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Hemangioma stem cells (HemSCs) are multipotent
cells isolated from infantile hemangioma (IH), which
form hemangioma-like lesions when injected subcu-
taneously into immune-deficient mice. In this murine
model, HemSCs are the primary target of corticoste-
roid, a mainstay therapy for problematic IH. The re-
lationship between HemSCs and endothelial cells that
reside in IH is not clearly understood. Adhesive inter-
actions might be critical for the preferential accumu-
lation of HemSCs and/or endothelial cells in the tu-
mor. Therefore, we studied the interactions between
HemSCs and endothelial cells (HemECs) isolated from
IH surgical specimens. We found that HemECs iso-
lated from proliferating phase IH, but not involuting
phase, constitutively express E-selectin, a cell adhe-
sion molecule not present in quiescent endothelial
cells. E-selectin was further increased when HemECs
were exposed to vascular endothelial growth factor-A
or tumor necrosis factor—a. In vitro, HemSC migra-
tion and adhesion was enhanced by recombinant
E-selectin but not P-selectin; both processes were neu-
tralized by E-selectin—blocking antibodies. E-selectin—
positive HemECs also stimulated migration and adhe-
sion of HemSCs. In vivo, neutralizing antibodies to
E-selectin strongly inhibited formation of blood
vessels when HemSCs and HemECs were co-im-
planted in Matrigel. These data suggest that endo-
thelial E-selectin could be a major ligand for
HemSCs and thereby promote cellular interactions
and vasculogenesis in IH. We propose that consti-
tutively expressed E-selectin on endothelial cells in
the proliferating phase is one mediator of the stem

cell tropism in IH. (Am J Pathol 2012, 181:2239-2247;
bttp://dx.doi.org/10.1016/j.ajpath.2012.08.030)

Infantile hemangioma (IH) is the most common tumor of
infancy. A hallmark is its unique life cycle of rapid devel-
opment in childhood, followed by a slow regression and
cessation of growth. Hemangioma endothelial cells
(HemECs) in proliferating lesions show X chromosome
inactivation patterns, indicative of a clonal origin,? * that
is maintained in cultured HemECs.? In comparison to
human dermal microvascular endothelial cell (HDMEC),
HemECs have constitutively active vascular endothelial
growth factor-receptor 2 (VEGFR2) signaling in associa-
tion with low expression of vascular endothelial growth
factor-receptor 1 (VEGFR1/FLT1).°> HemECs have a pla-
cental microvascular phenotype and may originate from
placental endothelial cells.®” Little is known about endo-
thelial cells in the involuting phase of IH.2

Proliferating hemangiomas express high levels of hyp-
oxia inducible factor 1a (HIF-1a) protein and release
factors® that can induce recruitment of bone marrow-de-
rived cells from the circulation into the tumors. These cells
could be heterogeneous, composed of endothelial pro-
genitor cells,®'° myeloid cells,"" and possibly CD133-
positive cells that include hemangioma stem cells
(HemSCs). HemSCs isolated from specimens of hu-
man proliferating IH are multipotent, and exhibit a mes-
enchymal morphology and robust proliferation in
vitro."? In contrast to HemECs, HemSCs can form hu-
man blood vessels with the immunophenotype and
dynamics of IH when injected subcutaneously into
nude mice.' A central function of HemSCs in IH is
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supported by our recent study in which we showed that
corticosteroid act specifically on the HemSCs to down-
regulate vascular endothelial growth factor-A (VEGF-A) ex-
pression.’® However, it is undetermined whether HemSCs
arise in the tumors or whether they are recruited to tumor
site in response to pathological endothelial cells in a spe-
cific microenvironment.

E-selectin has been detected in proliferating phase
specimens of IH and has been shown to decrease in
involuting phase specimens.’'® Here, we analyzed
E-selectin expression in endothelial cells expanded
from proliferating and involuting IH tumors, and its
potential role in functional interactions between
HemSCs and ECs. Our findings implicate E-selectin in
hemangioma blood vessel development, and suggest
that E-selectin on HemECs may engage stem cells in
vasculogenesis.

