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CYCLES ALTERED BY HUMAN ACTIVITY: IMPACTS
ON THE AVAILABILITY AND STOICHIOMETRY
OF NUTRIENTS

The impact on nitrogen (N) and phosphorus (P)
cycles of human activity is a growing concern and has
several causes and consequences (MacDonald et al.,
2011; Peñuelas et al., 2012; Sardans et al., 2012b).
Carbon (C) inputs by human CO2 emissions and N
inputs from diverse human-driven sources are con-
tinuously increasing (Peters et al., 2011; Peñuelas et al.,
2012). On the other hand, anthropogenic biospheric
inputs of P are increasing much less than emissions of
N and P (Peñuelas et al., 2012). These changes impact
all ecosystems, including cropland (MacDonald et al.,
2011), and seem to lead to shifts in C-N-P ratios and
balances (Mackenzie et al., 2002; Peñuelas et al., 2012),
with significant impacts on the structures and func-
tions of ecosystems through effects on growth rates
and on the competitive abilities of different species
(Sterner and Elser, 2002; Peñuelas et al., 2012). Fur-
thermore, increased warming, drought, and concen-
trations of atmospheric CO2 also change the N and P
contents and stoichiometry of plants (Reich et al., 2006;
Funk and Vitousek, 2007; Elser et al., 2010; Rivas-
Ubach et al., 2012) and, therefore, can indirectly
impact soil processes and nutrient availability and
stoichiometry. These increases also influence ecosys-
temic structures and functions and the capacity of
Earth to balance its levels of CO2, given the importance
of nutrients in the efficiency of plants to take up CO2
(Vicca et al., 2012).

Invasion by plant species, another driver of global
change, is also strongly related to the availability and
stoichiometry of soil nutrients in most cases (Davis
et al., 2000; Chun et al., 2007; Dassonville et al., 2007,
2008; González et al., 2010) and exerts an additional

effect on the availability and stoichiometry of N and P
in ecosystems and frequently interacts significantly
with other drivers of global change, such as N depo-
sition (Huebner et al., 2009; He et al., 2011).

Plants respond to drivers of global change by several
metabolic and physiological shifts that frequently alter,
among several other functions, a plant’s capacity to
take up and reallocate nutrients and, consequently, the
elemental composition and stoichiometry of plants.
Plants are thus the main factor underlying the links
between global change and the status of N and P in
ecosystems. This role of plants is critical to Earth’s N
and P biogeochemical cycles and to the changes oc-
curring in these cycles. We urgently need to review our
knowledge of the role that plant responses to global
change plays in changing and/or buffering the avail-
ability and stoichiometry of nutrients in ecosystems.

In this Update, we discuss (1) the effects of plants on
the availability and stoichiometry of nutrients in eco-
systems through their responses to drivers of global
change at the individual, population, and community
levels, (2) the consequences and feedback mechanisms
occurring from changes in the availability and stoi-
chiometry of nutrients in terrestrial ecosystems, and (3)
the key aspects we need to investigate to reach a global
understanding of the links among drivers of global
change, plant responses, and the availability and
stoichiometry of nutrients.

INCREASED CONCENTRATIONS
OF ATMOSPHERIC CO2

Meta-analyses of herbaria studies and field experi-
ments have observed that elevated concentrations of
atmospheric CO2 tend to decrease N (Peñuelas and
Matamala, 1990; Sardans et al., 2012b) and P (Peñuelas
and Matamala, 1990, 1993; Sardans et al., 2012b) in
plant tissues. Foliar C-N and C-P ratios have usually
increased as a consequence (Gifford et al., 2000;
Tognetti and Peñuelas, 2003; Sardans et al., 2012b).
Under high concentrations of atmospheric CO2, the
most commonly observed plant response, especially in
C3 plants, is an increase in C uptake that frequently
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leads to an increase in growth (Newton et al., 1995;
Reich et al., 2006). Increased concentrations of atmo-
spheric CO2 also lead to reduced transpiration
(Niklaus et al., 2001; Del Pozo et al., 2007), because the
uptake of CO2 is possible with higher stomatal closure
(Samarakoon and Gifford, 1995), which can further
limit the capacity to take up N (Berntson, 1994;
Pritchard and Rogers, 2000; BassiriRad et al., 2001) and
can lead to a progressive limitation of nutrients that
can quickly limit the initial increase in plant produc-
tion under elevated concentrations of atmospheric CO2
(Murray et al., 2000; Zak et al., 2003; Luo et al., 2004;
Newton et al., 2010; Norby et al., 2010).

The capacity to enhance plant growth can be further
increased by external inputs of nutrients. The current
increases in N deposition in several regions of North
America and Europe increase the capacity of further
plant growth (Finzi et al., 2007). In this case, the in-
crease in plant growth is fundamentally due to an in-
crease in N uptake but not to an improvement in the
efficiency of use of N (Finzi et al., 2007). Some exper-
iments of N fertilization have not observed significant
increases of plant growth and nutrient cycling under
increased atmospheric CO2 concentrations (Lagomarsino
et al., 2008).

Plants also tend to take up more N, which can reduce
the availability of soil N (Norby et al., 1999; Hovenden
et al., 2008; Garten et al., 2011), an effect further en-
hanced by the frequent increase in N uptake by mi-
crobes in response to increased levels of CO2 (Zak et al.,
2000; Dijkstra et al., 2010a). The large uptake of N by
plants and the decrease of N in soil can prevent losses of
N from ecosystems by preventing leaching (Johnson
et al., 2004). Plants, however, respond with a series of
metabolic and physiological mechanisms for increasing
their capacity to take up N in a scenario of high levels of
atmospheric CO2. Changes in the structure of mycor-
rhizal communities and/or increases in mycorrhizal
biomass frequently occur (Díaz, 1995; Treseder, 2004;
Gamper et al., 2005; Olsrud et al., 2010; Fransson, 2012).
Plants also increase their allocation of N to root struc-
tures (Norby et al., 1999; Arnone et al., 2000; Norby and
Iversen, 2006), including the increase of root exudates
that increase the capacity for nutrient chelation (Phillips
et al., 2011; Fransson, 2012). An increase in the efficiency
of N use is generally observed (Taub and Wang, 2008;
Dijkstra et al., 2010a, 2010b) due to these mechanisms,
which include an increase in internal plant remobili-
zation (Peñuelas and Estiarte, 1997). An increase in
nitrogen fixation is also observed as a short-term re-
sponse to increases in concentrations of atmospheric
CO2 (Reich et al., 2006), but the limitation of other ele-
ments such as P and potassium (K) limit the increase in
the capacity of ecosystems to fix N2 (Reich et al., 2006;
Tobita et al., 2010). The possibility of community inva-
sion by fixers of N2 can increase if levels of atmospheric
CO2 rise (Zanetti et al., 1996; Polley et al., 1997).

