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Abstract

RNA–binding proteins have emerged as causal agents of complex neurological diseases. Mice deficient for neuronal RNA–
binding protein CELF4 have a complex neurological disorder with epilepsy as a prominent feature. Human CELF4 has
recently been associated with clinical features similar to those seen in mutant mice. CELF4 is expressed primarily in
excitatory neurons, including large pyramidal cells of the cerebral cortex and hippocampus, and it regulates excitatory but
not inhibitory neurotransmission. We examined mechanisms underlying neuronal hyperexcitability in Celf4 mutants by
identifying CELF4 target mRNAs and assessing their fate in the absence of CELF4 in view of their known functions. CELF4
binds to at least 15%–20% of the transcriptome, with striking specificity for the mRNA 39 untranslated region. CELF4 mRNA
targets encode a variety of proteins, many of which are well established in neuron development and function. While the
overall abundance of these mRNA targets is often dysregulated in Celf4 deficient mice, the actual expression changes are
modest at the steady-state level. In contrast, by examining the transcriptome of polysome fractions and the mRNA
distribution along the neuronal cell body-neuropil axis, we found that CELF4 is critical for maintaining mRNA stability and
availability for translation. Among biological processes associated with CELF4 targets that accumulate in neuropil of
mutants, regulation of synaptic plasticity and transmission are the most prominent. Together with a related study of the
impact of CELF4 loss on sodium channel Nav1.6 function, we suggest that CELF4 deficiency leads to abnormal neuronal
function by combining a specific effect on neuronal excitation with a general impairment of synaptic transmission. These
results also expand our understanding of the vital roles RNA–binding proteins play in regulating and shaping the activity of
neural circuits.
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Introduction

Idiopathic epilepsies (IE) have an unknown etiology, but are

generally accepted to be genetic in origin. Although ion channel

defects have been identified as primary causal agents in some rare

monogenic forms of IE, the genetic underpinnings of the vast

majority of more common IE cases, which are likely to be

genetically complex, remain unknown. Increasingly, molecular

genetic studies have identified defects in non-ion channel genes in

common IE, such as the calcium sensors EFHC1 in juvenile

myoclonic epilepsy (JME) and CASR in idiopathic generalized

epilepsy (IGE) [1,2,3,4]. Regulators of transcription, such as BRD2

and ELP4, have been linked with JME and Rolandic epilepsy

(RE), respectively [5,6]. LGI1, a neuronal secreted protein, has

been associated with epilepsy and schizophrenia [7,8,9]. Impor-

tantly for our study, epilepsy has a high rate of comorbidity with

other complex neurodevelopmental disorders, such as autism

spectrum disorders (ASD), intellectual disability (ID) and schizo-

phrenia, suggesting that these disorders may indeed share many

susceptibility genes [10,11,12,13].

RNA-binding proteins (RBPs) are increasingly being associated

with complex genetic diseases, as they can regulate the expression

of many genes co-transcriptionally or post-transcriptionally via

interactions with mRNA [14,15,16]. One such RBP is fragile X

mental retardation protein (FMRP). Loss of FMRP causes fragile

X syndrome (FXS), a disorder with symptoms including intellec-

tual disability, features of autism, attention deficit and hyperac-

tivity, and altered neuronal excitability that leads to seizures [17].

Additional mammalian RBPs associated with epilepsy in humans

and/or mice include JRK/JH8, RBFOX1, PUMILIO-2, and

CELF4 [18,19,20,21,22,23,24,25]. CELF4 deficiency causes a

range of neurological abnormalities in mice, including seizures,

due to increased neuronal excitation [24,25]. In human patients,

CELF4 is implicated in del(18q) syndrome phenotypes (discussed in
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[26]) including at least one patient with seizures, hyperactivity, and

signs of autistic behaviors, carrying a translocation within CELF4

itself [26].

CELF4 (CUGBP, ELAV-like family member 4) is one of six

mammalian CELF proteins that function in mRNA metabolism.

CELF1 and CELF2 are broadly expressed, while CELF3 and

CELF5 are expressed primarily in the nervous system and CELF6

is expressed in brain, kidney, and testis [27,28,29]. Previously,

CELF4 was reported to be expressed in many tissues [28,29]

however many studies including our initial description of CELF4

(then BRUNOL4) deficient mice indicate that CELF4 expression

is restricted to the central nervous system across species, including

mouse [25,30], nematode (Caenorhabditis elegans) [31], chicken [32],

and frog (Xenopus laevis) [33]. CELF proteins play various roles in

co-transcriptional and post-transcriptional RNA processing [34].

All CELF proteins can affect pre-mRNA splicing, at least in cell-

free assays, but individual CELFs have shown divergent roles in

regulating mRNA stability and translation. CELF1 regulates

mRNA stability by promoting deadenylation and degradation

[35,36,37]. In contrast, CELF2 has been shown to bind the 39

UTR of Cyclooxygenase-2 and Mcl-1 transcripts, stabilizing them

and repressing their translation [38,39]. The Xenopus orthologue of

CELF3, however, binds the 39 UTR of Cyclin A transcripts but

enhances their translation [40].

The in vivo roles of the brain-specific CELFs, including CELF4,

in mRNA metabolism in the nervous system remain unclear. The

neuron-specific CELF3–6 nematode orthologue, UNC-75, is

required for proper neurotransmission. Neurotransmission defects

in unc-75 mutants can be rescued by expression of human CELF4,

suggesting that both may be involved in fine-tuning neural activity

through regulation of mRNA in the nervous system [31].

Consistent with neurotransmission defects seen in unc-75 mutants,

Celf4 deficient mice with a gene-targeted null allele have aberrant

excitatory neurotransmission that leads to a complex seizure

disorder [24,25]. Adult Celf4 null homozygotes and heterozygotes

have a low seizure threshold and recurrent handling-associated

convulsive seizures with severity and penetrance dependent on

mouse strain background. On some strain backgrounds, homozy-

gotes also experience non-convulsive (absence-like) seizures,

showing that Celf4 is involved in different types of seizure circuits

[24,25]. Deletion of Celf4 from adult mice is sufficient for

convulsive seizure phenotypes, whereas the absence seizure

phenotype requires deletion before the end of the first postnatal

week [24]. Celf4-deficient mice have additional neurological

abnormalities including hyperactivity and hyperphagia-associated

obesity [25]. Recently, a human CELF4 mutation was described

with clinical neurological and behavioral features closely resem-

bling those of Celf4 deficient mice, indicating that mammalian

CELF4 is indeed an important regulator of neurological function

[26].

CELF4 is expressed predominantly in excitatory neurons, with

highest expression in pyramidal neurons of the hippocampus and

the cerebral cortex. Celf4 deletion enhances excitatory but does not

alter inhibitory neurotransmission, thereby leading to increased

cortical excitability and seizures in Celf4 deficient mice [24]. An

essential step in understanding the molecular mechanisms of

CELF4 function in disease and in the normal state is to identify the

mRNAs that CELF4 binds and regulates. Here, we used

individual nucleotide resolution UV-crosslinking and immunopre-

cipitation (iCLIP) to identify an array of mRNAs directly bound by

CELF4. We find that among the multitude of mRNAs bound by

CELF4, a specific set of mRNAs encodes proteins highly enriched

for function in synaptic neurotransmission, both postsynaptic and

presynaptic. We also find that CELF4 preferentially binds these

mRNAs in the 39 untranslated region (39 UTR) at a (U)GU motif

that is generally known for CELF RBPs, and that CELF4

associates with large RNA granules, suggesting that it regulates

neurotransmission by modulating stability, translation, and/or

localization of these mRNAs. Although global changes of RNA

transcripts were modest, significant shifts in RNA abundance

between cell body and neuropil seen in Celf4 null mutants

combined with immunostaining localizing CELF4 to neuronal

projections further supports a role for CELF4 in mRNA regulation

outside of the cell body, well into axons and dendrites of CELF4-

expressing cells. Immunostaining also revealed significant changes

in CELF4 targets in a subset of cell types (pyramidal excitatory

cells) and cellular compartments (neuropil, this study; axon initial

segment, W. Sun, J. Wagnon, C.L. Mahaffey, W. N. Frankel,

unpublished results) that were consistent with elevated excitability

in Celf4 mutants. Many CELF4 targets that are dysregulated are

associated functionally with regulation of synaptic plasticity and of

neurotransmission. Together, our results suggest that CELF4 has a

central role in coordinating synaptic function in excitatory

neurons.

Results

CELF4 binds mRNAs specifically in the 39 untranslated
region

We used iCLIP followed by high-throughput sequencing to

isolate and identify RNAs bound by CELF4 in adult 129S1 mouse

strain cerebral cortex and hippocampus [41] (Figure 1; File S1).

Importantly, 129S1-Celf4 null mutant brain extracts were used as a

negative control. Radiolabeling of the RNA co-immunoprecipi-

tated with an anti-CELF4 antibody shows the generally high

stringency and specificity of the reaction (Figure 1A). From

wildtype brain we obtained a total of 20,124,340 CELF4 iCLIP

sequencing reads that could be assigned to the individual

experiments (File S1). Of these, 15,625,204 could be mapped as

single hits to the genome corresponding to 12,250,800 unique

protein-RNA crosslinking events (iCLIP tags) that cluster into

239,218 binding sites (Table 1, File S1). In comparison, from Celf4

Author Summary

Epilepsy is a devastating brain disorder whereby a loss of
regulation of electrochemical signals between neurons
causes too much excitation and ultimately results in an
‘‘electrical storm’’ known as a seizure. Epilepsy can be
heritable, but it is usually genetically complex, resulting
from a collaboration of many genes. It is also a frequent
feature of other common brain diseases, such as autism
spectrum disorder and intellectual disability, likely because
these diseases have a similar dysregulation of neuronal
communication. To understand more about how the brain
regulates electrical activity, we focused on an RNA–
binding protein called CELF4, because a) mice that lack
CELF4 have a complex form of epilepsy that includes
features of other neurological diseases and b) this kind of
protein has the potential to be a master regulator. We
show that CELF4 binds to a vast array of mRNAs, and
without CELF4 these mRNAs accumulate in the wrong
places and can produce the wrong amount of protein.
Moreover, many of these mRNAs encode key players in
electrochemical signaling between neurons. Although the
defects in individual mRNAs are modest, like a genetically
complex disease, together these alterations collude to
cause neurological symptoms including recurrent seizures.

