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Sperm whale myoglobin (Mb) has weak dehaloperoxidase activity and catalyzes

the peroxidative dehalogenation of 2,4,6-trichlorophenol (TCP) to 2,6-dichloro-

quinone. Crystals of Mb and of its more active G65T variant were used to study

the binding of TCP, 4-iodophenol (4-IP) and phenol. The structures of crystals

soaked overnight in a 10 mM solution of phenol revealed that a phenol molecule

binds in the proximal cavity, forming a hydrogen bond to the hydroxyl of Tyr146

and hydrophobic contacts which include interactions with C� and C� of the

proximal histidine His93. The phenol position corresponds to the strongest

xenon binding site, Xe1. It appears that the ligand enters the proximal cavity

through a gate formed by the flexible loops 79–86 and 93–103. TCP and 4-IP do

not bind to Mb in this manner under similar conditions; however, it appears

to be likely that dimethyl sulfoxide (DMSO), which was used at a concentration

of 0.8 M to facilitate 4-IP dissolution, binds in the phenol/Xe1 binding site. In

this structure, a water molecule coordinated to the heme iron was replaced by an

oxygen molecule, reflecting the reduction of the heme. Crystals of Mb and G65T

Mb soaked for 5–10 min did not show bound phenol. Kinetic studies of TCP

dechlorination showed that phenol has a dual effect: it acts as a competitive

inhibitor that is likely to interfere with TCP binding at the heme edge and as a

weak activator, likely through binding in the proximal cavity. The lack of phenol

bound at the heme edge in the crystal structures suggests that its inhibitory

binding only takes place when the heme is activated by hydrogen peroxide.

1. Introduction

Myoglobin (Mb) is one of the most thoroughly studied proteins. Its

principal function is as an oxygen carrier, but it has recently been

found that in some organisms it has acquired an additional function

as a dehaloperoxidase, utilizing its heme as the catalytic center to

generate active oxygen species. The first dual-function myoglobin/

dehaloperoxidase (DHP) was discovered in Amphitrite ornata, a

member of the Terebellidae (sea worm) family. This enzyme catalyzes

the oxidative-dehalogenation reaction of polyhalogenated phenols,

utilizing H2O2 (Chen et al., 1996). Ferric myoglobins from species

such as sperm whale or horse have low-level peroxidase activity, but

their physiological role appears to be solely as an oxygen-binding

protein (Osborne et al., 2007). Dual-function globin/peroxidase

proteins in the ferric state bind peroxide in the distal cavity and their

catalytic mechanism is similar to that well established for classical

peroxidases (Osborne et al., 2009).

Peroxidases typically do not have a well defined binding site for

organic substrates; rather, their oxidation takes place at the heme

edge (Poulos, 2010). Surprisingly, crystal binding studies revealed that

DHP binds 4-iodophenol (4-IP), an organic substrate, in the distal

cavity (LaCount et al., 2000). Binding of 4-IP in this mode requires

the distal histidine to swing out of the cavity, which consequently

leads to disassembly of the catalytic machinery. This observation

generated controversy: is the 4-IP binding part of the catalytic cycle

or is it simply opportunistic? Recent results indicate that the latter

is true (Thompson et al., 2010). Other small ligands such as O2, CN�,

CO and imidazole, which bind in the distal cavity, tend to coordinate

to the heme iron. Phenylhydrazine reacts with myoglobin and
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produces a covalent bond between one of the C atoms of the phenyl

group and the heme iron (Ringe et al., 1984).

Ligand binding in the unaltered proximal cavity was limited to the

observation that the exposure of Mb crystals to xenon gas at 709 kPa

resulted in the presence of one Xe atom in the cavity; its position is

referred to as the ‘Xe1 site’ (PDB entry 1j52; W. Radding, E. C. Liong

& G. N. Phillips Jr, unpublished work). Interestingly, the xenon

binding sites in hemoglobin are different from those in myoglobin

and no Xe binding was observed in the hemoglobin proximal cavities,

likely owing to different protein dynamics (Savino et al., 2009). In

general, it was thought that the presence of the proximal histidine in

the cavity prevents the binding of larger molecules. In order to study

the effects of the replacement of the proximal histidine by other

ligands, the ‘cavity mutant’ H93G was engineered (Barrick, 1994).

This mutant was able to accommodate ligands such as 4-methyl-

imidazole (Barrick, 1994), �-mercaptoethanol, acetate (Qin et al.,

2006) and phenol (Roach et al., 2000).