Materials and Methods

Cell Isolation, Culture, and Reagents

Specimens of IH were obtained under a human subject
protocol approved by the Committee on Clinical Investi-
gation, Boston Children’s Hospital. The clinical diagnosis
was confirmed in the Department of Pathology at Boston
Children’s Hospital. Informed consent was obtained for
the specimens, according to the Declaration of Helsinki.
Single cell suspensions were prepared from the prolifer-
ating and involuting phase specimens to isolate HemECs
and during proliferating phase to isolate HemSCs. Clin-
ical data on the IH patients are provided in Table 1.
HemECs and HemSCs were purified and expanded as
described.'®"376718 Three different proliferating heman-
gioma tumors and three different involuting hemangioma
tumors were used to isolate the HemECs. HemECs were
used between passage 2 and 8. Experiments using Hem-
SCs were confirmed with three different HemSCs from
different hemangioma patients (Hem129, 133 and 150).
The HemSCs were used between passages 4 and 12.
Human endothelial colony forming cells (ECFC) from
umbilical cord blood were isolated as previously de-
scribed.'®722 To test the effect of VEGF and TNF-a on
E-selectin levels in HemEC-P, cells were cultured for
16 hours in serum and growth factor free EBM-2 me-
dium, followed by a 4-hour treatment with either 50
ng/mL of human recombinant VEGF-A, g5 or 10 ng/mL

Table 1. Clinical Data for Patient Infantile Hemangioma
Samples Used to Isolate HemEC-P and HemEC-I

Hemangioma

no. Sex Age Location

Proliferating 131 Female 2 months Eyelid
133 Female 10 months Forehead
150 Male 3 months Occipital
Involuting 69 Female 1 year Chest
70 Female 2 years Scalp
74 Male 3years Eyelid

Hemangioma numbers are case identifiers.

recombinant human tumor necrosis factor-a (rhTNF-q;
both from R&D Systems).

Assays for in Vitro Cellular Proliferation and
Viability

Proliferation was assessed after seeding 10* cells on
fibronectin-coated 24-well plates and culturing in
growth medium [Endothelial Basal Cell Medium (EBM),
SingleQuot Kit (Lonza, Allendale, NJ) without hydrocorti-
sone, supplemented to 20% fetal bovine serum (FBS)]. Cell
numbers at days 2, 3, 4, and 6 were determined by count-
ing with a phase-contrast microscope and disposable he-
mocytometer (Digital Bio, Seoul, Korea). HemECs prolifer-
ation was also determined by measuring cellular
phosphatase activity, based on the release of para-nitro-
phenol (oNPP; Sigma) measured at OD 405 nm after 2, 3,
or 4 days of growth.

In Vivo Model of Infantile Hemangioma and
Microvessel Density

Experiments were performed with 3 X 10° total cells per
implant as previously described.’™'® HemECs (1.5 X
10°) were combined with HemSCs (1.5 X 10°). Cells
were suspended in 200 ul of Matrigel (reference 356237;
BD Bioscience, Bedford, MA) and injected subcutane-
ously on the back of 6- to 7-week-old male athymic nu/nu
mice (Massachusetts General Hospital, Boston, MA). For
the assessment of microvessel density, four fields from
mid-Matrigel H&E-stained sections of each of the animals
in the group were quantified by counting luminal struc-
tures containing red blood cells. MVD was expressed as
vessels/mm?,

Flow Cytometry

Cells were labeled with PE-conjugated murine anti—hu-
man E-selectin (BD Bioscience) or PE-conjugated iso-
type-matched control murine 1gG (BD Bioscience). Flow
cytometry was performed on a BD FACScan. Data were
analyzed using FlowJo software version 8.7.

Quantitative Real-Time PCR

RNA was extracted using RNeasy Mini Kit (Qiagen,
Valencia, CA). cDNA synthesis was performed with
iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Her-
cules, CA). All reactions were performed for 35 cycles
with the following temperature profiles: 95°C for 2 min-
utes (initiation; 30 seconds per cycle thereafter), an
annealing step for 25 seconds, and an extension step
at 72°C for 30 seconds. Primer sequences are shown
in Table 2.