CELF4 Regulation of Neuronal mRNAs
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null brain we obtained a total of 7,484,671 sequencing reads of

which 5,328,472 had a single hit in the genome corresponding to

3,408,168 unique crosslinking events that cluster into 68,233

binding sites (File S1; Table 1). Crosslink events and clusters were

strongly enriched in 39 UTRs when CELF4 was purified from

wildtype brain (Figure 1B; Table 1). Overall the binding results

were reproducible, as indicated by stronger gene-by-gene corre-

lation within each of four genotype replicates than between

genotypes (File S1). To determine the occupancy of CELF4 at

each binding site, we normalized crosslink counts at each site using

an independent brain RNAseq dataset from the same mouse strain

[ENA:ERP000614]. By using DREME software [42], comparing

the clusters identified in wildtype with those identified in Celf4 null,

we identified (A/U)UGU as the favored binding motif (Figure 1C).

These results provide in vivo support for past structural and CLIP

studies of CELF1, indicating that different CELF family members

recognize a very similar sequence element in vivo [43,44,45].

Interestingly, despite the very high enrichment in wildtype, in the

Celf4 null samples there was a small amount of enrichment for 39

UTR binding (Figure 1B) and a slight preference for similar UG-

rich motifs as evidenced by pentamer analysis (File S1), raising the

possibility that the CELF4 antibody used for immunoprecipitation

has a small amount of cross-reactivity with another CELF

orthologue, as suggested previously [24].

CELF4 target mRNAs comprise 15%–20% of the
transcriptome and are highly enriched for synaptic
functions

We first defined a maximum dataset (from RNAseq data to be

used later) comprised of 14,288 genes that had 10 or more

normalized reads in wildtype samples (File S2). To assess the

Figure 1. CELF4 binds mRNAs mostly in the 39 UTR and favors an (A/U)UGU binding motif. A. Rigorous purification of CELF4-bound RNAs
with iCLIP. The autoradiogram shows size-separated crosslinked protein-RNA complexes following complete digestion with high (++) or partial
digestion with low (+) amounts of RNase I, immunopurification with an anti-CELF4 antibody and 59 end radiolabeling. The boxes depict the areas on
the nitrocellulose membrane from which crosslinked RNAs were purified for reverse transcription. The asterisk marks dimerized CELF4. B. Gene
segment analysis showing 39 UTR enrichment of CELF4 binding. For enrichment, the percentage of reads (upper panel) or clusters (lower panel)
mapping to a particular gene segment is divided by the percentage of the genome encoding this type of segment. For read enrichment, individual
replicates are shown, and for cluster enrichment, the wildtype and knockdown experiments were grouped. C. The most significant CELF4 regulatory
motif discovered by comparison of significant crosslink clusters determined by CELF4 iCLIP from wildtype or Celf4 null brain. The e-value of the top
motif, as determined by DREME software, was 4.76102338.
doi:10.1371/journal.pgen.1003067.g001

CELF4 Regulation of Neuronal mRNAs
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potential of each gene as a CELF4-binding target, we ranked the

genes by the CELF4 occupancy at the crosslink cluster with

highest cDNA count in the wildtype dataset, after subtracting from

it the highest cluster occupancy in the same gene in the Celf4 null

datasets. To initially assess any evidence for common functions in

this rank-ordered list, we compared the gene ontology (GO)

clustering of the top-ranking 500 genes (i.e. most likely CELF4

mRNA targets) with the bottom-ranked genes (least likely targets).

The difference between these two groups was striking. For

example, in the GO class ‘‘biological process’’, the seven most

significant GO categories for the top-ranked 500 targets showed

high enrichment, with p-values of between 2610210 and 2610213.

All but one GO category was neuron specific or related to ion

transport. We noted that the next 500 highest ranked genes in the

list also showed significant and specific clustering (data not shown).

For the bottom-ranking CELF4 targets, no GO category had a p

value lower than 261029, and the lowest for any neurological-

specific process was 161022 (Figure 2A, File S3).

Because of the very strong GO category clustering of the top-

ranking genes, we could use functional annotation clustering to

infer a threshold for functionally relevant binding from the ranked

list of CELF4 targets. This was accomplished using the DAVID

analysis tool [46,47] by ‘‘walking’’ down the target ranking in

groups of approximately 350 genes using identical clustering

criteria in each step. For this, we examined two quantitative

measures: the total number of annotated clusters, and the

minimum p-value for any category in each query group.

Cumulative values were plotted against the CELF4 iCLIP ranking,

and inflection points (i.e. where each line starts to ‘‘flatten’’) were

noted, indicating a putative threshold (Figure 2B-left, solid lines).

As a control, the ranked list was permuted randomly 50 times,

each replicate re-grouped, and average values plotted (Figure 2B-

top, stippled lines). There were clear differences in the Y-intercepts

and slope in the experimental sample compared with random –

best illustrated by an approximate 300-cluster increase in Y-

intercept, and a precipitous flattening of the minimum p value.

Together, these two indicators suggested that the threshold for

CELF4 target is nominally 2,000 genes (arrow), or almost 15% of

14,288 transcripts in the dataset.

CELF4 is expressed predominantly in excitatory neurons [24],

but the entire cerebral cortex and hippocampus tissue extracts

used for iCLIP are comprised of a heterogeneous mixture of cells.

Recently a transcriptome study was done for rat hippocampus,

whereby a series of filters was applied in silico to the experimental

data to obtain a putative transcriptome for the synaptic region of a

typical rodent hippocampal CA1 pyramidal neuron [48].

Although this list lacks CELF4 targets that are expressed

extrasynaptically, and the CA3 region has higher CELF4

expression [24,49], we applied this transcriptome as a filter to

our iCLIP list and performed a similar analysis as above. The

results were very similar to those obtained from the larger,

unfiltered group (Figure 2B-bottom). A notable downward

inflection in cumulative annotation clusters coinciding with a very

sharp flattening in the p-value (arrows) together suggest that

CELF4 binds around 650 of the putative CA1-specific transcripts,

or about 20% of the CA1 transcriptome, which is slightly more

than predicted by the unfiltered set.

Because of the potential importance of estimating a binding

threshold and thus a set of genes for further analysis, we sought an

independent approach. Previously it was noted that several

transcripts had reduced abundance in the brain of Celf4 null

mutant mice [25]. Three of these are highly-ranked CELF4

targets: Htr2c (rank #64), Snca (#122) and Nsf (#374). Reasoning

that altered gene expression of some or many of its targets may be

a common feature of CELF4 deficiency, we then compared

genotype-dependent changes in transcript expression against the

CELF4 iCLIP ranking. A custom microarray of Celf4 null and

wildtype whole brain mRNA was done and differential expression

was plotted against the CELF4 iCLIP ranked groups (Figure 2C).

Similar to the results from functional annotation clustering, the

experimental curves for differential gene expression had a steeper

rise followed by more rapid diminution when compared to

randomly permuted data - this was evident for all 12,016 positively

expressed genes in this array, and was particularly notable in the

putative CA1 transcriptome subset (Figure 2C-right). The

apparent threshold was remarkably similar to that obtained from

functional annotation clustering.

In summary, although there is no a priori way to directly define

the threshold for significant in vivo binding in iCLIP experiments,

two independent measures—functional annotation clustering, and

altered transcript abundance—suggest that CELF4 directly

regulates at least 2,000 mRNA targets, corresponding to a large

fraction of the excitatory neuron transcriptome.

CELF4 co-sediments with very large RNA granules and is
present in neuronal soma and dendrites

The enrichment of CELF4 binding in the 39 UTR suggests a

role in control of translation, stability, and/or localization.

Cytoplasmic ribonucleotide-protein complexes (RNPs), including

translating polyribosomes and very large neuronal RNA granules

(processing bodies, stress granules, and transport granules harbor-

ing translationally silenced particles) control the fate of mRNAs in

response to a cell’s needs [14,50,51,52]. These very large granules

can be distinguished from polyribosomes by using sucrose density

gradient fractionation, referred to henceforth as polysome

fractionation [52,53,54]. To assess the fate of CELF4-bound

mRNAs upon CELF4 loss, we performed polysome fractionation

on cortical brain lysates from 4-week old wildtype and Celf4 null

mice to separate translating polyribosomes from large RNA

granules and examined CELF4 distribution in individual fractions

by immunoblotting. Even though CELF4 was found in all

fractions, it was particularly prominent in the very high density

RNA granule fraction pool (Figure 3A). This presence was

independent of ribosomes, as indicated by the inability of EDTA

to release CELF4 from the granular fractions (Figure 3B). This

result stands in contrast to other RBPs, such as FMRP, that

interact directly with ribosomes and shift upon EDTA treatment

[55,56]. Treatment of polysomes with RNase A, however,

Table 1. Number of unique iCLIP tags in Celf4 wild-type and
null extracts, by gene segment.