A follow-on consequence of all these processes is a
progressive change in the proportions of individuals of
different species of the plant community due to variable

capacities of the various species with different ecologi-
cal strategies, phylogenies, successional stages (Arnone
et al., 2000; Handa et al., 2008), or life stages (Shimono
and Bunce, 2009). Young plants have a higher capacity
to improve uptake than plants in reproductive stages
(Shimono and Bunce, 2009). All these mechanisms of
increases in nutrient use efficiency and/or uptake in
response to higher concentrations of atmospheric CO2
are strongly dependent on soil nutrients and water
sources and resources. Nutrient-poor soils may limit the
capacity of plants to increase their root production in
response to atmospheric concentrations of CO2 and,
consequently, limit the capacity to absorb nutrients
(Johnson et al., 2006). The capacity to invest to increase
nutrient uptake is also limited in arid environments.
Clark et al. (2009) observed no changes in mycorrhizal
infection in plants growing in the Mojave Desert in re-
sponse to increased atmospheric CO2 concentration.
The capacity of plants to increase their growth by a
higher uptake or use efficiency of N is very dependent
on the chemical form of the source of N. In general,
NH4

+ is preferable to NO3
2 because the allocation of N

in plants to nitrate reductase activity must compete
with the allocation of other factors (Bauer and Berntson,
2001; Cruz et al., 2003). If most of the N uptake is in the
NH4

+ form, plants do not need to allocate N to nitrate
reductase. A negative feedback can be produced, be-
cause increased concentrations of CO2 can increase soil
nitrification (Azam et al., 2005). On the other hand,
higher levels of soil moisture from reduced transpira-
tion should prevent soil nitrification, as observed in
some studies (Cheng et al., 2012), contributing to di-
minished uptake of NO3

2 by plants and favoring NH4
+

uptake. These processes appear to contribute to a better
use of N in the ecosystem.

The decrease in plant transpiration is frequently re-
lated to higher soil-water contents (Ebersberger et al.,
2003; Staddon et al., 2004). Higher soil-water content,
litter production, and root allocation are related to
the higher activities of soil enzymes frequently ob-
served under high concentrations of atmospheric CO2
(Ebersberger et al., 2003; Lipson et al., 2006; Jin and
Evans, 2007). Higher fungal biomass is also a trait re-
lated to higher decomposition rates of soil organic
carbon observed in some soils subjected to elevated
concentrations of atmospheric CO2 (Lipson et al.,
2006). Despite the frequent lower quality of litter
resulting from higher C-N ratios and higher concen-
trations of C-based secondary compounds (Peñuelas
et al., 1997; Aerts et al., 2012), these litter changes do
not decrease soil organic matter (SOM) or litter de-
composition (Zak et al., 2003; Hyvönen et al., 2007;
Aerts et al., 2012), which have even been found to in-
crease in several studies (Billings and Ziegler, 2005;
Cotrufo et al., 2005; Jin and Evans, 2007). Changes in
mineralization under high concentrations of atmo-
spheric CO2 are very dependent on the species of plant
(Finzi et al., 2006; Austin et al., 2009).

Thus, increased levels of CO2 concentration lead to
high plant production capacity (C3 plants) and lower
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transpiration. Plants respond by increasing the re-
source allocation to mechanisms involved in N and P
uptake. Nevertheless, plant C-N and C-P ratios tend to
increase (Table I). At the end, however, an acclimation
effect of plants is observed at medium and long terms,
thus diminishing the previous trends. Further research
is necessary to reach a more conclusive view of the
impacts on N-P ratios of plants and soils.

WARMING

The Contrast between Cold/Wet and Hot/Dry Ecosystems

An overview of the information currently available
leads to the general conclusion that the responses of
plants to warming strongly depend on the indirect
effect of warming on soil moisture (Schmidt et al.,
2004; Aerts, 2006; Sardans et al., 2012b). In cold and
temperate ecosystems, especially in wet conditions, the
reduction of soil moisture by warming is insufficient to
counteract the enhancement of plant activity in re-
sponse to rises in temperature. In these conditions,
plants increase their biological activity by several
mechanisms, such as lengthening the growth and ac-
tive annual periods (Farnsworth et al., 1995; Peñuelas
et al., 2004) and increasing photosynthetic rates
(Wookey et al., 1995), vegetative growth (Wookey
et al., 1995; Hobbie and Chapin, 1998; Suzuki and
Kudo, 2000; Cole et al., 2002; Peñuelas et al., 2004; Day
et al., 2008; Olsrud et al., 2010; Melillo et al., 2011;
Dreesen et al., 2012), reproductive output (Wookey
et al., 1995), and seed reservoirs (Blödner et al., 2007).
These increases in photosynthesis activity can be fur-
ther enhanced under increased atmospheric CO2 con-
centrations such as observed in some experiments
coupling field manipulations of temperature and at-
mospheric CO2 concentrations (Albert et al., 2011).
However, the effects of warming and elevated atmo-
spheric CO2 on other ecosystem processes can be dif-
ferent. For example, Dijkstra et al. (2010a) observed an
increase in soil N availability under warming and a
decrease in N content (due to the enhancement of N
uptake by microbes) that, when acting together, tend
to compensate their effects on soil N. On the other
hand, nutrient mineralization, cycling rates, and
availability frequently increase under warming (Fig.
1). Despite these increases, the enhancement of plant
activity and growth involves a dilution of nutrients
that leads to frequent decreases in N concentrations in
leaves and litter (Suzuki and Kudo, 2000; Shen et al.,
2009) and increased C-nutrient ratios in plant tissues
and litter (Hyvönen et al., 2007; Sardans et al., 2012b,
2012c). At the individual and community levels, plants
respond by increasing nutrient uptake, mycorrhizal
symbiosis (Clemmensen et al., 2006; Olsrud et al.,
2010), root growth (Volder et al., 2007), and N2 fixation
(Sorensen and Michelsen, 2011). These plant responses
lead to an increase in nutrient uptake under warming
(Wookey et al., 1995; Dijkstra et al., 2010a; Olsrud

