣E′true

∣∣
∣∣∣E′stop

∣∣∣

≤ 1−
∣∣E′true

∣∣
|E∗| = |E∗| − ∣∣E′true

∣∣
|E∗| = q(E∗).

(A.9)

∴ lim supm→∞E[q(E′stop) | AE′true ]P(AE′true ) ≤
lim supm→∞E[q(E∗) |AE′true ]P(AE′true ).

∴ lim supm→∞E[q(E′stop)] ≤ lim supm→∞E[q(E∗)].

∵ Algorithm∗ controls the FDR under q.

∴ E[q(E∗)] ≤ q.

∴ lim supm→∞E[q(E∗)] ≤ q.

∴ lim supm→∞E[q(E′stop)] ≤ q.

B. Computational Complexity

The PC+
fdr algorithm spends most of its computation on

performing statistical tests of conditional independence at
step 7 and controlling the FDR at step 11. If the algorithm
stops at the depth d = dmax, then the number of conditional
independence tests required is bounded by

T = 2|Etest|
dmax∑

d=0

Cd
Δ−1, (B.1)

where |Etest| is the number of edges to test, Δ is the maximum
degree of graph Ginit (the graph formed at step 1 of the
PC+

fdr algorithm) whose edges are Emust ∩ Etest, and Cd
Δ−1 is

the number of combinations of choosing d unordered and
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distinct elements from Δ− 1 elements. In the worst case that
dmax = Δ − 1, the complexity is bounded by 2|Etest|2Δ−1 =
|Etest|2Δ. The bound usually is very loose, because it assumes
that no edge has been removed until d = dmax. In real-world
applications, the algorithm is very fast for sparse networks.

The computational complexity of the FDR procedure,
Algorithm 2, invoked at step 11 of the PC+

fdr algorithm,
in general is O(H log(H) + H) = O(H log(H)) where
H = |Etest| is the number of input p values. The main
complexity H log(H) is at the sorting (step 1). However, if
it is recorded the sorted Pmax of the previous invocation
of the FDR procedure, then the complexity of keeping the
updated Pmax sorted is only O(H). With this optimization,
the complexity of the FDR-control procedure is O(H log(H))
at its first operation and is O(H) later. The FDR procedure
is invoked only when pa⊥b|C > pmax

a∼b . In the worst case
that pa⊥b|C is always larger than pmax

a∼b , the complexity of the
computation spent on the FDR control in total is bounded
by O(|Etest| log(|Etest|) + T|Etest|) where T is the number
of performed conditional independence tests. This is a very
loose bound because it is rare that pa⊥b|C is always larger than
pmax
a∼b .
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