Genotype (replicate-
hemisphere) 39 UTR 59 UTR ORF intron

null1 (1-R) 125,521 5,793 105,364 1,101,760

null2 (2-R) 64,749 2,638 51,158 458,846

null3 (1-L) 31,058 1,500 24,110 305,321

null4 (2-L) 58,840 2,336 42,747 461,211

wt1 (1-R) 1,016,820 7,090 201,060 1,373,130

wt2 (2-R) 1,663,030 9,603 302,963 1,621,310

wt3 (2-L) 1,299,880 7,360 232,156 1,185,560

wt4 (3-L) 735,803 4,248 128,918 679,911

doi:10.1371/journal.pgen.1003067.t001
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destabilized RNA granules, causing a corresponding loss of

CELF4 from the very high density fractions (Figure 3C).

In addition to the cytoplasm of the soma, RNA granules might

exert their activity in neuronal projections, where large RNA

granules have been shown to fulfill roles in mRNA transport and

localized translation [14]. CELF4 expression was previously found

strongest in the soma of excitatory neurons [24], but those studies

lacked resolution to determine whether it was also in dendrites or

axons of individual neurons. By immunostaining we detected

CELF4 in the soma, with a predominant cytoplasmic pattern, as

well as in proximal processes of dissociated hippocampal neurons

(Figure 4A). In the projections, punctate immunostaining for

CELF4 was visible (Figure 4A). Similarly, in mouse brain, where

the antibody reacted specifically with CELF4 as evidenced by

immunostaining of cerebral cortex and hippocampal CA3 in

wildtype but not Celf4 null mutants (Figure 4B–4D), CELF4 was

present in the cell bodies and proximal processes of the dentate

gyrus (Figure 4B), hippocampal region CA3 (Figure 4C), and

Figure 2. Functional annotation clustering of CELF4 mRNA targets and estimating CELF4 target binding threshold. A. Charts in this
panel summarize gene ontology (GO) functional annotation clustering by ‘‘Biological Process’’ (top), ‘‘Cellular Compartment’’ (middle) and ‘‘Molecular
Function’’ classes (bottom) for the top 500 ranked CELF4 targets (log p value - dashed line, green), vs. the bottom 500 ranked CELF4 targets (log p
value - stippled line, red), and the difference between them (D log p - solid line, blue). For each class, the most significant log p categories are shown
for either group, with no omissions. This panel illustrates how the highest-ranking CELF4 targets show strong enrichment for being associated with
neurons and neuronal and synaptic functions. The VLAD tool at the Jackson Laboratory Mouse Genome Informatics website was used for this analysis
(http://proto.informatics.jax.org/prototypes/vlad). The complete list of gene queries and analyses can be found in File S3. B. Enriched functional
annotation clustering was exploited to approximate the threshold of significant CELF4 binding to targets based on iCLIP data. The left panel
represents all 14,288 gene annotations chosen for further analysis, and the right panel a subset of 3,222 genes after filtering the larger set using a list
of genes reported to represent the rodent hippocampal CA1 pyramidal neuron transcriptome [48]. For these estimates, iCLIP data were split serially
by rank into 40 groups (357 genes each) for all annotations, or 15 groups (204 genes each) for the CA1 subset, each group was fed into the DAVID
(v6.7) set of functional annotation tools (http://david.abcc.ncifcrf.gov) and functional annotation charts were obtained for each using the same
default settings for each group. The maximum number of clusters (# clusters, exp’t - solid line, blue) and minimum p value (Min p - dashed line, red)
for any functional category clustered by that group was recorded and plotted cumulatively on the Y axis against each group on the X axis. As a
control, the iCLIP ranking was permuted 100 times and each group fed into DAVID 6.7 and the average cluster number (# clusters, random - stippled
line, green) and minimum p value (Min p, random - stippled line, purple) were similarly plotted. C. Similar to panel B, except using steady-state mRNA
expression differences between Celf4 null and wildtype brain as the indicator (F ratio – cumulative), as described in the text. For panels B and C, the
black arrows indicate inflections where the correlation between iCLIP rank and enrichment (functional clustering, or change in steady-state gene
expression, respectively) begin to decrease, noting the approximate binding threshold which is similar for both measures. The gene lists used in each
can be found in File S3.
doi:10.1371/journal.pgen.1003067.g002

CELF4 Regulation of Neuronal mRNAs
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cortical layer V pyramidal cells (Figure 4D). In the hippocampus,

CELF4-immunopositive projections extended visibly into the

neuropil (Figure 4C). However, CELF4 is probably not present

at the nerve terminal itself, as evidenced by its absence from

synaptosome fractions (Figure S1). Together with previously

published data, these new findings suggest that CELF4 exerts its

role in posttranscriptional regulation of RNAs at multiple sites

throughout the excitatory neuron

CELF4 deficiency affects the abundance and distribution
of its target RNAs

Next, we studied the fate of CELF4 target transcripts in CELF4

deficient mice. First, a custom microarray was used to simulta-

neously examine alterations in steady-state mRNA abundance and

alternative splicing in Celf4 null compared to wildtype adult brain.

Investigating the alternative splicing defects is of interest since both

CELF1 and CELF2 are involved in splicing and at least one prior

study suggested that CELF4 might be as well [28]. However,

consistent with the strong enrichment of CELF4 binding in 39

UTR regions, we found very little evidence for a significant role of

CELF4 in splicing, since we were able to validate small splicing

changes in only five genes: Ank2, Cacna2d2, Cadps, Grm5 and Ppp3ca

(data not shown). In contrast, at the full transcript level, 628 (5.2%)

of 12,016 genes did show a highly significant difference in

expression, using an experiment-wise significance threshold of

p,0.05 (File S4). 144 (23%) of these were among the top 2,000

CELF4 targets identified by iCLIP (File S4). The expression

changes, however, were of a modest nature with the maximum

difference corresponding to a 40% change, consistent with results

reported previously for genes now known to be CELF4 targets

[25]. Although more than half of these CELF4 targets showed

evidence for increased expression in Celf4 null brain (84 vs. 60 with

decreased expression, respectively), the average fold change was

significantly greater for targets with decreased expression

(p,0.001, t-test). It is likely, however, that many more than these

144 CELF4 targets actually show ‘‘real’’ expression differences,

when compared with the rest of the transcriptome. For example,

there was still a significant difference in the average differential

expression between the remaining top priority CELF4 targets and

the remaining 9739 genes on the microarray (p = 0.0008, t-test),

with again, a tendency for them to be expressed at lower levels in

Celf4 null mutant (p,0.001, t-test).

Validation of CELF4 target gene expression changes in
Celf4 null mice

We next sampled steady-state expression of 25 CELF4 targets

each in cerebral cortex and hippocampus by quantitative real-time

RT-PCR (qPCR) in biological triplicate, including representative

targets that either were increased or decreased in the Celf4 null

brain microarray, were high ranking iCLIP targets, whose

expression was examined previously in Celf4 mutants [25] or that

are associated with synaptic regulatory functions based on findings

described below. The qPCR results generally correlated with the

microarray (Figure 5A-cortex; Figure 5B-hippocampus), and with

one exception (Scamp1), for 9 targets that were examined in both

tissues the relative trend was the same. Previously, steady-state,

whole cell protein expression was examined by immunoblot and it

correlated well with RNA for four genes that we know now are

targets (Htr2c, Nsf, Syn2, Snca [25]). Because we know now from the

comprehensive iCLIP screen that many CELF4 targets encode

proteins that function in neuronal projections, for a few targets we

compared whole cell protein expression (by western blot) with

subcellular expression in hippocampus where it is relatively easy to

distinguish soma from neuronal projections by immunostaining.

Whole cell expression changes were modest, but trended towards

downregulation consistent with the mRNA levels (Figure 6A and

6B). Subcellularly, some targets such as NNAT and STXBP1

followed this trend and were lower in cell body and neuropil,

respectively (Figure 6C–6E). Interestingly, however, for two

CELF4 targets, SYNJ1 and CAMK2A, that could be evaluated

in both cell body and neuropil, protein levels were significantly

increased specifically in neuropil (Figure 6E). Altogether while

these and previous mRNA and protein studies confirm that

CELF4 loss does result in altered abundance of many targets with

a general trend towards downregulation at the whole cell level,

some targets appear to exhibit pronounced differences in relative

abundance between cell body and neuronal projections.

Celf4 genotype-dependent shifts of CELF4 targets in
polysome fractions and in the cell body-neuropil axis

To more systematically study the fate of CELF4 targets at the

subcellular level, we examined their distribution a) between

hippocampal cell body and neuropil and b) among polysome

fractions by using RNAseq, comparing Celf4 null mice to wildtype

for each experimental treatment. First, we prepared polysomes

from cerebral cortex and hippocampus and pooled individual

fractions into three groups: monosomes (low density), polysomes

(moderate-heavy density), and very large RNP and RNA granules

(very high density). This was done to allow for two comparisons of

transcript content potentially relevant to CELF4 function:

monosomes vs. polysomes, and RNA granules vs. monosomes/

polysomes. Second, to examine whether there was evidence for a

Figure 3. CELF4 cosediments with polysomes and large RNA
granules. A. Cortical brain tissue lysates from 4-week old mice were
fractionated on 15–55% linear sucrose gradients. Fractions were
collected and analyzed by immunoblot with antibodies against CELF4
and ribosomal S6 (S6) protein. Lysates were treated with either EDTA (B)
or RNase A (C) in parallel. Sedimentation is show from left to right, with
the positions of monosomes (80S), polysomes, and RNA granules
indicated.
doi:10.1371/journal.pgen.1003067.g003
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genotype-dependent shift in the subcellular distribution of CELF4

targets we chose the CA1 region of the hippocampus because of

the relative ease with which its cell bodies and neuropil can be

dissected. The polysome-fractionated and the CA1-derived

mRNA were subjected to high-throughput sequencing followed

by reference genome alignment and data normalization. For the

analysis of the dependence of mRNA levels on Celf4 genotype, we

first obtained F-statistics for genotype-by-treatment interaction in

linear models by analyzing an ANOVA of ranked, normal

quantile-transformed data (File S5 for the whole dataset; File S6

for the putative CA1 transcriptome subset). In a follow-up analysis,

we examined the relationship between expression and CELF4

iCLIP ranking (Table 2). Although genotype-dependent transcript

abundance between RNA granule vs. monosome plus polysome

together had no apparent correlation with CELF4 target status (F,

2.18; ns), a highly significant correlation was seen for monosomes

vs. polysomes (F, 24.29; p,0.0001), and for CA1 cell body vs.