et al., 2010). The responses of plants to continuous
warming generally tend to be limited by the avail-
ability of N (Jonasson et al., 2004; Majdi and Öhrvik,
2004) and/or P (Jonasson et al., 2004) in cold and
temperate regions (Jarvis and Linder, 2000).

These limitations can be reduced by N deposition, as
observed in regions of Europe and North America
(Aerts et al., 1992; Majdi and Öhrvik, 2004; Clemmensen
et al., 2006). The most direct consequence of the rapid
response of plants to warming is the change in com-
petitive relationships among plant species of a com-
munity (De Valpine and Harte, 2001). Plant species
adapt differently to the new conditions by species-
specific differences in metabolism (Schuster and
Monson, 1990), phenology (Dreesen et al., 2012), or
reproductive strategy (Moulton and Gough, 2011).
Reductions in the rates of photorespiration in C3-C4
intermediate-metabolism plants create advantages in
photosynthetic capacities at warmer foliar tempera-
tures than in C3 plants, which can only enhance pho-
tosynthetic efficiency under warming at substantial
costs in water and nutrient use efficiency (Schuster and
Monson, 1990). In cold environments, increases in the
availability of soil nutrients through enhanced de-
composition of SOM and the capacity for plant pro-
duction favor plants that mainly reproduce sexually
(Moulton and Gough, 2011), which frequently leads to
a competitive advantage of higher plants over lichens
(Moulton and Gough, 2011).

Plants can sometimes respond negatively to warm-
ing even in cold and temperate environments. During
warming events, an extreme winter snow cover in the
Arctic can disappear, and freezing temperatures can
reduce a plant’s potential to grow and reproduce the
following summer (Bokhorst et al., 2011). In temperate
grassland, the large frequency of freeze-thaw cycles
has proved to increase the N leaching effect linked
to higher water penetration and leaching capacity
(Joseph and Henry, 2008). This loss of N can be asso-
ciated with the increases of plant C-N ratios and
growth decreases associated with the increased fre-
quency of freeze-thaw cycles (Kreyling et al., 2010).
Moreover, some Alpine plants have roots that grow
upward to the snow cover to acquire nitrogen, thereby
compensating for the very short season for nutrient
uptake (Onipchenko et al., 2009). Plants highly de-
pendent on this strategy can be particularly threatened
under a scenario of rapid warming that shortens the
period of snow cover. All these sources point at the
importance of single events and, by the impacts of
extreme warming events, impacts on snow cover and
temperature variability in winter.

In contrast, warming in dry environments, such as
those of continental, Mediterranean, and dry tropical
biomes, can increase soil drought, exacerbating limi-
tations of water and nutrients (Link et al., 2003; Allison
and Treseder, 2008). Plants respond by activating
mechanisms for water conservation, which can fre-
quently increase C-nutrient ratios in photosynthetic
tissues (Sardans et al., 2008b, 2008c, 2012a).
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In response to warming, leaves and litter of plants
thus tend to increase C-nutrient ratios by the dilution
effect and/or by increases in nutrient use efficiency
(An et al., 2005) in temperate and cold ecosystems not
limited by water and by conservative mechanisms re-
lated to the avoidance of water stress in dry areas
(Sardans et al., 2012b). Nevertheless, these increased
C-nutrient ratios may not be observed in the short and

medium terms in cold and temperate sites, because the
higher temperatures can increase respiration and en-
hance soil activity, thus releasing more nutrients, al-
though respiration subsequently tends to acclimate to
the new situation (Atkin et al., 2000; Hartley et al.,
2006). Anyway, climate-manipulation studies in high-
latitude ecosystems report increases (12% on average)
in the C-N ratio of litter under warmings ranging from

Table I. Summary of the main results of the studies on plant responses to global change drivers and the flow-on effects on soil fertility
and stoichiometry

The necessary future research to advance in a global overview of this topic is highlighted in the last column.

Global Change Drivers Plant Responses
Changes in Soil Nutrient

Availability and Stoichiometry
Further Research

Increased atmospheric
CO2 concentrations

↑Plant production capacity at short term
(C3 plants), and acclimation capacity
at medium and long term

Habitually no observed changes
in soil fertility

Effects on N-P stoichiometry

↓Transpiration ↑Soil C-N and C-P ratios
↑Plant C-N and C-P ratio
↑Plant investment of resources in N and

P uptake
Warming (cold/wet

environments)
↑Plant production and growth (but the

effects can be negative in short, extreme
warming events)

↑Of nutrient cycling, by higher
mineralization rates and soil
enzyme activity counteracting
the negative effect of litter
production with high C-N
and C-P ratios

Study of the possible
different effects on N
than on P cycling

↑Plant C-N and C-P ratios Study of the effects of
increasing frequency of
warming events during
winter in temperate and
cold ecosystems

↑Plant investment of resources in N and
P uptake

Warming (hot/dry
environments)
and drought

↑Growth ↓Soil enzyme activity and nutrient
cycling

The role of plant roots in
the mechanism of water
transport from deep soil
layers to upper soil layers

↑Investment in increasing WUE and in N
and P uptake

↑C-N and C-P ratios

↑Plant C-N and C-P ratios by increase in
the presence of C-rich structures and
compounds linked to water stress
avoidance

↓Decrease of N and P availability

No significant effects on plant N-P ratios ↑N and P occuled fractions
↑Risk of N and P losses by torrential

rainfalls
N eutrophication ↑Aboveground growth and plant

competition intensity
↑P availability, increasing P-limiting

role
The impacts of N deposition
through its role by
increasing plant and soil
N-P ratios