Assay for Tube Formation in Vitro

Forty-eight-well-plates were coated with growth factor—
reduced Matrigel (reference 356231;BD Bioscience,



Table 2. Primers Used for Quantitative Real-Time PCR
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Primer Forward

Reverse

VE-cadherin

E-selectin
GAPDH

5'-CCTTGGGTCCTGAAGTGACCT-3'
VWF 5'-GCCTGCCATCTGCCTGTGA-3'
5'-CACATCTCAGGGACAATGGACAGA-3’
5'-TGCACCACCAACTGCTTAG-3’

5'-CAGGGCCTTCCTTCTGCAA-3'
5'-CCACTGGGAGCCGACACTCT-3'
5'-GCTTGAACATTTTACCACTTGGCA-3'
5'-GATGCAGGGATGATGTTC-3’

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; VWF, von Willebrand factor; VE-cadherin, vascular endothelial-cadherin.

Bedford, MA) and incubated for 30 minutes at 37°C.
HemECs were seeded at a density of 3 x 10 cells in 500
ul of EBM2/0.1% FBS. After 18 hours, pictures were taken
with an inverted microscope Nikon Eclipse TE300 (Nikon,
Melville, NY) using SPOT Advanced 3.5.9 software (Di-
agnostic Instruments, Sterling Heights, MI).

Adhesion Assay

Adhesion assays were performed in 96-well polystyrene
plates coated with BSA 0.1% with or without recombinant
human E-selectin. Cells (1 X 10*) were plated on the
coated dishes. After a 20-minute incubation, nonadher-
ent cells were washed off, and the number of adherent
cells determined in an alkaline phosphatase assay using
the substrate pNPP. Each data point was determined by
the average of three wells, and each experiment was
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performed at least three times. For inhibition experiments,
anti-human E-selectin or anti-human P-selectin was
added at 10 pg/mL 2 hours before HemSCs were added
to the wells.

For adhesion assays using endothelial cells, 2 x 10°
HemECs or ECFCs were plated 48 hours before in a six-well
plate. HemSCs (2 X 10%) labeled with 10 wmol/L of carboxy-
fluorescein diacetate succinimidyl ester (CFSE; Molecular
Probes, Eugene, OR) were used for adhesion to the plated
endothelial cells. After a 20-minute incubation, nonadherent
cells were washed off, and the remaining cells were
trypsinized and analyzed by flow cytometry.

Cellular Migration Assay

Migration was measured using modified Boyden cham-
bers with 8-um-pore—sized filters. Cells were seeded at a
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Figure 1. HemEC-P isolated from proliferating IH exhibited increased vasculogenic potential compared to HemEC-I isolated from involuting IH. A: Proliferation
of HemEC-P and HemEC-I cultured in EBM-2/20% FBS over 6 days evaluated by counting cells. B: Proliferation of HemEC-P and HemEC-I cultured in EBM-2/20%
FBS over 4 days evaluated by measuring cellular phosphatase activity. C: Schematic of iz vivo model (note: HemECs implanted alone do not form vessels but
require co-implantation with HemSCs).'® D: HemSC co-injected with HemEC-I or HemEC-P. Representative photographs of Matrigel explants at day 10 after
injection with corresponding histological sections stained with H&E. Arrows point to lumens filled with red blood cells (ie, perfused vessels). E: Quantification
of microvessel density (MVD) as vessels/mm?. Scale bar = 20 pum. Data are mean = SEM.
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density of 1 X 10* per well in 200 ulL of migration me-
dium, and were allowed to migrate for 5 hours at 37°C.
Recombinant human E-selectin or P-selectin (R&D sys-
tems) was placed in the lower chamber of the modified
Boyden chamber, in a volume of 600 ulL.

Statistical Analysis

Data are expressed as mean = SEM and were analyzed
by the Mann-Whitney U test. Differences were consid-
ered significant at P < 0.05.

Results

Hemangioma Endothelial Cells Isolated from
Proliferating Phase Compared to Involuting
Phase Overexpress E-Selectin and Have a
Higher Vasculogenic Potential When Combined
with HemSCs

HemECs were isolated, as previously described, from
proliferating phase IH tumors®'® and from involuting
phase IH tumors. We designated these cells as
HemEC-P (proliferating) and HemEC-I (involuting).
HemECs from proliferating and involuting IH were an-
alyzed for proliferative potential in vitro and tested for
the ability to form vessels in vivo when co-implanted
with HemSCs. Proliferation analyses performed by cell
counting or colorimetric assay showed HemEC-P and
HemEC-I exhibit nearly identical proliferative potential
over 6 days (Figure 1, A and B). In contrast, HemEC-P
combined with HemSCs formed more vessels in vivo
compared to HemEC-I combined with HemSCs (P <
0.005; Figure 1, D and E). We showed previously that
HemECs and/or ECFCs do not form vessels when im-
planted alone in Matrigel, but require a mesenchymal
cell to fulfill the perivascular component.'®2°2" Dirgct
contact with endothelial JAGGED1 promotes HemSCs-
to-pericyte differentiation'®; however, we did not de-
tect any difference in JAGGED1 protein levels between
HemEC-P and HemEC-I (see Supplemental Figure S1
at http.//ajp.amjpathol.org).