neuropil (F, 12.46; p,0.001). Similar results were obtained

regardless of whether we used the entire dataset, or after filtering

for the putative CA1 transcriptome (Table 2). The relationships

between CELF4 target ranking and Celf4-dependent transcript

abundance for each model are visualized in Figure 7, where the

entire interaction space is depicted by a square containing

individual genes (dots), density contouring emphasizes where

Figure 4. CELF4 protein is localized in soma and in neuronal projections. A. Wildtype DIV14 cultured primary hippocampal neurons were
examined for CELF4 protein localization by immunostaining with antibody against CELF4. Neuronal projections were stained with antibody against
MAP2. Scale bar 20 mm. B–D. Sections from adult wildtype and Celf4 null mouse brains were examined for CELF4 protein localization by
immunostaining with antibody against CELF4. In coronal cryosections, high CELF4 expression is seen in hippocampus, including the dentate gyrus
(B), and in cortical layer V pyramidal neurons (D), which show CELF4 localization in soma and apical dendrites (D - top two panels). In sagittal
vibratome sections, CELF4 localizes to soma and into dendrites in the CA3 region of the hippocampus as shown by colocalization with MAP2 (C – top
two panels). The CELF4 antibody is specific as no signal above background is seen in Celf4 null hippocampal or cortical layer V cells (C,D - bottom two
panels). Nuclei were stained with DAPI. Scale bar 20 mm.
doi:10.1371/journal.pgen.1003067.g004

Figure 5. Validation of CELF4 genotype-dependent abundance changes of select CELF4 target mRNAs. The white column in each panel
shows relative fold change (expressed as 2DDCt –Methods) between Celf4 null and wt for dissected cerebral cortex (panel A), or hippocampus (panel
B), respectively by quantitative real-time RT-PCR (qPCR). In both panels filled columns show the ratio of normalized average fluorescence between
Celf4 null and wt from the whole brain microarray. For qPCR data, statistical significance was determined using Student’s |t| test: *p,0.1, **p,.05,
***p,0.01. Underlined gene symbols highlight genes tested in both tissues. The DDCt data for qPCR and subset of microarray data can be found in
File S4.
doi:10.1371/journal.pgen.1003067.g005

CELF4 Regulation of Neuronal mRNAs

PLOS Genetics | www.plosgenetics.org 8 November 2012 | Volume 8 | Issue 11 | e1003067



Figure 6. Celf4 genotype-dependent whole cell versus subcellular expression for four CELF4 targets. A, B. Protein abundance in
wildtype and Celf4 null hippocampal tissue extracts were examined by quantitative western blotting. Representative immunoblots are shown; each
protein was assessed in extracts from three mice of the same genotype. Immunoblots were visualized with chemiluminescence and signal was
captured with a cooled CCD camera. B. Quantification of protein abundance was performed using ImageJ. Each sample was normalized to actin.
Relative mean OD values of the Celf4 null samples compared to wildtype samples are shown with standard deviation. C–E. Sagittal sections from
wildtype and Celf4 null mutant mouse brains were examined for CELF4 target protein expression using immunostaining. C. Representative images
from the CA3 region of the hippocampus is shown. D. For cell body, fluorescence was quantitated in ImageJ by measuring the mean intensity for
each positive cell body. Background was subtracted and average mean fluorescence for Celf4 null and wildtype were calculated. Data are presented
as mean fluorescence of Celf4 null relative to wildtype 6 sem. E. For dendrites, fluorescence was quantitated in ImageJ by measuring the mean
intensity for each positive dendrite in the stratum radiatum or positive region in the stratum lacunosum-moleculare. Background was subtracted and
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CELF4 target ranking is associated with differential abundance,

and the highest ranking (top 2,000) CELF4 targets are unmasked,

with high and low abundance changes separated by a dashed line.

These results show that in the dissection experiment especially,

much of the signal comes from the highest-ranked CELF4 targets.

Functional annotation clustering reveals a selective shift
of CELF4 targets in the neuropil of CELF4-deficient
neurons

To explore how CELF4 targets drive these highly significant

genotype-dependent interactions, we examined functional cluster-

ing of ‘‘GO biological process’’ categories, by comparing CELF4

targets that had the most significant differential abundance scores

(as D log p) to those with the lowest, as divided along the

interaction F-statistic median (i.e. dashed line in Figure 7). For

monosomes vs. polysomes, there was an overwhelmingly higher

degree of clustering among CELF4 targets with the most

differential abundance (Figure 8-left; all results may be found in

File S7). ‘‘GO biological process’’ terms were dominated by only

highly significant neurological clusters including ‘‘synaptic trans-

mission’’, ‘‘neurogenesis’’ and other broad aspects of neuronal or

synaptic function (Figure 8-top left). Similarly, monosomes vs.

polysomes by ‘‘GO cell compartment’’ terms also revealed very

significant differential scores, led by ‘‘neuron projection’’ and

‘‘synapse part’’ but covering all parts of the neuron (Figure 8-

bottom left). In stark contrast, however, the CA1 cell body vs.

neuropil experiment gave a different set of results. Most of the

functional clustering was associated with CELF4 targets that had

the least amount of differential abundance between cell body and

neuropil (Figure 8-right). Thus, while generally the same GO

categories showed the most significant clustering, all but two ‘‘GO

biological process’’ terms (‘‘regulation of synaptic plasticity’’ and

‘‘cell adhesion’’) and only one of the top ‘‘GO cell compartment’’

terms (‘‘synapse part’’) exhibited more clustering among differen-

tially abundant CELF4 targets.

Together these results reveal a model whereby CELF4 regulates

a large number of genes involved in neuronal function across the

cell, by limiting the degree to which transcripts are available for

translation. Furthermore, a subset of CELF4 targets that are

differentially abundant between cell body and neuropil are

implicated in synapse-specific processes, led by the GO category

‘‘regulation of synaptic plasticity’’ and including ‘‘regulation of

synaptic transmission.’’

We then extracted the 142 gene annotations from the three

proxy GO categories most enriched for differentially abundant

CELF4 targets (‘‘regulation of synaptic plasticity’’ and ‘‘synapse

part’’ —82 genes total; ‘‘cell adhesion’’ —60 genes), in order to

examine the direction of their effects and to begin to draw

inferences about mechanisms that CELF4 regulates at the synapse

(Figure 9, Table 3). For this, we reclassified the 142 genes as being

average mean fluorescence for Celf4 null and wildtype were calculated. Data are presented as mean fluorescence of Celf4 null relative to wildtype 6
sem. For D and E, statistical significance was determined using Student’s |t| test: ***p,0.01.
doi:10.1371/journal.pgen.1003067.g006

Figure 7. Visualization of Celf4 genotype-dependent shift of CELF4 target mRNAs between polysome fractions and along the cell
body/neuropil axis of CA1 hippocampal neurons. Each chart shows the entire space examined in interaction ANOVA models described in the
text and summarized on Table 2, for the hippocampal CA1 cell body vs. neuropil experiment (left panel) and the monosomes vs. polysomes
experiment (right panel). Each square shows individual genes (dots), plotting the rank of their iCLIP occupancy score (X axis) against the rank of their
interaction F-statistic (Y axis). Less likely CELF4 targets (below the top 2,000 occupancy scores) are de-emphasized by masking, and the most likely
2,000 CELF4 targets are unmasked on the right of each square. Density contouring (applied using a standard graphing in JMP software) reveals where
CELF4 target rank is most associated with differential expression. The dashed line at the right of each divides the most likely CELF4 targets in half by
F-statistic score—these two halves are compared to each other for the analysis shown in Figure 8. We note that the monosomes vs. polysomes
experiment did show strong contouring in the corresponding upper-left quadrant. These entries correspond largely to mitochondrial mRNAs or
nuclear or mitochondrial mRNAs that encode ribosomal proteins (data not shown).
doi:10.1371/journal.pgen.1003067.g007
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Table 2. Celf4 genotype-dependent shifts (‘‘Interaction’’) of CELF4 target mRNAs.