↑Investment in P uptake ↑N-P ratio
↑N-P ratios ↑Soil phosphatase activity and soil

respiration
↓Root uptake capacity under high levels

of N saturation
↑Accumulation of recalcitrant C
↑N leaching

Species invasion In nutrient-rich soils, high invasive success
of species with higher growth rates, low
C-N and C-P ratios, fast plasticity in
resource acquisition capacity, and high
reproductive investment

↑Of N and P soil concentrations and
availability as well as cycling,
particularly in rich nutrient soils

The role of N-P ratios
(of plant and soil) in
invasive success

In nutrient-poor soils, high invasive success
related to conservative use of resources,
including nutrients

Communities dominated by legumes growing
in soils with limited availabilities of soil P
or water are vulnerable to competition by
nonfixing plants with high capacities of P
uptake or stomatal control, and low
availabilities of P reduce the probability
of successful invasion by N2-fixing plants
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1°C to 4°C (Cornelissen et al., 2007; Aerts et al., 2012),
showing that increases of C-N ratios can be a frequent
effect of warming.

Effects on the Availability and Stoichiometry
of Soil Nutrients

Along with the responses of plants to warming, soil
enzyme activity, SOM decomposition, and rates of
nutrient cycling and mineralization tend to change in
a direction mainly determined by the impact of
warming on soil moisture (Peñuelas et al., 2004; Aerts,
2006; Allison and Treseder, 2008), changes in litter
quantity, and the composition and activity of soil mi-
croorganisms.
In cold and temperate ecosystems not limited by

water, warming also tends to increase nutrient release
and availability for plants, despite frequent increases
in C-nutrient ratios in litter (Luo, 2007; Fig. 1).
Warming frequently increases soil enzyme activities
(Bell et al., 2010; Dreesen et al., 2012), soil respiration
(Updegraff et al., 2001; Biasi et al., 2008), nutrient
mineralization, soil-cycle rates (Fig. 1), and SOM de-
composition (Aerts, 2006; Hyvönen et al., 2007; Von
Lützow and Kögel-Knabner, 2009). Plants, though,
must compete more strongly with microbes for nutri-
ents (Jonasson et al., 2004; Dijkstra et al., 2010b), be-
cause the warmer temperatures enhance the activities
of the microbes (Von Lützow and Kögel-Knabner,
2009). Nonetheless, plants frequently enhance their
uptake of nutrients (Cole et al., 2002). In the long term,
when vegetation has a large capacity to take up nu-
trients, for example in a young forest in its growing
stage, this increase in the source of nutrients can imply
an increase in leaf concentrations of N (Butler et al.,
2012). On the other hand, this increase in the release
of soil nutrients can increase leaching to streams
(Schmidt et al., 2004). Fewer studies have investigated
the effects of warming on soil processes in dry areas
than in temperate and cold environments not limited

by water. In boreal and dry mountainous and tropical
dry areas, the effects of warming are opposite to those
in areas not limited by water; soil enzyme activities
(Allison and Treseder, 2008), soil respiration (Lellei-
Kovacs et al., 2008), and N availability are decreased
(Fig. 1).

Some studies have observed that N mineralization is
enhanced more rapidly than P mineralization under
warming (Rinnan et al., 2007), observing that warming
increases more in the N cycle than the P cycle (Sardans
et al., 2012b). These results support studies of foliar
stoichiometry under natural gradients that have ob-
served positive correlations between temperature and
foliar N-P ratios (De Frenne et al., 2011; Kang et al.,
2011). In scenarios of rapid rises in temperature, plants
in particular and ecosystems in general can respond
more quickly and strongly to increases in N avail-
ability than to enhanced P availability due to increases
in N2 fixation or decreases in denitrification resulting
from enhanced evapotranspiration, among other fac-
tors. This possibility of increases in soil N-P ratios in
the short term can lead to a more persistent rise in N-P
ratios if warming continues to increase. Experimenta-
tion to specifically study and respond to this question
is warranted, because the soil N-P ratio is a key factor
in the structures and functions of ecosystems (Sardans
et al., 2012c).

Summarizing, in wet/cold ecosystems, warming en-
hances plant production and growth, increasing the
investment in N and P uptake and generally increasing
plant C-N and C-P ratios. In spite of the higher litter
C-N and C-P ratios, increases in mineralization and
nutrient release from soil organic matter are observed as
a result of the increases in soil biological activity and,
frequently, the higher water availability by increasing
defrost. The possible different effects of warming in N
and P cycles remain to be clarified. There are some re-
ports suggesting that warming can have an additional
impact by the increases of warming periods during
winter in cold and temperate ecosystems. All these as-
pects warrant future research. Contrarily, in hot/dry

Figure 1. Impact of drought and warm-
ing on rates of soil nutrient cycling and
availability. Detailed results and bib-
liographic references are provided in
Supplemental Table S1.
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environments, the effects of warming are determined by
the impacts of changing water availability.

DROUGHT

Shifts in Elemental Composition

Prolonged water stress frequently translates into a
reduction of aboveground plant growth (Inclán et al.,
2005; Xu and Zhou, 2006; Ogaya and Peñuelas, 2007;
Prieto et al., 2009; Jyske et al., 2010; Wu et al., 2011b),
but plants respond by trying to increase water uptake
and enhancing conservative mechanisms to improve
water use efficiency (WUE). Single drought events also
initiate plant physiological responses that frequently
result in changes in soil activity, affecting ecosystem
nutrient cycling that allows the survival of the plant
community and thereafter the return to initial condi-
tions (Jentsch et al., 2011; Lloret et al., 2012).