We previously reported high E-selectin expression in
proliferating phase IH, which declined in the involuting
phase, suggesting a role for E-selectin in IH angiogen-
esis.' Consequently, we explored E-selectin levels on
HemEC-P and HemEC-I, and found significantly higher
expression in HemEC-P at the protein (Figure 2A) and
mRNA levels (Figure 2B), in the absence of any inflam-
matory stimulus. Levels of vascular endothelial-cad-
herin (VE-cadherin) and von Willebrand factor (VWF)
mRNA did not differ (Figure 2B). No significant expres-
sion of P- or L-selectin was found (see Supplemental
Figure S2 at http://ajp.amjpathol.org). E-selectin levels
were up-regulated by inflammatory factors such as TNF-«
or angiogenic cytokines such as VEGF at the mRNA
(Figure 2C). KLF2 was suppressed by cytokine treat-
ment as previously described in HUVECs®® (see Sup-
plemental Figure S3 at http://ajp.amjpathol.org). As E-
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Figure 2. HemEC-P, HemEC-I, and ECFC analyzed for E-selectin. A: Flow-
cytometric analysis of HemECs from proliferating and involuting IHs com-
pared with human umbilical cord blood ECFCs. Each cell type was grown
under identical conditions in the EBM-2/20% FBS. Black lines: cells labeled
with PE-conjugated anti-E-selectin. Gray lines represent cells labeled with
PE-conjugated isotype-matched control antibodies. B: RT-PCR analysis of
VE-cadherin, von Willebrand factor, and E-selectin in HemEC-P and ECFC.
mRNA levels normalized to GAPDH mRNA levels and to sample with lowest
quantifiable level (ie, 1 on the left ordinate, corresponding to a C; value of
35). Values above 100 represent strong gene expression. Mean and SEM
values of three different samples are shown at each point. *P < 0.05. C: Effect
of TNF-a and VEGF on E-selectin mRNA in HemEC-P.

selectin has been previously shown to be associated
with cellular proliferation, we tested an E-selectin—
blocking mAb on HemEC-P proliferation, but found no
effect (Figure 3A); nor did E-selectin blocking mAb
modify the ability of HemEC-Ps to form pseudo tubes in
Matrigel (Figure 3B).

E-Selectin Induces Migration and Adhesion of
HemSCs in Vitro

E-selectin has been described as a chemo-attractant for
tumor cells,?*~2° mesenchymal stem cells®” or endothe-
lial progenitor cells.?® Therefore, we tested the hypothe-
sis that E-selectin would act as a chemo-attractant for
HemSCs and thereby promote recruitment of these stem
cells into proliferating-phase IH tumors. HemSCs showed
robust spontaneous migration, in a modified Boyden
chamber assay,?® toward EBM2 alone or toward EBM2
with FBS and growth factors, compared to HemECs (see
Supplemental Figure S4 at http://ajp.amjpathol.org). We
tested migration toward recombinant soluble human E-
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selectin or P-selectin. HemSCs exhibited increased mi-
gration toward E-selectin but not P-selectin (Figure 4A).
We also tested adhesion of HemSCs to E-selectin— or
P-selectin—coated wells. HemSCs were adherent on E-
selectin— but not P-selectin—coated wells. Either ethyl-
enediaminetetraacetic acid (EDTA) or anti-E-selectin in-
hibited the E-selectin-mediated adhesion (Figure 4B).
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Recombinant E-selectin had no effect on HemSCs prolif-
eration (Figure 4C). To confirm these findings, we tested
the adhesion of fluorescently labeled HemSCs to either
proliferating HemEC-P or ECFC, the latter cell type ex-
pressing a lower level of E-selectin (Figure 2A). HemSCs
labeled with carboxyfluorescein diacetate succinimidyl
ester (CFSE) adhered more to immobilized HemEC-P as
compared to ECFC (Figure 5, A and B). The increased
adhesion was reversed in the presence of blocking E-
selectin mAb (Figure 5C).