All genes CA1 filtered

Experiment Fstat Adj. pval Fstat Adj. pval Model

Monosomes vs. polysomes 65.8 16.0 Experiment

6.2 16.7 Celf4 genotype

53.0 p,0.0001 21.6 p,0.0001 Interaction

RNA granules vs. mono&polysomes 4.2 15.9 Experiment

103.1 28.5 Celf4 genotype

2.3 NS 1.0 NS Interaction

CA1 neuropil vs. cell body 0.6 2.5 Experiment

3.8 0.1 Celf4 genotype

12.5 p,0.001 10.3 p,0.001 Interaction

doi:10.1371/journal.pgen.1003067.t002

Figure 8. GO functional annotation clustering of CELF4 targets. These charts summarize gene ontology (GO) functional annotation clustering
by ‘‘Biological Process’’ (top panels) and ‘‘Cellular Compartment’’ (bottom panels) for the most differentially expressed CELF4 targets compared with
the least differentially expressed - as derived from the interaction ANOVA models (Table 2; Figure 7) for the monosomes vs. polysomes experiment
(left panels) or the hippocampal CA1 cell body vs. neuropil experiment (right panels). The format and approach to construction of these charts were
the same as for those shown in Figure 2A. The analysis illustrates how differentially expressed CELF4 targets in the monosomes vs. polysomes
experiment cluster very significantly across many neuronal biological processes and cell compartments, whereas only a subset of CELF4 targets are
associated with biological processes and sites that are differentially expressed between cell body and neuropil. The gene lists and VLAD output for all
data, as well as the list of 142 enriched genes as derived from this analysis, may be found in File S8.
doi:10.1371/journal.pgen.1003067.g008
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associated with a variety of subcellular localization and molecular

function GO categories. For each category we examined the

relative abundance and the direction of effect between Celf4 null

and wildtype genotypes in the two experiments (monosomes vs.

polysomes, and cell body vs. neuropil) by using contingency table

analysis (Fisher Exact test p). We also compared effects between

experiments (by comparing D log p). For categories that changed

the most in Celf4 null mice, the tendency was toward higher

abundance in polysomes compared with monosomes, and in

neuropil compared to cell body (all data from all categories can be

found in File S8). Figure 9 summarizes the results, showing the

three proxy categories (stippled bars), and the most significant

subcategories (solid bars) by molecular function (top panel) and

subcellular localization (bottom panel). All but one category

showed a more negative log p ratio, indicating that in Celf4 null

mice these transcripts were more abundant in neuropil than in the

cell body. For the most significantly altered CELF4 targets,

directions of effect were visualized in Table 3.

Molecular function categories reveal that most CELF4-regulated

activity at the synapse is in membrane-associated proteins, including

transporters and ion channels (Figure 9A). Assessment of subcellular

localization categories (Figure 9B) suggests that most CELF4-

regulated activity is at the synapse itself, although a fairly even

trailing of other categories belies the possibility that CELF4

regulates a wide variety of molecules in many aspects of synaptic

transmission. Indeed, while other, more specific categories may be

revealing (e.g. ‘‘glutamate receptor activity’’) the sample sizes for

these were often too small to draw strong inference. However, the

power of this type of analysis will only be enhanced as more

experimental evidence accumulates for the functions of these genes.

Figure 9. Significance and direction of effect for synaptic CELF targets enriched between cell body and neuropil. This figure, together
with Table 3, considers the subset of 142 CELF4 targets selectively enriched for differential expression between hippocampal CA1 cell body vs.
neuropil, as derived from the GO categories ‘‘Regulation of synaptic plasticity’’, ‘‘Synapse part’’ and ‘‘Cell adhesion’’, from Figure 8. The relative
significance is shown for the three proxy categories (non-solid columns) and various subcategories (solid columns) of molecular function (panel A)
and subcellular location (panel B), using the difference in the log p value derived from Fisher’s Exact test for each (D log p), as an indicator (Y-axis).
Categories were selected based on having at least 12 CELF4 targets in each, and also only one category is shown if closely-related GO categories had
the same members in them (e.g. ‘‘transporter activity’’ was shown but not ‘‘ion transporter activity’’, ‘‘transmembrane transporter activity’’ which had
the same members). For molecular function, the largest effect is seen for proteins that associate with ‘‘lipid binding’’, transporter activity’’ and
‘‘channel activity’’, with the next category being almost an order of magnitude less significant. For subcellular localization, the subcategories that had
the largest effect were ‘‘synaptic membrane’’, and ‘‘presynaptic membrane’’, although various other structures were almost as significant. The full list
of genes, categories, sample sizes and expression data can be found in File S8.
doi:10.1371/journal.pgen.1003067.g009
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In summary, while CELF4 deficiency results in widespread but

modest differential steady state expression of its targets, with a

significant shift towards polysomes, a subset implicated in

regulation of synaptic plasticity and transmission increases in

abundance and shifts towards polysomes in the neuropil.

Discussion

In either the null or haploinsufficient genetic state, CELF4

deficiency in mice causes a complex neurological syndrome with

epileptic seizures as a prominent feature but which also includes

hyperactivity and obesity in aging males [24,25]. It is known that

CELF4 is at the center of human del(18q) syndrome interval

(discussed in [26]), where it is one of several genes that could be

the cause of neurological symptoms of these patients, including

seizures. Consistent with the murine phenotypes, a patient was

described very recently with many of these features (seizures,

borderline intelligence, behavioral disabilities and obesity) carrying

a translocation that specifically disrupts the CELF4 gene, thus

directly implicating CELF4 in several key features of del(18q)

disease. It is not yet known whether more subtle CELF4 variants

are associated with more common synaptic diseases, such as

idiopathic epilepsy, ASD and various other non-degenerative

neurological conditions, but with the increasingly popular

applications of high throughput DNA sequencing it seems likely

that this question will be answered before too long.

To understand the functions of CELF4 in vivo, we used iCLIP to

identify CELF4-bound mRNAs. The main finding of this aspect of

the study is that CELF4 regulates translation and local abundance

of a vast set of mRNAs, and its primary role is not in regulation of

alternative splicing as was proposed from earlier in vitro studies

[28]. Several lines of evidence strongly support this claim: (i)

CELF4 binds specifically within the 39 UTR known to harbor

elements for translational control and localization, and via a

binding motif that is similar to that of other CELFs, (ii) using a

splicing microarray only very minor splicing defects in a small

number of genes were detected, (iii) CELF4 co-sediments with very

high density RNP particles, (iv) CELF4 is located in the cytoplasm

of the soma as well as in neuronal projections, and (v) compared to

the splicing annotation differences between genotypes which were

minimal, considerably more alterations were detected in Celf4 null

mutants when assessing the distribution of mRNAs between

mono- and polysomes, and between cell bodies and neuropil.

We took a novel approach towards estimating the number of

true CELF4 binding targets from iCLIP. First, we established a

baseline of background binding by using extracts from both

wildtype and Celf4 null mice, and observed the very strong

specificity for the 39 UTR. After deriving a ranked list of targets by

considering site occupancy and background, we observed both

striking functional annotation clustering as well as a broad effect of

Celf4 genotype on steady-state expression among the highest

ranking targets when compared with the lowest ranking targets.

We then exploited these two external measures of function—gene

ontology annotation clustering and expression change—as indices

to infer biological ‘‘meaning’’ from the ranking, by walking-down

the list from highest to lowest ranked targets, and determining the

inflections where the rate of clustering (or gene expression change)

began to diminish. Data permutation assured that these inflections

were not random. From a set of over 12,000 transcripts

corresponding to many cell types (e.g. from whole brain extracts),

including many excitatory neurons most of which express CELF4,

or over 3,000 genes for a less heterogeneous source (by applying a

recently proposed CA1 neuron transcriptome as a filter [48]), this

threshold corresponds to somewhere between 15% and 20% of the

transcriptome. For most of our analysis, we took the top 2,000

ranked targets as a nominal threshold for defining the CELF4

regulome, although this may be conservative as many lower

ranking genes are also likely to be targets. We do not know enough

yet about the relationship between the number of binding sites or

affinity, and biological outcome to be any surer.

In our study, the identification of these numerous mRNA

targets combined with the detection of changes in expression,

translation and localization of mRNAs in Celf4 null mutants all

serve to underscore the notion that alterations of many different

molecular pathways contribute to complex neurological diseases.

Merely considering seizures as a phenotype, from our current and

previous studies we can now infer that normal CELF4 regulation

of its mRNA targets is important for early postnatal development,

Table 3. Number of genes in select enriched GO categories: Relative abundance in Celf4 null versus wild type.

Polysomes Neuronal axis

Category Direction Celf4 null poly/mono wt poly/mono Celf4 null np/cb wt np/cb

Reg. synapt. plasticity .1 16 13 19 7

,1 5 8 2 14

Cell adhesion .1 41 23 44 31

,1 25 43 22 35

Synapse part .1 38 29 56 30

,1 30 39 12 38

Transporter activity .1 7 6 22 9

,1 18 19 3 16

Channel activity .1 4 4 14 6

,1 12 12 2 10

Synaptic membrane .1 20 18 33 18

,1 18 20 5 20

Postsynapt. membr. .1 14 14 26 15

,1 16 16 4 15

doi:10.1371/journal.pgen.1003067.t003
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else absence seizures may arise, and also during adulthood,

whence somatic CELF4 deletion is sufficient to cause seizures even

after normal development [24]. Thus, although for this study we

focused on the role of CELF4 in regulating molecules associated

with function at the synapse, by extension the myriad of other

properties of CELF4 targets (as suggested by functional annotation

clustering) implies that CELF4 very likely is involved in

coordinating a wide spectrum of neuronal functions.

With a set of targets that cover many different aspects of

synaptic function, together with seizures as the major phenotype of

Celf4 deficient mice, we suspected that a general function of

CELF4 might be as a regulator of the synaptic response in

excitatory neurons, i.e. where it is predominantly expressed.

Regulation of homeostatic plasticity and synaptic scaling is

emerging as a theme for neurological disorders, including synaptic

excitation [57], and it is a plausible major component for

genetically complex neurological diseases like epilepsy or autism,

as disruptions in regulating homeostasis would be expected to

lower the threshold for other insults—genetic or environmental—

leading to wider dysregulation at the circuit level. It will be very

interesting in future experiments to examine whether CELF4 is

involved in homeostasis or in other forms of synaptic plasticity,

such as LTP.