Drought increases the production of abscisic acid,
the accumulation of water in plant tissues (Radin and
Ackerson, 1981; Wittenmayer and Merbach, 2005;
Planchet et al., 2011), and mechanisms to protect the
PSII enzymatic system based on pigments and anti-
stress enzymes (Munné-Bosch and Lalueza, 2007;
Zhang et al., 2011). All these changes tend to reduce
photosynthetic efficiency (Munné-Bosch and Lalueza,
2007). Abscisic acid coordinates the protective re-
sponses of plants to drought, mainly by increasing
stomatal closure, decreasing foliar surface areas, and
increasing root-shoot ratios through the allocation of
more resources to the root system (Bahrun et al., 2002;
Wittenmayer and Merbach, 2005). Increased synthesis
of antioxidant enzymes such as superoxide dismutase
is characteristic of plants under drought (Ruiz-Lozano
et al., 1996). Proteomic and metabolomic analyses have
discerned the stepwise changes in N use and allocation
in plants responding to drought. Rubisco is hydro-
lyzed, and N is further allocated to the synthesis of
amino acids with osmoprotective functions (Aranjuelo
et al., 2011). These “omic” techniques should be used
to study shifts in the metabolic use of other nutrients,
such as P.

Coinciding with these general physiological re-
sponses, an increase of mycorrhizal symbiosis under
drought is frequently observed in field studies (Ruiz-
Lozano et al., 1995; Davies et al., 1996; Al-Karaki and
Al-Raddad, 1997; Shi et al., 2002; Roldán et al., 2008).
The enhancement of mycorrhizal symbiosis improves
the capacity of plants to take up both water and nu-
trients (Ruiz-Lozano et al., 1995; Alvarez et al., 2009;
Wu et al., 2011a). Drought can also increase the allo-
cation of resources to roots (Huang, 2001; Wittenmayer
and Merbach, 2005; Suralta, 2010), the acceleration of
turnover of fine roots (Meier and Leuschner, 2008), and
an increased production of root exudates, contributing
to increased chelation and uptake of nutrients (Henry
et al., 2007; Kohli et al., 2012). Mycorrhization is pos-
itively correlated with an enhanced antioxidant me-
tabolism in plants (Ruiz-Lozano et al., 1996).

In addition to activating mechanisms for improving
the capacity to take up water, plants respond to
drought by enhancing mechanisms for conserving
water and nutrients, such as the retranslocation of
nutrients prior to tissue senescence (Heckathorn and
DeLucia, 1994, 1996; Correia and Martins-Loução,
1997; Milla et al., 2005) and the internal remobilization
of nutrients dependent on the availability of water
(Sardans and Peñuelas 2012a). As observed in plants
adapted to severe periods of drought, P tends to
remobilize from leaves to roots, whereas K has the
opposite movement, as observed in Mediterranean
trees during summer drought (Milla et al., 2005; Sanz-
Pérez et al., 2009; Sardans et al., 2012a). Plants with the
genotypic capacity to maintain N, P, and K concen-
trations and contents under drought have a competi-
tive advantage if drought persists or becomes more
severe (Ghandilyan et al., 2009). Plants adapted to
drought are able to raise the concentration of N in
leaves (Inclán et al., 2005; Weih et al., 2011).

Different metabolic systems of CO2 uptake can
provide differences among plants competing under
drought. C4 plants maintain higher photosynthetic
rates than C3 plants under drought conditions (Taylor
et al., 2011). Plants with Crassulacean acid metabolism
respond very efficiently to drought even in nutrient-
poor soils (Maiquetía et al., 2009).

Drought reduces net photosynthesis and growth as
well as the capacity to take up N and P from soil
(Chidumayo, 1994), but these effects are ameliorated if
N, P, and/or K availability is high, leading to higher
root proliferation, water uptake, and WUE (Radin and
Ackerson, 1981; DeLucia and Schlesinger, 1991; Borch
et al., 2003; Garg et al., 2004; Waraich et al., 2011).
Higher concentrations of P in plants improve WUE
because they allow a minor suppression of photosyn-
thesis per unit of water transpired (Singh et al., 2000;
Jones et al., 2005) and improve the capacity of stomatal
control (Waraich et al., 2011). Enzymes of N metabo-
lism play an important role in the acclimation to
drought (Xu and Zhou, 2006). Most studies show that
decreases in soil moisture also reduce N and/or P
uptake by plants (Jupp and Newman, 1987; Sardans
et al., 2005; Sardans and Peñuelas, 2007; Cramer et al.,
2009; Waraich et al., 2011), suggesting a negative
feedback of less water and fewer nutrients on the
production capacity and fitness of plants when
drought persists or becomes more severe. As a result,
plants under drought tend to produce leaves and litter
with high C-nutrient ratios (Yarie and Vancleve, 1996;
Sardans et al., 2008b; Limousin et al., 2010). The few
studies of the specific effects of drought on the N-P
ratio in plants, however, have not provided a clear
conclusion (Sardans and Peñuelas, 2008; Sardans et al.,
2008c, 2012b), in spite of studies in gradients of water
availability in Mediterranean regions that have ob-
served a negative correlation between water supply
and leaf N-P ratio (Sardans et al., 2011), an effect
linked to higher growth capacity in plants with lower
N-P ratios (Sardans and Peñuelas, 2012b). Moreover,
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drought limits the capacity to fix N2 by limiting the
metabolic capacity of bacteria and by generating oxi-
dative damage (Streeter, 2003; Naya et al., 2007;
Franzini et al., 2010; Aranjuelo et al., 2011), which
further decrease the N content of ecosystems. The re-
sponses of plants to drought in cold ecosystems, where
temperature, light irradiation, and soil nutrients are
the main limiting resources, cannot always be detected
and may even have effects opposite to those discussed
above (Yarie and van Cleve, 1996; Nilsen et al., 1998).