Mb ligands such as O2 or CO bind to the heme iron, producing the

A state; the binding is stabilized by electrostatic interactions with

His64 (Lamb et al., 2002; Olson et al., 2007). This binding can be

disrupted upon photon absorption (Gibson & Ainsworth, 1957).

After photodissociation, the ligand migrates into other internal

cavities of the protein and may then diffuse back to the heme iron or

escape into solution (Gibson, 1989; Lim et al., 1993; Scott et al., 2001).

After photodissociation, the CO molecule moves to the primary

docking site, yielding the B state; from there, the CO molecule

migrates into internal cavities named after their xenon binding ability.

Subsequently, the ligands may rebind to the heme iron or leave

through the His64 gate (Schotte et al., 2004; Belogortseva et al., 2007).

Our studies of other Mb variants that mimic DHP and have

increased dehaloperoxidase activity (Du et al., 2011) led us to

investigate whether crystals of one such mutant, G65T, would bind

4-IP, as was observed for DHP. Since 4-IP is poorly soluble in water,

we complemented this study by soaking the crystals in solutions

containing 10 mM phenol. Unexpectedly, the crystal structure of

G65T revealed a phenol molecule bound in the proximal cavity. A

follow-up experiment with wild-type Mb showed the formation of

virtually the same complex, indicating that this mode of phenol

binding is not a result of the mutation but is a property of Mb.

Soaking G65T crystals in 4-IP solution and DMSO yielded an entirely

different complex: an oxyferrous protein with a DMSO molecule

bound in the Xe1/phenol site.

2. Materials and methods

2.1. Site-directed mutagenesis

The pUC19 plasmid with the wild-type sperm whale Mb gene was

a gift from Professor Yoshihito Watanabe (Nagoya University). The

mutagenic primers were designed to be complementary to the sense

strand of sperm whale Mb cDNA. Primers were synthesized and

purified by Integrated DNA Technology (IDT; Coralville, Iowa,

USA). Site-directed mutagenesis was performed using the Quik-

Change method and the results were confirmed by LiCor DNA-

sequence analysis (USC Engencore DNA server, Columbia, South

Carolina, USA) of the entire Mb gene.

2.2. Protein expression and purification

Plasmids containing either the Mb gene or the G65T variant gene

were transformed into the Escherichia coli BL21 (DE3) cell line and

screened successively on LB plates containing 100 mg ml�1 ampicillin.

Colonies were picked up from the ampicillin plates, grown overnight

in 5 ml LB containing 100 mg ml�1 ampicillin and used to make cell

stocks for protein expression and purification. The recombinant

protein was purified as described previously (Springer & Sligar, 1985)

with modifications. E. coli BL21 (DE3) cells harboring pUC19 were

grown at 310 K in 2�YT medium (5 g NaCl, 10 g yeast extract and

16 g tryptone per litre) in the presence of ampicillin (100 mg l�1). The
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Table 1
Crystallographic data-collection and refinement statistics.

Complex Wild-type Mb–phenol G65T–phenol G65T–DMSO

PDB code 3u3e 4h07 4h0b

X-ray source SER-CAT 22-ID, APS LS-CAT 21-ID-G, APS LS-CAT 21-ID-G, APS
Wavelength (Å) 1.0000 0.9800 0.9800
No. of frames (high pass/low pass) 128 100/100 200
Oscillation range (�) 1.0 1.0 0.5
Crystal-to-detector distance (high pass/low pass) (mm) 150 125/250 150
Temperature (K) 100 100 100
Space group P6 P6 P6
Unit-cell parameters

a (Å) 90.309 90.531 90.499
b (Å) 90.309 90.531 90.499
c (Å) 45.204 45.128 45.319

Unit-cell volume (Å3) 319279 320310 321438
Solvent content (%) 49.8 48.8 49.6
Matthews coefficient (Å3 Da�1) 2.47 2.42 2.46
Mosaicity (�) 0.30 0.25 0.25
Resolution range (Å) 50.0–1.21 (1.23–1.21) 50.0–1.14 (1.16–1.14) 50.0–1.26 (1.31–1.26)
Multiplicity 6.8 (2.7) 7.5 (3.7) 5.6 (4.9)
Average I/�(I) 13.3 (2.4) 13.4 (2.6) 16.2 (2.9)
Total No. of reflections 434856 573149 320929
No. of unique reflections 64348 76999 57252
Completeness (%) 99.1 (93.7) 99.9 (98.1) 99.9 (99.9)
Total linear Rmerge (%) 6.7 (41.5) 5.2 (36.6) 6.9 (16.4)
R value (REFMAC) (%) 14.4 13.3 12.7
Rfree (REFMAC) (%) 17.1 15.2 15.3
Ramachandran statistics