In a single genetic model, Celf4 mutants provide a means to

evaluate both an instigating insult and a general inability to

respond to it. Thus, in a companion study (W. Sun, J. Wagnon,

C.L. Mahaffey, W. N. Frankel, unpublished results), using

primarily an electrophysiological approach supported by genetics,

we determined that a relatively modest increase in the amount of

the sodium channel Nav1.6 (encoded by Scn8a) observed in the

axon initial segment where Nav1.6 initiates action potentials in

excitatory neurons [58,59,60], leads to a marked upregulation of

persistent sodium current and intrinsic excitability of cortical layer

V pyramidal neurons. Merely reducing the dosage of wildtype

Scn8a by half completely blocks the effect of Celf4 deficiency on

seizure threshold, betraying the very dominant role that Nav1.6

has in the excitatory response. Importantly, since CELF4 is

expressed only in a few inhibitory neurons [24], its effect on

Nav1.6 would be mainly in excitatory neurons without increasing

the excitability of inhibitory circuits. Even in this condition, it is

possible that a modest increase in Nav1.6 might normally be

tolerated, but combined with an impaired regulatory response as

implied by our genomic studies, Celf4 mutant excitatory activity

would be out of control – hence recurrent seizures.

In accord with our finding that CELF4 is involved in

localization and translational regulation of mRNAs, we found it

to co-sediment with large RNA granules. Thus, our observations

are consistent with a molecular mechanism for CELF4 that is

analogous to that described for the CELF orthologue Bruno in the

regulation of its target transcript oskar, which requires spatially

restricted expression in the Drosophila ovary epithelium. Bruno

mediates translational repression of oskar mRNA by binding in the

39 UTR and either interacting with eukaryotic initiation factor 4E

(eIF4E) and the 4E-binding protein Cup (eIF4ENIF1) to inhibit

cap-dependent translation [61,62] or by forming a very large

RNP, or ‘‘silencing particle’’, containing oskar mRNA oligomers

that is inaccessible to translation machinery [61]. Spatially

restricted gene expression is also a critical process in neurons as

lasting activity-dependent synaptic plasticity requires rapid, local

protein synthesis in neuronal projections in response to synaptic

stimuli [14]. In neuronal projections, mRNAs populate different

types of RNA granules, large RNPs that include transport

granules, translating polysomes, stress granules, and processing

bodies [14,50,51,63]. Our results indicate that CELF4 is part of a

novel large RNP particle of as yet unknown composition. Going

forward, it will be important to dissect its components and

investigate whether CELF4 participates in mRNA oligomerization

into silencing particles similar to those formed by Bruno. It is not,

however, a straightforward leap from Drosophila ovary to the

mammalian nervous system. For example, expression of eIF4E-

NIF1, the orthologue of the Bruno-interacting protein Cup, is low

in the mammalian brain. It is also likely that CELF4 and its bound

mRNAs will dynamically interact with other types of RNPs in

response to synaptic signaling. Given that CELF4 binds a subset of

mRNAs highly enriched for synaptic function, insights into the

CELF4 RNP should expand our current understanding of

neuronal RNA granules and local regulation of RNA translation

in excitatory neurons.

The RNA-binding proteins (RBPs) that form RNA granules are

emerging as causal agents of disease in complex neurological and

neuropsychiatric disorders, such as epilepsy, ASD, schizophrenia

and ID. The high incidence of comorbidity between these

conditions suggests that common pathological mechanisms

underlie these disorders, and many recent studies indicate synaptic

dysfunction, including abnormal synaptic protein levels, defects in

synapse formation, and impaired synaptic homeostasis, as a

unifying component [14,64,65,66]. For example, FMRP regulates

activity-dependent translation in dendrites by stabilizing mRNAs

at synapses for local protein synthesis [67,68]. FMRP loss leads to

dysregulation of local RNA translation, aberrations in dendritic

spine morphology, and altered neuronal excitability that increases

seizure susceptibility [69,70]. Recently, the subset of RNAs bound

by FMRP was identified, and it included many molecules related

to synaptic function and linked to autism [55,71]. When cross-

referenced to the curated list of potential ASD candidate genes in

AutDB [72], 17% of the candidate autism genes are represented in

the FMRP-bound set. Although CELF4 shares approximately

30% of its RNA targets with FMRP, a much higher percentage of

autism candidate genes, over 30%, are represented in the CELF4-

bound set. For the 142 CELF4 targets that show the most

differential expression between cell body and neuropil, approxi-

mately 13% are found in AutDB (representing ,5.6% of

candidate genes). Therefore, it is reasonable to suspect that

variants in human CELF4 could contribute not only to epilepsy,

but also—and maybe more so—to ASD and ID, which is

corroborated by the spectrum of symptoms seen in del(18q)

syndrome and specifically in the recent patient with the CELF4

translocation [26].

Methods

Animal care, procedures, and genotyping
All animals were fed standard National Institutes of Health diet

containing 6% fat and acidified water ad libitum. All animal

procedures followed Association for Assessment and Accreditation

of Laboratory Animal Care guidelines and were approved by

institutional Animal Care and Use Committee. For all experiments

described in this paper, wildtype and Celf4 mutant mice were

analyzed on an isogenic 129/SvImJ (129S1) strain background.

Celf4 genotyping was performed as previously described [24].

Splice-junction microarray
Three biological replicates of wildtype and Celf4 null brain were

collected from postnatal day 6 mice. The high-resolution AltSplice

microarrays were produced by Affymetrix (Santa Clara, CA, SA),

the cDNA samples were prepared using the GeneChip WT cDNA

Synthesis and Amplification kit (Affymetrix 900673), followed by

GeneChip Hybridization, Wash, and Stain Kit (Affymetrix
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900720) using Affymetrix GeneChip Fluidics Station 450 and

scanned on Affymetrix GeneChip Scanner 3000 7G. The resulting

cel files were analysed with the version 3 of ASPIRE [73]. For

examination of splicing, the fold change in gene expression was

determined by comparing the average transcript abundance in the

three biological replicates of wildtype and Celf4 null brain, and the

p-value was determined using Student’s t-test (paired, unequal

variance). For examination of transcript-level expression, we fit

and tested analysis of variance models using J/Maanova (http://

churchill.jax.org/software/jmaanova.shtml).

iCLIP
Whole brain dissected from two Celf4 null and three wildtype

mice aged 6 weeks was split into left and right hemispheres and

then dissociated in PBS, UV-crosslinked and collected by

centrifugation. The iCLIP method was done as previously

described [41]. Briefly, crosslinked brain tissue was dissociated in

lysis buffer, sonicated and subjected to partial RNase I digestion

(final dilution 1:100,000). CELF4 complexes were immunopurified

with 0.9 mg anti-CELF4 polyclonal antibody (Sigma HPA037986,

St. Louis, MO) conjugated to 100 ml protein A Dynabeads

(Invitrogen, Carlsbad, CA, USA). While being immobilized on the

beads, RNAs bound to CELF4 were dephosphorylated at their 39

end followed by ligation of the DNA linker 59-rAppAGATCG-

GAAGAGCGGTTCAG/ddC/-39. After 59 end radiolabeling,

crosslinked CELF4-RNA complexes were size-separated by SDS-

PAGE and transferred onto nitrocellulose membrane. The regions

corresponding to 60–200 kDa on the autoradiogram were excised

from the nitrocellulose and bound RNAs were released by

proteinase K treatment. RNAs were reverse-transcribed (File S1)

and cDNAs were size-selected from a 6% TBE-urea gel

(Invitrogen). Purified cDNAs were circularized, linearized by

restriction digestion and PCR amplified.

High-throughput sequencing and analysis of iCLIP data
High-throughput sequencing of iCLIP cDNA libraries was

performed on an Illumina GA-IIx (run length 54 nt). The iCLIP

libraries contained a 4-nt experimental barcodes plus a 5-nt

random barcode, which allowed multiplexing and the removal of

PCR duplicates, respectively (File S1). All genomic analyses were

performed using the mouse genome version mm9/NCBI37 with

annotations taken from Ensembl (version 60). The iCLIP data

were mapped using Bowtie [74] and randomers were evaluated as

described previously [73]. For assessing the genomic distribution

of iCLIP crosslink nucleotides, we used the following hierarchy:

ncRNA.39 UTR.59 UTR.exon.intron.antisense.inter-

genic, as defined by Ensembl 59 (Figure 1C). Identification of

significantly clustered crosslink sites was described earlier [75].

After defining the clusters, we used the cDNA count at each

crosslink site in the cluster to identify the position that represents

the centre of mass. We then extended this position by 15 nts on

each side to generate 31 nucleotide windows, which were used to

determine the occupancy at each crosslink cluster. Sum of cDNA

counts in each window was divided by the total DNA count of the

iCLIP library. Occupancy in windows was then determined by

further dividing by the RNAseq FPKM value of the gene

containing the window. FPKM was calculated by mapping

ERR033018 and ERR033019 datasets [ENA:ERP000614] using

TopHat in a way where each read from the paired-end sequencing

was mapped separately, and the FPKM was then calculated from

pooled data using Cufflinks. iCLIP binding motif analysis was

done as described previously [75], except that the range of binding

positions was extended to 10 nt and 30 nt in each direction. The

z-score was calculated for each pentamer as: (occurrence in iCLIP

sequences – average occurrence in randomized control sequenc-

es)/standard deviation of occurrence in randomized control

sequences. DREME software [42] was then used identify the

motif that was most highly enriched in wildtype brain compared

with Celf4 null brain.