Effects on the Availability and Stoichiometry of Nutrients
and on Primary Production and Community Structure

Drought can affect soil activity and fertility as a di-
rect effect of low soil water content and changes in
plants. The most common effect of drought is a de-
crease in soil biological activity, including decreases in
soil enzyme activity (Lorenz et al., 2001; Yavitt et al.,
2004; Henry et al., 2005; Sardans and Peñuelas, 2005,
2010; Sardans et al., 2006, 2008a, 2008d), mineraliza-
tion (Fig. 1), and SOM decomposition (Van Meeteren
et al., 2008; Sanaullah et al., 2012) that frequently de-
crease the availability of soil nutrients (Fig. 1). These
effects are due most frequently to the decrease in soil
moisture (Sardans et al., 2008a; Sardans and Peñuelas,
2010) but also to decreases in food quality and the
nutrient contents of leaves and litter (Sardans et al.,
2008d; Matías et al., 2011). These effects frequently
lead to increases in recalcitrant forms of soil nutrients
and decreases in forms available to plants (Sardans
and Peñuelas, 2004; Sardans et al., 2006, 2008d, 2008e).
As far as we know, only one study has detected in-
creases in soil mineralization under drought (White
et al., 2004).
The increase in SOM and nutrient stocks in soils

under drought can increase the risk of nutrient losses
from the ecosystem, mainly if drought is accompanied
by more frequent and intense torrential rainfall, as
expected in some areas such as the Mediterranean
basin (Sardans and Peñuelas, 2012a; Zaimes et al.,
2012). Field studies that experimentally manipulate
climate have observed that decreases in soil-water
content at a level projected by most climatic models
have led to the loss of N from the ecosystem (Ogaya
and Peñuelas, 2009). Furthermore, rewetting events in
a scenario of increasing drought can further increase
the loss of nutrients from the ecosystem; sudden in-
creases of more soluble forms of N in soil have been
observed after rewetting events (Ryan et al., 1998).
Prolonged drought coupled to less predictable and
intense torrential rainfall (Frei et al., 1998) opens a
scenario of shifts in the feedbacks and equilibria within
the plant-soil system in some semiarid areas such as
the Mediterranean region. The most threatening phe-
nomenon for Mediterranean soils, especially in the
most xeric areas, is desertification linked to a continual
positive feedback: higher frequency and intensity of
torrential rainfall and longer, more severe drought

periods (both associated with climatic change) with
increased soil erosion, which in turn leads to a loss of
soil fertility and thus plant cover (Garcia et al., 2002;
Moreno-de las Heras et al., 2011; Ruiz-Sinoga et al.,
2011, 2012), a phenomenon that finally drives deserti-
fication. In this process, the most drought-resistant
plants are selected and constitute patches in the mid-
dle of bare soil (Ochoa-Hueso et al., 2011; Ruiz-Sinoga
et al., 2011). The soil variability of water and nutrient
availability are related to the distribution of vegetation
patches with respect to bare soil patches, which can be
considered as runoff sinks and sources, respectively
(Boix-Fayos et al., 1998; Kutiel et al., 1998; Mayor
et al., 2009; Ruiz-Sinoga and Martínez Murillo, 2009;
Gabarrón-Galeote et al., 2012; Mayor and Bautista,
2012; Merino-Martin et al., 2012). Thus, soil nutrients
and water availability are higher in soils with higher
infiltration capacity and biological activity that coin-
cides with vegetation patches throughout the slopes
(Maestre and Cortina, 2003; Agra and Ne’eman 2012).

In summary, drought reduces net photosynthesis
and growth, but these effects are ameliorated if N, P,
and/or K availability is high, which allows improving
plant WUE by enhancing the capacity of stomatal
control (Waraich et al., 2011). Most studies show that
decreases in soil moisture also reduce N and/or P
uptake by plants; as a result, plants under drought
tend to produce leaves and litter with high C-nutrient
ratios, with further consequences on litter decomposi-
tion by decreasing litter quality. These effects fre-
quently lead to increases in recalcitrant forms of soil
nutrients and to decreases of the forms available to
plants (Table I). Moreover, deep root systems transfer
water from deep to upper soil layers, potentially fa-
voring the mineralization of leaf litter and improving
the water status of the community species with su-
perficial root systems (Filella and Peñuelas, 2003),
which merits future research.

N EUTROPHICATION

Impacts on Plant Function, Chemical Composition,
and Stoichiometry

Human activities have more than doubled the
nitrogen inputs in terrestrial ecosystems (Matson et al.,
1999; Peñuelas et al., 2012). Individual plants respond
to N availability at metabolic and physiological levels.
Plant species have an optimal level of N supply
for growth and plant function (Baghour et al., 2000;
Horchani et al., 2010). Plants also have a notable
phenotypic plasticity for adapting to changes in N
supply. For example, when the availability of N be-
comes limiting, high-affinity nitrate and ammonium
transport systems are up-regulated and lateral root
growth is stimulated (Quaggiotti et al., 2003; Remans
et al., 2006; Engineer and Kranz, 2007; Krapp et al.,
2011). About 3,000 genes in Medicago truncatula are up-
regulated under N starvation (Ruffel et al., 2008), and
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the main enzymes of the N cycle (nitrite and nitrate
reductases, Gln synthetase and dehydrogenase) are
very sensitive to N supply (Horchani et al., 2010), in-
dicating the importance that N uptake has for plants.
N deficiency reduces foliar area and chlorophyll con-
tent, which negatively affect photosynthetic capacity
and growth (Zhao et al., 2005).