Residues in most favored regions (%) 92 93.5 98.0
Residues in additional allowed regions (%) 8.0 6.5 2.0
Residues in generously allowed regions (%) 0 0 0
Residues in disallowed regions (%) 0 0 0



dark-brown cells were collected and frozen at 193 K until use. 20 g of

cells was thawed at 277 K for 16 h in 100 ml lysis buffer (50 mM Tris–

HCl pH 8.0, 1.0 mM EDTA, 0.5 mM dithiothreitol with 20 U DNase,

3 U RNase and 2 mg lysozyme per millilitre). The cells were soni-

cated for 30 min on ice and the cell debris was removed by centri-

fugation. The blood-red supernatant was collected and subjected to

ammonium sulfate fractionation. Mb was precipitated from 55–95%

ammonium sulfate. The precipitate was recovered by centrifugation

and resuspended in a minimum volume of 20 mM Tris–HCl pH 8.0,

1 mM EDTA. The solution was applied onto a Bio-Gel P-100 (Bio-

Rad) gel-filtration column (3.0 � 30 cm). The appropriate fractions

were pooled, concentrated and applied onto a CM52 pre-swollen

microgranular carboxymethyl cellulose (Whatman) cation-exchange

column (5 � 15 cm) equilibrated in 25 mM potassium phosphate

pH 6.0. The protein was eluted using a linear pH gradient of 25 mM

potassium phosphate buffer pH 6.0–9.0 containing 1 mM EDTA. The

protein purity was assessed by using the ratio of the Soret absorbance

at 409 nm to the protein absorbance (mostly tryptophan) at 280 nm.

Fractions of Mb with an A409/A280 of greater than 3.5 were considered

to be pure and were pooled. To ensure that only the ferric form was

isolated, the Mb proteins were treated with a 1.7-fold molar excess of

potassium ferricyanide on ice (Belyea et al., 2005). Excess ferricya-

nide was removed by allowing the sample to flow through a Bio-Gel

P-6 DG Desalting Gel (Bio-Rad) gel-filtration column by gravity. The

Mb proteins were concentrated to 10 mg ml�1 for crystallization.

2.3. Crystallization

Crystals of G65T and wild-type Mb were grown by the vapor-

diffusion method using a hanging-drop setup under conditions similar

to those reported previously (Matsui et al., 1999) with a well volume

of 500 ml and a drop volume of 2.5 ml protein solution and 2.5 ml well

solution. The conditions used for all crystals consisted of 50 mM Tris–

HCl pH 8.5, between 2.6 and 2.8 M ammonium sulfate and 1.0 mM

EDTA. For the phenol-binding experiments, crystals of either Mb or

G65T were soaked for approximately 16 h in 10 mM phenol, 50 mM

Tris–HCl pH 7.4, 1.0 mM EDTA, 3.2 M ammonium sulfate solution.

For the 4-IP binding experiment, solid 4-IP was dissolved in a DMSO

solution (60% DMSO, 40% Tris–HCl pH 7.4 with 1.0 mM EDTA)

to obtain a 0.1 M 4-IP stock solution. The stock solution was then

diluted to give a 10 mM soaking solution (in 50 mM Tris–HCl pH

8.5, 3.2 M ammonium sulfate, 1.0 mM EDTA) with a final DMSO

concentration of 0.8 M (6%). No precipitation was observed upon

dilution. The crystals were soaked for approximately 16 h. All crystals

were cryo-conditioned by soaking them in 20%(v/v) ethylene glycol-

enriched mother liquor for a few seconds and were flash-cooled in N2

vapor at 95 K.

2.4. X-ray diffraction data collection and structure determination

Data were collected on the SER-CAT 22-ID and LS CAT 21-ID-G

beamlines at the Advanced Photon Source (APS), Argonne National

Laboratory (ANL), Argonne, Illinois, USA. The data were indexed

and processed with the HKL-2000 software package (Otwinowski &

Minor, 1997). Data-collection and processing statistics are listed in

Table 1. The structures were determined using molecular replace-

ment with AMoRe (Navaza, 1994) or Phaser (McCoy et al., 2007)

from the CCP4 suite of programs (Winn et al., 2011), using the G65T

structure (PDB entry 3ock; Du et al., 2011) as the search model.