Analysis of polysome distribution and mRNA localization
For material from polysome fractions and dissected hippocam-

pus, The Jackson Laboratory Gene Expression Service prepared

mRNA sequencing libraries using the Illumina TruSeq method-

ology. RNA was extracted using TRIzol (Invitrogen, CA). For

mRNA-Seq, mRNA was purified from total RNA using biotin

tagged poly dT oligonucleotides and streptavidin coated magnetic

beads followed by QC using an Agilent Technologies 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The

mRNA was then fragmented and double stranded cDNA was

generated by random priming. The ends of the fragmented DNA

were converted into phosphorylated blunt ends. An ‘A’ base was

added to the 39 ends. Illumina-specific adaptors were ligated to the

DNA fragments. Using magnetic bead technology, the ligated

fragments were size selected and then a final PCR was performed

to enrich the adapter-modified DNA fragments since only the

DNA fragments with adaptors at both ends will amplify. The

sequencing library was first validated using an Agilent Technol-

ogies 2100 Bioanalyzer to characterize DNA fragment sizes and

concentration. The concentration of DNA fragments with the

correct adapters on both sides was then determined using a

quantitative PCR strategy, following the kit manufacturer’s

protocol (Kapa Biosystem, Cambridge, MA). Following library

quantitation, libraries were diluted and pooled as necessary. Using

the Illumina cBot, libraries were added to the flow cells and

clusters were generated prior to 100 bp paired end sequencing on

the Illumina HiSeq 2000 (Illumina, San Diego, CA, USA). During

and after the sequencing run, sequence quality was monitored

using the real time analysis (RTA) and sequence analysis viewer

(SAV) softwares available by Illumina. Following sequencing,

demultiplexed fastQ files were generated using the Illumina

CASAVA software.

FastQ files were aligned to the C57BL/6J reference genome on

a high performance computing cluster using Tophat (http://

tophat.cbcb.umd.edu/) for the alignment and Cufflinks (http://

cufflinks.cbcb.umd.edu/) for isoform assembly and quantitation,

except that frequency of reads per kilobase was normalized based

on quartile instead of the total number of mapped reads.

Differential expression analysis for microarray data was done

using J/Maanova (http://churchill.jax.org/software/jmaanova.

shtml) and for RNAseq using the R stats package (www.R-

project.org), including linear models, ANOVA and permutation

shuffling. Further analysis was done using JMP (SAS Institute,

Inc.) or Microsoft Excel (Microsoft Corp). The analysis workflows

for RNAseq differential expression analyses and sample R-scripts

are summarized in File S10.

Hippocampal CA1 dissection
Four-week old mice were euthanized by cervical dislocation.

Brains were quickly removed and transferred into ice-cold solution

containing: 210 mM sucrose, 3 mM KCl, 1 mM CaCl2, 3 mM

MgSO4, 1 mM NaH2PO4, 26 mM NaHCO3, 10 mM glucose,

saturated with 95% O2 and 5% CO2. Coronal slices were cut at

300 mm on a vibrating microtome (VT 1200, Leica Microsystems,

Germany). A patch pipette was used to dissect either cell bodies

from CA1 stratum pyramidale or neuropil from CA1 stratum

radiatum under a dissecting microscope (illustrated in Figure S2).
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Tissue was placed directly in TRIzol reagent (Invitrogen) and

RNA was prepared as directed.

Polysome preparations
Four-week old mice were euthanized by cervical dislocation, the

brain was rapidly removed from the skull and placed in 1.5 ml of

ice-cold lysis buffer (20 mM Tris-HCl, pH 7.4, 3 mM MgCl2,

10 mM NaCl, 2% sucrose, 0.3% Triton X-100, 2 mM vanadyl

ribonucleoside complexes [VRC] supplemented with protease

inhibitors (complete mini, EDTA-free, Roche, Indianapolis, IN).

From this point forward the material was kept on ice. The brains

were homogenized in lysis buffer with 10 strokes of a mechanical

dounce homogenizer. The homogenate was then centrifuged at

10,000 g for 10 minutes at 4uC, and the supernatant was removed

to a fresh tube. The salt concentration of the supernatant was

adjusted to 170 mM NaCl and 13 mM MgCl2. Where indicated,

the lysate was treated with either 30 mM EDTA or 0.1 mg/ml

RNase A for 30 minutes on ice. For EDTA treatment, VRC was

not included in the lysis buffer. Lysates were then carefully layered

onto 15–55% linear density gradients of sucrose in 25 mM Tris-

HCl, pH 7.4, 25 mM NaCl, 5 mM MgCl2 and 30 mM EDTA

where indicated. Gradients were ultracentrifuged in a Beckman

Instruments (Fullerton, CA) SW40Ti rotor (Beckman Instruments,

Fullerton, CA, USA) at 36,000 rpm for 2 hours and 25 minutes at

4uC. Fractions were collected in 1 ml increments with continuous

monitoring at 254 nm using an ISCO detector. For RNA

extraction, fractions were collected into 3 ml of 7.7 M guani-

dine-HCl, 4 ml of absolute ethanol was added, and samples were

incubated overnight at 220uC. Samples were centrifuged at

4000 rpm in an Avanti JS5.3 rotor (Beckman Instruments,

Fullerton, CA, USA) for 50 minutes at 4uC. The supernatant

was removed and 400 mL DEPC-treated H2O was added to the

pellet. The pellet was resuspended and moved to a microcentrifuge

tube. To precipitate the RNA, 1 ml of absolute ethanol, 40 mL of

3 M sodium acetate, pH 5.2, and 20 mg glycogen were added, and

the samples were incubated overnight at 220uC. The samples

were then centrifuged at 14,000 g for 30 minutes at 4uC. Pellets

were washed with ice-cold 75% ethanol and air dried for

15 minutes at room temperature. RNA was resuspended in

30 mL DEPC-treated H2O. For western blot analysis, the protein

in each fraction was TCA-precipitated.

Antibodies
The following antibodies were used for immunoblotting and

immunostaining, anti-Actin (1:1,000, Abcam ab3280), anti-

Camk2a (1:400; Millipore NB12), anti-Celf4 (1:200 for immuno-

blot, 1:400 for immunostaining; Santa Cruz sc-84712), anti-Map2

(1:10,000, Abcam ab5392), anti-Stxbp1 (1:100; Abcam ab3451),

anti-Nnat (1:100; Abcam ab27266), anti-Synj1 (1:100; Abcam

ab19904).

Immunoblotting
For immunoblots of proteins isolated from polysome fraction-

ation, proteins were separated by SDS-PAGE and transferred to

nitrocellulose. Blots were blocked with 5% nonfat milk in TBST

(TBS, 0.1% Tween-20), probed with anti-CELF4 antibody in 3%

BSA/TBST overnight at 4uC, washed, and incubated with goat

anti-rabbit peroxidase-conjugated secondary antibody (1:15,000,

Bio-Rad,; Hercules, CA, USA). Signal was detected by chemilu-

minescence with the ECL-prime kit (GE Healthcare). The blot was

stripped with Restore stripping buffer (Thermo Scientific, Rock-

ford, IL, USA) and reprobed with anti-S6 antibody in 5% milk/

TBST overnight at 4uC, washed, incubated with goat anti-mouse

peroxidase-conjugated secondary antibody (1:15,000, Thermo

Scientific, Rockford, IL, USA), and signal was detected with the

ECL-prime kit (GE Healthcare).

For quantitative immunoblotting, cortical tissue or hippocampal

tissue from wildtype and Celf4 null homozygous mice was

homogenized in RIPA lysis buffer (150 mM NaCl, 50 mM Tris-

HCl [pH 8], 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS)

supplemented with protease inhibitors (complete mini, Roche) and

phosphatase inhibitors (PhosSTOP, Roche) and incubated for

30 minutes at 4uC. The lysate was centrifuged at 4,500 g for

5 minutes at 4uC. Protein in the supernatant was quantified using

the Direct Detect system (EMD Millipore). Proteins were

separated by SDS-PAGE and transferred to nitrocellulose

membranes. Membranes were blocked in 5% milk/TBST for

one hour at room temperature then probed with primary

antibodies diluted in 3% BSA/TBST for two hours at room

temperature or overnight at 4uC. Membranes were then washed

three times for five minutes each in TBST followed by incubation

with horseradish peroxidase-conjugated secondary antibodies

(goat anti-mouse or goat anti-rabbit, Bio-Rad) diluted in 5%

milk/TBST for one hour at room temperature. Signal was

detected with the ECL prime kit (GE Healthcare, Piscataway, NJ,

USA) using the G:BOX Chemi XT4 system equipped with a

Synoptics 4.2 MP cooled CCD camera (Syngene, Frederick, MD,

USA). Accurate band sizes were ascertained by also visualizing

ProSieve Color protein markers that had been present in the gel

and transferred with the sample proteins (Lonza, Basel, Switzer-

land). Before reprobing, the blot was incubated in stripping buffer

(62.5 mM Tris-HCl, 100 mM b-mercaptoethanol, 2% SDS,

pH 6.7) at 50uC for 30 minutes, followed by two washes for ten

minutes each in TBST. As a loading control, blots were probed

with anti-actin antibody. For quantitation, images collected from

the G:BOX were imported into ImageJ and optical densities (ODs)

of the bands were measured. The OD of each sample was

normalized to the OD of the corresponding actin band.

Immunostaining
Cryosections: Adult mice were anesthetized with a lethal dose of

tribromoethanol and perfused with phosphate-buffered saline

(PBS pH 7.4). Brains were removed from the skull, cut coronally,

and frozen in O.C.T. (Tissue-–Tek, Torrance, CA). Then, 15 mm

thick sections from the cortex were collected onto lysine-coated

Colorfrost Plus slides (Fisher Scientific, Pittsburgh, PA, USA) and

stored at 280uC. Slides were thawed and dried for 30 minutes at

room temperature. Tissue sections were re-hydrated in PBS, fixed

10 minutes in 1% paraformaldehyde in PBS, rinsed three times in

PBS, blocked in 0.3% Triton-X-100, 1% bovine serum albumin

(BSA) and 10% normal goat serum (NGS) in PBS for 2 hours at

room temperature, and incubated in primary antibodies diluted in

0.3% Triton-X-100, 1% BSA and 3% NGS in PBS for 2 days at

4uC. Sections were washed three times for 5 minutes each in

PBST (PBS, 0.05% Tween-20) and incubated for 2 hours at room

temperature in secondary antibody. The sections were washed as

before, followed by a wash in PBS and incubated in DAPI diluted

in PBS for 5 minutes. The sections were mounted in Prolong Gold

antifade reagent (P36930; Invitrogen). The following secondary

antibodies were used to visualize the immunoreactions: AlexaFluor

488-conjugated goat anti-mouse (1:1000; Invitrogen A11017) and

AlexaFluor 555-conjugated goat anti-rabbit (1:1000; Invitrogen

A21430).