Blocking E-Selectin Decreases Vasculogenic
Potential of HemECs in Vivo

We tested the effect of blocking E-selectin expressed by
HemECs in vivo by adding E-selectin blocking mAb to
HemEC-P combined with HemSC in Matrigel, which were
injected into immune-deficient mice. The E-selectin-
blocking mAb significantly reduced microvessel density
in the HemSC/HemEC-P Matrigel implants (Figure 6A),
decreasing microvessel density by 60% (P < 0.0001;
Figure 6B).

Discussion

In this study, we show the following: i) E-selectin is con-
stitutively expressed on endothelial cells isolated from
proliferating phase but not in the involuting phase IH;
i) HemSCs interact with E-selectin expressed on prolif-
erating-phase HemECs; and iii) blocking E-selectin de-
creases vessel formation in a preclinical model of IH.
HemSCs are the main target of corticosteroid, and they
can differentiate into endothelial, perivascular, and adi-
pogenic lineages, the predominant cell types found in the
early and late stages of the hemangioma life cycle.'®'®
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Figure 4. Recombinant E-selectin induced an increase in migration and adhesion of HemSCs. A: SE-selectin increased HemSC migration in a dose-dependent
manner (2 to 10 ng/mL). Recombinant P-selectin at 10 ng/mL had no effect. B: E-selectin increased HemSC adhesion, which was quenched by ethylenedi-
aminetetraacetic acid (EDTA) or E-selectin—blocking mAb. C: Recombinant E-selectin did not affect HemSC proliferation.
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HemSCs are isolated from proliferating IH specimens
using anti-CD133-coated magnetic beads. We do not
know whether HemSCs initiate hemangioma growth in situ
or they are recruited to a site in which pathological en-
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dothelial cells initiate hemangioma genesis. In the latter
scenario, HemSC may represent a normal postnatal vas-
cular immature cell type that is enlisted into the nascent
hemangioma wherein it “boosts” vasculogenesis by its
ability to differentiate into both endothelial and perivas-
cular cells. Support for this hypothesis is based on the
finding that HemECs are clonal expansions of endothelial
cells? that have a low level of VEGFR1 expression and
constitutively activated VEGFR2,® and thus could be con-
sidered as pathological endothelial cells. Moreover, we
previously showed that E-selectin is expressed in prolif-
erating phase IH specimens and is co-localized with di-
viding endothelial cells.™

Endothelial adhesion molecules such as E-selectin
could serve as keys to facilitate entry of circulating cells
to specific tissue sites.>® Bone marrow- and umbilical
cord blood-derived CD34" hematopoietic progenitor
cells adhere to E-selectin on bone marrow microvascu-
lature.®'3* Endothelial progenitor cells can be recruited
to an ischemic site by an E-selectin—dependent mecha-
nism.2® Therefore, we focused on investigating the pos-
sible contribution of E-selectin to HemSC angiogenic
properties. Indeed, E-selectin on HemEC might be a piv-
otal first step in the tropism of HemSC in IH growth.

E-Selectin Is Constitutively Expressed in
HemECs Isolated from Proliferating Phase

We isolated HemECs directly from surgical specimens.
We found HemEC-Ps from proliferating phase IH consti-
tutively express E-selectin whereas HemEC-Is isolated
from involuting phase lesions do not. Furthermore, E-
selectin expression on HemEC-P distinguishes these
cells from cord blood ECFCs, which are circulating neo-
natal endothelial cells that behave similarly to HemECs in
terms of proliferation or endostatin response.’® In most
cases, E-selectin is transcriptionally regulated such that it
is expressed only after exposure to specific inflammatory
stimuli.®> We found E-selectin expressed on the cell sur-
face of nonstimulated HemEC-Ps, and increased expres-
sion after the cells were treated with TNF-a or with



VEGF-A. We previously described a potential role for
nuclear factor-kB (NF-kB) in IH."® NF-«kB is a key tran-
scriptional regulator of E-selectin,®® and several NF-«B
targets are overexpressed in proliferating versus involut-
ing IH. Thus the NF-«B pathway could be a pivotal mech-
anism in HemECs. Indeed, inhibition of NF-«B activity
strongly reduced E-selectin promoter activity.>” Direct
silencing of NF-«B in vivo could establish a causative role
for this signaling pathway in IH.