Structure rebuilding and subsequent refinements were performed

with TURBO-FRODO (Roussel & Cambillau, 1991) and REFMAC5

(Murshudov et al., 2011). Coordinates were superposed using the

LSQKAB program (Kabsch, 1976) from the CCP4 suite. Figs. 1–4 and

Supplementary Figs. 1 and 2 were prepared using TURBO-FRODO.

Fig. 5 was prepared using MolScript (Kraulis, 1991) and Raster3D

(Merritt & Bacon, 1997).

2.5. Dehaloperoxidase assay

The effects of phenol binding on the peroxidase activity of Mb

were measured using a UV absorption spectroscopy-based assay as

described previously (Du et al., 2011). Briefly, assays were conducted

on a Cary 400 spectrophotometer at 277 K and the absorbance peak

at 272 nm was monitored to detect the concentration of the product

2,4-dichloroquinone versus time. Generally, Mb (5 mM) and variable

concentrations of TCP were mixed in 100 mM potassium phosphate

buffer pH 7 in the absence or presence of phenol (0, 250 and 500 mM).

The reactions were then initiated by the addition of 2 mM H2O2. The

time between phenol addition and readout was 3–4 min or, in the case

of the annealing experiment, 3 d. The initial velocity was calculated

using the Cary WinUV software based on the linear initial portion

of each reaction. The initial rates as a function of TCP concentration

were fitted to the Michaelis–Menten equation using the Prism 5

software.

3. Results and discussion

3.1. Crystallographic results

3.1.1. Structures of the Mb–phenol and G65T–phenol complexes.

The structures of the Mb–phenol and G65T–phenol complexes were

very similar; their superposition yielded a r.m.s. deviation between
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Figure 1
Stereoview of the heme environment in the Mb–phenol complex. The final 2Fo � Fc OMIT electron density is contoured at the 1.3� level.



the positions of the C� atoms of 0.12 Å. Below, where differences

were observed the data for the G65T–phenol complex are given in

parentheses.

The crystals had excellent scattering power and the electron

density for the complex covered the whole molecule with the

exception of a few side chains. The electron density for the heme and

the proximal cavity of the Mb–phenol complex is shown in Fig. 1 and

that for the G65T–phenol complex is shown in Supplementary Fig.

S11. Unlike in the DHP–4-IP complex (LaCount et al., 2000), the

phenol molecule binds in the proximal cavity. The binding site is not

saturated; the occupancy factors are approximately 0.6 and 0.8 in the

G65T and Mb complexes, respectively. The phenol fits snugly into a

hydrophobic part of the proximal cavity (Fig. 2); its hydroxyl forms

a 2.8 Å (2.7 Å) hydrogen bond to the phenolic hydroxyl of Tyr146,

which in turn forms a 2.7 Å hydrogen bond to the carbonyl of Ile99

(Fig. 3). The planes of the phenol molecule and the imidazole ring

of His93 are not parallel; they interact through contacts between the

C1 and O atoms of the phenol molecule and the C� and C� atoms

of His93 (3.3 and 3.0 Å, respectively; Supplementary Fig. S2). The

phenol binding site corresponds to the Xe1 binding site, which is the

main binding site for xenon (PDB entry 1j52). A bound CO molecule

was also observed in this site in the structure of the D-state

(photolyzed) Mb–CO complex (PDB entry 1do3; Ostermann et al.,

2000). These complexes are remarkably similar; the r.m.s. deviation

between the positions of the C� atoms is 0.15 Å (0.19 Å). In both

complexes a water molecule is bound to the heme iron, as expected

for the ferric state.

To analyze the effects of phenol binding, the structure of aquomet-

Mb (PDB entry 1a6k; Vojtechovský et al., 1999) was selected because

it was determined at a comparable resolution, 1.1 Å, and the crystals

were also obtained from ammonium sulfate pH 7.0. A superposition

of the structures of the phenol complex and native Mb yielded an

r.m.s. deviation of 0.48 Å between the positions of the C� atoms.

Comparison of these two structures revealed a change of the Leu89

rotamer, shown in Fig. 3, which resulted in a 1.9 Å shift of C�. It is

apparent that the side-chain movement arises from phenol binding,

as the same rotamer change is also observed for G65T and the G65T–

phenol complex. The occupancy of the rotamers of Leu89 correlates

with the phenol occupancy. Additional comparisons show that the

r.m.s. deviation between the positions of the C� atoms of the G65T–

phenol complex and native G65T is 0.07 Å, while the r.m.s. deviation

between the positions of the C� atoms of native G65T and aquomet-

Mb is 0.49 Å. This relatively high r.m.s. deviation is likely to arise

from different packing (the space groups are P6 and P21), and the

most affected region is residues 148–152 of the C-terminus, where the

positions of the C� atoms shift by up to 1.9 Å.