Free-floating sections: Adult mice were deeply anesthetized and

perfused with PBS, followed by 4% paraformaldehyde in PBS.

Brains were removed from the skull, post-fixed overnight in the

same fixative (4uC), rinsed in PBS, cut sagitally and sectioned at

50 mm on a vibrating blade microtome. When antigen retrieval
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was necessary the tissue sections were first treated with 0.2 mg/ml

pepsin (Sigma P6887) in 0.2 M HCl at 37uC for 10 minutes and

washed 3 times in PBS at room temperature. Then sections were

incubated in a blocking buffer of 0.3% Triton-X-100, 1% BSA

and 10% NGS in PBS for 2 hours at room temperature and

transferred into primary antibody diluted in blocking buffer with

3% NGS. After incubating for 2 days at 4uC, sections were washed

three times for 10 minutes each in PBST (PBS, 0.05% Tween 20)

and incubated for 2 hours at room temperature in secondary

antibody diluted in blocking buffer with 3% NGS. The sections

were washed as before, followed by a wash in PBS and incubated

in DAPI diluted in PBS for 5 minutes. The sections were mounted

onto lysine-coated Colorfrost Plus slides (Fisher Scientific) in

Prolong Gold antifade reagent (Invitrogen).

Images were collected using a Leica SP5 confocal microscope

equipped with a 63x PlanApo objective (N.A. 1.4; Leica

Microsystems, Germany). The same laser and detection param-

eters were used for wild type and mutant sections. To quantify

immunostaining of CELF4 targets, images were imported into

ImageJ. Z-stacks comprising the immunostaining signal were

summed into a single projection (the same number of z-stacks were

summed for wildtype and mutant). Cell bodies or neuropil

(N = 10–20) were manually selected and fluorescence intensity

was measured. For each image, background selections (N = 10)

were measured, and the average background for the image was

subtracted from the cell measurements. Images were not processed

in any way prior to quantification. For figure presentation,

brightness and contrast were minimally adjusted and equivalent

adjustments were made to both wildtype and mutant images.

Quantitative RT–PCR (qPCR)
Total RNA was prepared from the cortex and hippocampus of

adult mice between 8–9 weeks of age using TRIzol reagent

(Invitrogen) and treated with DNase I (Promega) according to the

manufacturers’ suggested conditions. Two micrograms of RNA

was transcribed with avian myeloblastosis virus reverse transcrip-

tase. The cDNA from three homozygous mutants and three

wildtype littermates was diluted 20-fold and 1.5 ml was added to

13.5 ml of Sybr Green PCR mix (Finnzymes DyNAmo HS SYBR

Green qPCR Kit, New England Biolabs) with primers (File S9).

The PCR amplifications were run in triplicate and monitored by

an ABI Prism 7000 sequence detector (Applied Biosystems, Foster

City, CA). The correct PCR amplification was confirmed by the

dissociation curve function of the ABI machine and by agarose gel

electrophoresis. Relative expression was calculated as fold change,

or 2DDCt, where DDCt is the difference in cycle number to

threshold (Ct, averaged from triplicates) between experimental

and reference (actin) amplicons.

Primary neuronal culture
Hippocampi from embryonic day 16 (E16) mice were dissected

under a dissecting microscope in cold artificial cerebrospinal fluid

(ACSF, 119 mM NaCl, 5 mM KCl, 1 mM MgCl2, 30 mM

dextrose, 25 mM HEPES, pH 7.4, without calcium). Following

dissociation with papain in ACSF at 37uC for 15 min, 26105

hippocampal neurons were seeded on 12 mm poly-lysine treated

coverslips (size #1.5). The plating medium was Neurobasal

medium containing containing 50 U/ml penicillin, 50 g/ml

streptomycin, and 2 mM GlutaMAX, supplemented with 2%

SM1 (Stemcell Technologies) and 5% heat-inactivated horse

serum (Invitrogen). Twenty-four hours after initial plating, the

original plating medium was replaced with fresh plating medium.

Neurons were then fed twice weekly with Neurobasal media (see

above) supplemented with 2% SM1 starting at 4 days in vitro

(DIV4).

Immunocytochemistry
Neurons at DIV14 were washed in warm ACSF and fixed in

ice-cold 4% paraformaldehyde with 4% sucrose in PBS for

15 minutes at 4uC. Fixation was quenched in 0.1 M glycine in

PBS for 5 minutes at room temperature, and cells were washed

two times for 5 minutes in PBS at room temperature. Neurons

were permeabilized in 0.25% Triton X-100 in PBS for 5 minutes

at room temperature, blocked (10% normal goat serum, 0.1%

Triton X-100, in PBS), then incubated with anti-CELF4 and anti-

MAP2 primary antibodies overnight at 4uC. After three washes in

PBS for five minutes each at room temperature, secondary

antibodies (AlexaFluor 488-conjugated goat anti-rabbit and

AlexaFluor 555-conjugated goat anti-chicken, Invitrogen) diluted

1:500 in PBS were added for one hour at room temperature.

Neurons were then washed and stained with DAPI (1:1500,

Sigma) and mounted in ProLong Gold (Invitrogen). Images were

collected using a Leica SP5 confocal microscope equipped with a

63x PlanApo oil immersion objective (N.A. 1.4, Leica Micro-

systems, Germany).

Data access
Accession number for the CELF4 iCLIP data in ArrayExpress:

(E-MTAB-1162). Accession number for the microarray data in

ArrayExpress: (E-MTAB-1163). Accession number for the poly-

some data in NCBI Bioproject: PRJNA168524. Accession number

for the hippocampal dissection data in NCBI Bioproject:

PRJNA168525.

Supporting Information

Figure S1 CELF4 is not present in synaptosomes. Synaptosomes

were isolated from wildtype mouse cortical brain homogenates.

Immunoblot using antibody against CELF4 shows robust signal in

input (25 mg total protein), a very faint band in membranous

material, and no band in the synaptosome fraction.

(DOCX)

Figure S2 Illustration of dissection of CA1-hippocampus used

for RNAseq experiment. As described in the text.

(DOCX)

File S1 iCLIP primers and summaries, qPCR primers. Text file

comprised of five small tables showing primers used for iCLIP and

qPCR validation studies, as well as summary statistics for iCLIP

results.

(DOCX)

File S2 Normalized RNAseqdata & iCLIP occupancy & ranks.

Spreadsheet that shows the RNA sequencing data from the

sucrose gradient fractionation and hippocampal dissection exper-

iments, normalized as described in the text, as well as the CELF4

iCLIP occupancy values and relative ranks from the iCLIP-seq

experiments. Genes are listed by Ensembl Gene ID.

(XLSX)

File S3 GO annotation clustering for top vs. bottom 500 targets

ranks. Workbook with multiple worksheets that summarizes the

first pass at functional annotation clustering of CELF4 iCLIP

targets, comparing the top 500 ranking targets with the bottom

500 ranking targets. Genes are listed by the Mouse Genome

Database ID as well as by their International Nomenclature gene

symbols.

(XLSX)
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File S4 CELF4 microarray transcript level normalized data and

fstats, and qPCR data and summary statistics. Workbook with

multiple worksheets that shows normalized microarray data and

results of MAANOVA (F statistics, p-values) and the qPCR

validation data. Genes are listed by Ensembl Gene ID.

(XLSX)

File S5 Fstats & p values for interaction anova - whole set.

Workbook with multiple worksheets that shows F-statistics and p-

values for the interaction ANOVA analysis of subcellular fraction-

ation or dissection RNAseq experiments. These data are for the

whole transcriptome set. Genes are listed by Ensembl Gene ID.

(XLSX)

File S6 Fstats & p values for interaction anova - CA1 only set.

Workbook with multiple worksheets that shows F-statistics and p-

values for the interaction ANOVA analysis of subcellular

fractionation or dissection RNAseq experiments. These data are

for the subset of the whole transcriptome filtered for CA1 synaptic

transcripts, as described in the text. Genes are listed by Ensembl

Gene ID.

(XLSX)

File S7 GO annotation clustering of interaction models.

Workbook with multiple worksheets that shows functional

annotation clustering of the highest 2000 ranking CELF4 iCLIP

targets from the Celf4 genotype-dependent interaction ANOVA

analyses of subcellular fractionation or dissection RNAseq

experiments, comparing the top 50% F-statistics vs. bottom 50%

F-statistics for GO categories. Genes are listed by the Mouse

Genome Database ID as well as by their International Nomen-

clature gene symbols.

(XLSX)

File S8 Posthoc analyses of 142 cb vs. np enriched genes from

GO models. Workbook with multiple worksheets that shows the

results of the GO analysis of Celf4-genotype dependent subcellular

gene expression shifts of CELF4 targets. Genes are listed by the

Mouse Genome Database ID.

(XLSX)

File S9 Synaptosome methods. Text file that describes the

methods for synaptosome analysis, shown in Figure S1.

(DOC)

File S10 RNAseq workflows and R-scripts. A pdf file that shows

an overview of the workflow used for analyzing RNAseq data in

the subcellular fractionation experiments, as well as R-script

examples used for ANOVA and permutation analyses.

(PDF)
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