Increases in N availability due to enhanced N de-
position should have a rapid positive effect on plant
growth and metabolism. The increases in plant
growth under N deposition (Eisenlord and Zak, 2010;
Bontemps et al., 2011) enhance the intensity of com-
petition among plants (Friedrich et al., 2012). Ecologi-
cal responses to increases in N supply, though, are
more complex. Several other processes, such as plant
competition, plant-herbivore and plant-fungus rela-
tionships, and plant-soil feedbacks, among others, are
involved in the responses of plants to N deposition in
field conditions (Gilliam, 2006). Increased concentra-
tions of N in plants further raise plant respiration
(Reich et al., 2008), along with increases in plant ac-
tivity and the need for resources. Although increases in
N supply and uptake result in increases in the uptake
of other nutrients such as P, these other nutrients
eventually tend to become progressively limiting
(Fujita et al., 2010). An increase in phosphate activity in
roots is a general plant response to increased P limi-
tation under N deposition (Fujita et al., 2010). The
availability and uptake capacity of P is thus a critical
factor in the capacities of communities and individual
plants to respond to N deposition (Johnson et al., 1999;
Phoenix et al., 2003; Menge and Field, 2007; Blanes
et al., 2012). Another observed plant response to en-
hanced P uptake under N deposition is the change of
the mycorrhizal community from being specialists in
N uptake to being specialists in P uptake (Lilleskov
et al., 2002), although some studies have not observed
clear changes in plant mycorrhizal infections (Wallenda
and Kottke, 1998). In most cases, though, the in-
creases in N availability under N deposition are as-
sociated with increases in concentrations of N in
plants (Fenn et al., 1998; Baron et al., 2000; Peñuelas
and Filella, 2001) and decreases in concentrations of P
(Duquesnay et al., 2000; Kowalenko, 2006). Increases
in the N-P ratio in plant tissues (Sardans et al., 2012c)
and decreases in the C-N ratio (Sardans et al., 2012c)
are consequently widely observed in most areas of
North America and Europe under prolonged in-
creases in N deposition. This increase in the plant N-P
ratio further limits plant growth (Güsewell, 2005;
Granath et al., 2012) and photosynthetic rates (Güsewell,
2005). Another frequent effect accompanying N de-
position is an increase of root growth (Brunner and
Godbold, 2007), but some studies have observed a
reduction in root growth (Gundersen et al., 1998;
Nadelhoffer 2000) and increases in fine-root turnover
(Nadelhoffer 2000) and very frequently a lower root-
shoot ratio (Leith et al., 1999).

All these responses are species specific and lead to
varying capacities of adaptation to N deposition in the

different species. Species with traits that enable better
adaptation to P limitation are thus favored (Leith et al.,
1999; Fujita et al., 2010; Blanes et al., 2012). The
chemical form of the N supply is also important in plant
responses. NH4

+ generally has a larger effect than NO3
2

on plant responses (Sas et al., 2003; Cárdenas-Navarro
et al., 2006; Horchani et al., 2010). Several species,
such as Norway spruce (Picea excelsa), prefer ammonia
to nitrate as a source of N (Kronzucker et al., 1997).
Increases in the NH4

+:NO3
2 ratio under N deposition

have been observed in soils (Stevens et al., 2006;
Sparrius et al., 2012). A recent review provides some
evidence that the efficiency of carbon use by soil mi-
crobes increases with N deposition (Manzoni et al.,
2012), suggesting that soil mineralization increases and
microbes improve their uptake of nutrients, which, in
turn, would increase the competition for nutrients be-
tween microbes and plants.

In sites with N saturation after long-term N depo-
sition, plants can reduce the uptake capacity of roots.
Lipson et al. (1996) observed that the Alpine herb
Bistorta bistortoides decreases the capacity of its roots to
take up N when the N stored in amino acids in rhi-
zomes reaches certain levels. Despite the mechanisms
of plants that increase the uptake of other resources or
reduce the uptake of N under conditions of N depo-
sition, most studies have observed a decrease in the
C-N ratio of leaves and litter under N deposition
(Aerts et al., 2012; Sardans et al., 2012b).

The plasticity of plants in reducing their uptake of N
under high availabilities of N coupled with enhanced
uptake of other resources, such as CO2, P, or K, should
be studied. Metabolomic and transcriptomic tech-
niques applied to field experiments are promising
tools for advancing our understanding of these re-
sponses.

Effects on the Availability and Stoichiometry
of Soil Nutrients

As a consequence of the increases in P uptake, the
concentration of P in soils tends to decrease (Kowalenko,
2006), and increases in P limitation in plants are ob-
served after long-term N deposition (Bragazza et al.,
2004; Güsewell, 2004; Menge and Field, 2007; Lund
et al., 2009; Sardans et al., 2012b) and in experiments
simulating N deposition (Braun et al., 2010: Sardans
et al., 2012b), which can lead to high N-P ratios in soils
(Fenn et al., 1998; Manning et al., 2006; Braun et al.,
2010). This P limitation can scale up through trophic
webs and affect herbivores (Tao and Hunter, 2012).
Despite these general trends of increased P limitation
when N deposition strongly increases ecosystemic ac-
tivity, including soil decomposition, ecosystems have
large immobilized stocks of P in their soils, which can
imply an increase in P availability, as observed in some
European heathland (Jones and Power, 2012). More-
over, increases in the activities of soil phosphatases
under N deposition have been observed in some
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studies (Johnson et al., 1998; Turner et al., 2002;
Papanikolaou et al., 2010), where an increase in the
allocation of P uptake by soil organisms further favors
the uptake of P by plants. Increases in the P cycle in
soil (Marklein and Houlton, 2012) and the uptake of P
by plants, although generally insufficient to prevent
the rise of plant and soil N-P ratios, can contribute to
the retention of P in the ecosystem (Perring et al.,
2008). The effects of N deposition on P limitation in
areas with very N-poor soils can remain undetected, as
in forests of the northeastern United States (Finzi, 2009;
Groffman and Fisk, 2011) and some areas of Europe
(Binkley and Högberg, 1997; Stevens et al., 2011). In
these situations, an increase in C-N ratios in litter and
soil can be observed (Jones et al., 2004; Stevens et al.,
2011).
N deposition, in addition to frequently enhancing

plant growth and N uptake, also increases the con-
centration of N in soil (Bobbink et al., 1998; Nissinen
and Hari, 1998; Falkegren-Grerup and Diekmann,
2003; Robinson et al., 2004; Manning et al., 2006) and
decreases soil C-N ratios, as observed in soil subjected
to long-term N deposition (Vourlitis and Zorba, 2007;
Vourlitis et al., 2007; Fang et al., 2009; Fahey et al.,
2011; Sardans et al., 2012b) or to N fertilization that
simulates N deposition (Britton et al., 2008; Esmeijer-
Liu et al., 2009; Sardans et al., 2012b). A widely
observed feedback effect is the increase in N mineral-
ization in soil observed under N deposition (Carroll
et al., 2003; Vourlitis and Zorba, 2007; Vourlitis et al.,
2007; Holub and Záhora, 2008; Manning et al., 2008;
Duprè et al., 2010), an effect related to the lower C-N
ratio in litter under N deposition (Bergkvist and
Folkeson, 1992; Tietema, 1998) that leads to an increase
in N cycling (Mansson and Falkengren-Grerup, 2003;
Michopoulos et al., 2004), nitrification (Nilsson et al.,
2006), and N availability of soil (Manning et al., 2008;
Duprè et al., 2010; Jones and Power, 2012; Phoenix
et al., 2012). This increase in N availability is related to
the loss of species diversity observed in some areas of
Europe (Duprè et al., 2010) and is probably linked to
the homogenization of N availability in soils with the
loss of soil diversity in terms of fertility.
A general increase in soil respiration (Tietema, 1998;