The visible spectrum of the phenol complex is not significantly

different from that of unliganded Mb (not shown). Isothermal titra-

tion calorimetric measurements did not allow us to determine the

binding constant for phenol. No peaks were observed upon titrant

injections, but rather a drift in the baseline. The most likely inter-

pretation is that the binding process is too slow to be measured using

this technique.

3.1.2. G65T–dimethyl sulfoxide complex. In the structure of G65T

crystals soaked in 4-IP solution there was no electron density that

might correspond to a 4-IP molecule. However, there was a density

feature in the distal cavity that corresponded very well to an oxygen

molecule coordinated to the Fe atom. It appears that 4-IP reduced the

heme to the ferrous state; this reaction enabled the binding of oxygen

present in the soaking solution.

In the proximal cavity, there was a strong electron-density peak

(15� in an OMIT Fo � Fo map) at the Xe1/phenol binding site. In the

OMIT 2Fo � Fo map the corresponding peak also appeared to be too

large for a water molecule (Fig. 4); no bound water was observed at

this site in other Mb structures. The hydrophobic environment of the

peak provides the plausible interpretation that a molecule of DMSO

present in the soaking solution bound in this site. The density is not
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Figure 2
Proximal cavity in the Mb–phenol complex. The phenol molecule, shown in yellow,
fits snugly within its hydrophobic part.

Figure 3
Superposition of the Mb–phenol complex (shown in atom-type colors) with
aquomet-Mb (PDB entry 1a6k; shown in blue). The presence of the phenol ligand
in the proximal binding site displaces the Leu89 side chain by approximately 1.9 Å.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: EN5522).



well structured and it appears that the DMSO molecule, if indeed

present, is rotationally disordered. When a molecule of DMSO was

inserted into the model and refined, the values of the B factors were

15 Å2 for the S atom and approximately twice that for the terminal

atoms. Those observations indicate that the ligand is heavier than a

water molecule but is disordered. As we had no alternative hypo-

thesis, we refer to this structure as the G65T–DMSO complex.

The G65T–DMSO structure was superposed with that of the

Mb–CO complex in the A state (CO bound to Fe; PDB entry 2mgk;

Quillin et al., 1993). The r.m.s deviation between the positions of the

C� atoms was 0.34 Å. It was also superposed with the D-state struc-

ture of Mb–CO (PDB entry 1do3; Ostermann et al., 2000), which has

a CO molecule bound at the Xe1 site. The r.m.s. deviation between

the positions of the C� atoms was 0.18 Å. The electron density for the

heme and its environment in the G65T–DMSO complex is shown in

Fig. 4.

3.2. Putative gate to the proximal cavity

Based on CO photodissociation studies, it is assumed that small

ligands such as CO and Xe enter the proximal cavity from the distal

cavity through a transient channel between Ile107 and the heme

(Lamb et al., 2002). However, it appears to be unlikely that larger

ligands such as phenol or imidazole can enter the proximal cavity

through the His64 gate and use the same path because the heme

provides a formidable hindrance. H93G Mb, which is often referred

to as ‘the cavity mutant,’ has been extensively used to study the

effects of proximal ligands on the properties of myoglobin. Success

in binding ligands such as 4-methylimidazole, �-mercaptoethanol,

phenol and acetate in the proximal cavity in the absence of the

proximal histidine side chain preceded our observation (Barrick,

1994; Qin et al., 2006). Since the observed phenol binding took place

in crystals, loop movement is likely to be responsible for phenol entry

into the cavity rather than major protein unfolding. NMR studies

provide more information about the molecular dynamics. NMR

structures of Mb (PDB entry 1myf; Osapay et al., 1994) revealed four

flexible loops: residues 15–23, 48–59, 79–86 and 93–103. The top

NMR structures together with the Mb–phenol complex are shown in

Fig. 5. The 15–23 and 48–59 loops are too far away from the proximal

cavity to be the phenol entrance site. Thus, the movement of loops

79–86 and 93–103, individually or in a correlated fashion, is likely to

generate an opportunity for entrance of the ligand.