E-Selectin Is One Mediator of the
HemSC-HemEC Cooperation in Vitro and
in Vivo

Adhesion of HemSCs was significantly increased in the
presence of E-selectin, whereas P-selectin had no such
effect. In vivo, administration of an E-selectin—blocking
antibody prevented formation of IH blood vessels in our
preclinical model, indicating that E-selectin is required for
HemSC-HemEC interaction. Other investigators have
demonstrated that E-selectin plays a crucial role in the
interaction between circulating endothelial progenitor
cells and vessel endothelium in an ischemic setting.?8-8
In a rat cornea model, Koch and colleagues used cul-
tured human ECs and showed that sE-selectin is a potent
angiogenic mediator.®%4° E-selectin has been found to
increase expression of ICAM-1 and/or VCAM-1.2% Thus,
after stimulating adhesion and migration of HemSCs to
pathological ECs, E-selectin could secondarily induce
expression of other adhesion molecules in SCs or ECs,
which could further increase contact between ECs and
SCs. In support of this hypothesis, we show that E-selec-
tin increased migration of HemSCs in vitro in a dose-
dependent manner. This suggests that HemSCs can eas-
ily migrate into tissue if E-selectin is highly expressed.
Having observed E-selectin expression in an appar-
ently constitutive manner on HemEC-P in vitro, and be-
cause E-selectin enhanced migration and adhesion of
HemSCs, we analyzed E-selectin function in the cell/
Matrigel implant model. We found that vessel formation
was significantly decreased when a blocking anti-E-se-
lectin mAb was included. Because we found no differ-
ence in proliferative rates between HemEC-P and
HemEC-I, in the presence or absence of anti-E-selectin,
the decreased vessel formation is not likely due to im-
paired endothelial proliferation. Instead, we propose that
involution of IH could be a consequence of either silenc-
ing of E-selectin in HemEC-P or loss of HemEC-Ps and
replacement with HemEC-Is. In either case, HemSCs re-
cruitment and adhesion would be diminished. This con-
cept is supported by three earlier findings: i) HemSC
synthesize and secrete VEGF-A and thus, decreased
recruitment of HemSCs would likely lessen vasculogen-
esis and angiogenesis in the IH tumor; ii) reduced
HemSC recruitment in the involuting phase is consistent
with the paucity of CD133-positive cells in the involuting
phase IH compared to the proliferating phase IH*"; and
iii) E-selectin is constitutively expressed in the proliferat-
ing phase but not the involuting phase IH. To the best of
our knowledge, this is the first experimental evidence that
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E-selectin has an important role in the formation of blood
vessels in IH. A more thorough understanding of the
mechanism is needed before E-selectin can be consid-
ered a therapeutic target. Inflammatory mediators were
not found overexpressed in proliferating IH.#2 Our work
confirms that a constitutive E-selectin without an inflam-
matory signal can exist, as has also been described in
human brain—derived endothelial cells,*> bone marrow—
derived endothelial cells** or murine lung—derived micro-
vascular endothelial cells.*®

Our data are consistent with HemECs as initiating cells
in IH pathophysiology, which in turn recruit HemSCs via
an E-selectin—-dependent mechanism. HemSCs would
amplify vasculogenesis in the tumor by contributing to
endothelial and perivascular differentiation.'”'® This
mechanism supports the hypothesis of Rafii and col-
leagues that specialized endothelial cells are not just
passive performers that help to build vessels and to de-
liver oxygen, but they play central roles in promoting
engraftment, self-renewal, and differentiation of hemato-
poietic stem cells,*¢~*8 stem and tumor cell growth,*:5°
and tissue repair.5"°?

In conclusion, our findings indicate that HemECs in the
proliferating phase assume a pro-adhesive E-selectin—
positive phenotype that attracts HemSCs. The adhe-
sive interface between the endothelial cell surfaces
and HemSCs may present a therapeutic target for
blocking stem cell recruitment to tumor sites, espe-
cially in hemangioma genesis.
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