3.3. The effects of phenol binding on the peroxidase activity of Mb

Short (5–10 min) soaking of Mb crystals did not show binding of

phenol, indicating that the process is relatively slow in crystals. Long

soaks of Mb crystals in saturated solutions of the substrate TCP did

not show TCP binding, which is consistent with our modeling studies,

indicating that there is not sufficient room for the binding of TCP
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Figure 4
Stereoview of the heme environment in subunit A of the G65T–DMSO complex. The final 2Fo � Fc electron density is contoured at the 1.2� level. The electron feature
assigned to a partially disordered DMSO molecule overlaps with the phenol binding site and also the Xe1 binding site.

Figure 5
The structure of the G65T–phenol complex superposed on the mobile loops
observed in the NMR structures of Mb. The peptide chain in the G65T–phenol
complex is shown in blue; the variable loops are shown in other colors.



in the proximal cavity (not shown). However, our kinetics studies of

peroxidative TCP dechlorination in the presence of phenol showed

that phenol is mainly a competitive inhibitor of this reaction (Fig. 6,

Table 2). If the deviations from Michaelis–Menten kinetics apparent

in Fig. 6 are disregarded, the Ki value is about 0.5 mM. One expla-

nation of these observations is that the peroxidase reaction catalyzed

by Mb takes place at the edge of the heme, as established for classical

peroxidases (Poulos, 2010). The absence of TCP or phenol bound at

the heme edge in crystals soaked in concentrated solutions (about 20

� Ki for phenol) suggests that binding only takes place when Mb

is activated by hydrogen peroxide. We soaked crystals with both

hydrogen peroxide and phenol, but as in previous experiments no

bound ligand was observed, probably owing to the low stability of

the active intermediates. The observed slight increase of Vmax as a

function of phenol concentration (Table 2) may perhaps relate to

phenol binding in the proximal cavity and increased ‘electron push’

or to altered protein dynamics.

The crystal-soaking experiments resulted in partial occupancies of

phenol, suggesting that the rate of diffusion is a significant factor in

crystals. On the other hand, the kinetics experiments showed only

modest differences between dehaloperoxidase activity measurements

when the protein was or was not annealed for 3 d in phenol (Table 2).

We estimate that in the absence of annealing the protein was exposed

to phenol for 2–3 min. Thus, in contrast to the situation in crystals,

where soaks of about 10 min did not show phenol binding, in solution

a time of several minutes appears to be sufficient for entry of phenol

into the proximal cavity.

4. Conclusions

Even in the presence of its Fe-coordinating histidine, the proximal

cavity of Mb has sufficient room to bind modest-sized molecules such

as phenol or DMSO in the Xe1 binding site. Phenol binding some-

what alters the electronic state of the proximal histidine as judged

from the increased Vmax for peroxidative dechlorination of TCP. It

was previously noticed that myoglobin, although a binding protein,

does not have a channel leading to its binding site, but rather depends

on the molecular dynamics to create a path through the distal histi-

dine swinging out of the pocket and creating the ‘gate’. The same is

true at the opposite side of the heme; there is no channel leading to

the proximal cavity. Ligand entry into the cavity is likely to take place

through a ‘side path’, not through the distal cavity.

The affinity for substrate/halophenol binding at the heme edge,

which is necessary for the dehalogenase activity, appears to be small

in the absence of the cosubstrate hydrogen peroxide. The same is true

for phenol functioning as a competitive inhibitor, which is also likely

to bind at the heme edge.

Data were collected on the LS CAT 21-ID-G and SER-CAT 22-ID

beamlines at the Advanced Photon Source, Argonne National

Laboratory. Use of the Advanced Photon Source was supported by

the US Department of Energy, Office of Basic Energy Sciences under

Contract No. W-31-109-Eng-38. Financial support was provided by

the National Science Foundation (MCB 0820456).
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Figure 6
Lineweaver–Burk plot for peroxidative dechlorination of TCP by Mb.

Table 2
Effects of phenol concentration on the dehaloperoxidation of TCP by Mb. The data
were fitted to the Michaelis–Menten model.

Km (mM) Vmax (mM s�1)

No inhibitor 0.77 � 0.19 0.64 � 0.08
250 mM phenol 1.49 � 0.34 0.84 � 0.12

After 3 d annealing 1.07 � 0.16 0.90 � 0.08
500 mM phenol 2.25 � 0.32 0.94 � 0.10

After 3 d annealing 1.28 � 0.13 1.05 � 0.06
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