Allen and Schlesinger, 2004) and SOM decomposition
is observed under N deposition (Waldrop et al., 2004a;
Dalmonech et al., 2010), but a decrease in the miner-
alization of the most recalcitrant organic matter, such
as lignin and phenolics, is also frequently observed
(Magill et al., 1997; Saiya-Cork et al., 2002; Dijkstra
et al., 2004; Sinsabaugh et al., 2005), together with a
more rapid decomposition of litter (Saiya-Cork et al.,
2002). All these effects strongly depend on the type of
vegetation; N deposition increases the storage of C in
soils when the vegetation’s litter has a natural low
nutritional quality and decreases the storage when the
nutritional quality is high (Waldrop et al., 2004b).
Under N deposition, soil generally tends to accumulate
highly recalcitrant forms of soil organic carbon, such as
lignin, that are incompatible with high soil activity

(Zeglin et al., 2007; Grandi et al., 2008). If the inputs of
N are very high, however, soil activities can decay
(Waldrop and Zak, 2006; Dalmomech et al., 2010). An
increased P limitation can lead to a very high N-P ratio
in litter. Güsewell and Freeman (2005) observed that
N-P ratios over 22 can limit the decomposition of litter.

By increasing the N-P ratio of plants and soil, N
deposition can favor species with slow rates of growth
in the long term. Despite a possible initial enhance-
ment of photosynthetic activity, the increasing stoi-
chiometric mismatches, especially high N-P ratios, can
lead to slow rates of growth and shifts in species
composition (Granath et al., 2012; Sardans et al., 2012b,
2012c).

Some processes can contribute to the buffering of N
saturation. Ecosystems saturated with N by N depo-
sition frequently lose N through leaching to streams
(Kristensen et al., 2004; Brookshire et al., 2007) and
through denitrification (Chen et al., 2012). N deposi-
tion also tends to decrease N2 fixation (Compton et al.,
2004; Jin et al., 2012), an effect probably associated
with the increase in P limitation.

This overview of the current literature thus indicates
that long-term N deposition in terrestrial ecosystems,
despite general increases of N and P mineralization,
leads to larger increases of N in soils than of other
elements, to nutrient mismatches, and mainly to in-
creases in N-P ratios in soils and plant tissues that
threaten to decrease species diversity by favoring
species adapted to P limitation and high N-P ratios
(Table I). However, the further possible impacts of N
deposition by changing N-P ratios of plants and soil
remain mostly ignored.

SPECIES INVASION

The Role of Soil Nutrients in Alien Success

Invasions of alien plant species are currently in-
creasing and are a serious threat to global plant di-
versity (Vitousek et al., 1987; Vitousek, 1990; Funk and
Vitousek, 2007). Most studies that have investigated
alien success have identified nutrient availability and
the competitive capacities for nutrient uptake and for
coping with low levels of nutrients as the key factors in
explaining alien success (Fig. 2), factors that can be less
important in dry environments as a result of the more
limiting role of water (Drenovsky et al., 2012).

The physiological traits linked to alien success have
also been widely studied, and some underlie the
changes in nutrient stoichiometries of the plant com-
munity and soil (Levine et al., 2002; Daehler, 2003;
Leger et al., 2007; González et al., 2010; van Kleunen
et al., 2010; Scharfy et al., 2011). Several mechanisms
involved in the uptake and use efficiency of nutrients
are involved in alien success (Daehler, 2003; González
et al., 2010). Low costs of foliar construction and higher
phenotypic plasticity in taking up available nutrients
frequently contribute to alien success (Daehler, 2003;
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Sala et al., 2007). The success of the relationship be-
tween alien plants and the uptake and use of nutrients
varies with the availability of nutrients in the soil.
Further increases in nutrient availability generally fa-
vor alien success when the soils are rich in nutrients
(Fig. 2). Alien invasion in nutrient-rich environments
also frequently favors plant species with high rates of
photosynthesis and growth (Baruch and Goldstein,
1999; Leishman et al., 2007; Feng et al., 2008; Schumacher
et al., 2009; González et al., 2010; Mozdzer and Zieman,
2010; Feng et al., 2011), high reproductive outputs
(González et al., 2010), large size (van Kleunen et al.,
2010), low C-nutrient ratios in tissues (Monaco et al.,
2003; Agrawal et al., 2005; Reed et al., 2005; Packett
and Chambers, 2006; Schumacher et al., 2009; González
et al., 2010; Peñuelas et al., 2010), low costs of foliar
construction (Nagel and Griffin, 2001; Feng et al., 2007;
González et al., 2010), large investments of N in pho-
tosynthetic production (Ehrenfeld, 2003; Xu et al.,
2007; Shen et al., 2011), higher capacities of nutrient
uptake (Zabinsky et al., 2002; Harrington et al., 2004;
Blank and Sforza, 2007; Feng, 2008; Blank, 2010;
Hewins and Hyatt, 2010; Leffler et al., 2011; Peng et al.,
2011), and high levels of plasticity in the acquisition of
resources as a function of pulses in nutrient availability
(Leffler et al., 2011). These factors indicate that nutrient
uptake and all foliar traits enabling rapid rates of
growth (Zabinsky et al., 2002; Leishman et al., 2007)
will help invading species to succeed when resources
are not limited (Bray et al., 2003; Shah et al., 2009).
Alien plants can increase their symbiotic relationships
with fungi by directly increasing their capacity for
nutrient uptake (Zabinsky et al., 2002; James et al.,
2010) or by inhibiting the germination and growth of
native plants (Rudgers and Orr, 2009), but some
studies are inconclusive (Shah et al., 2009, 2010). The
role of nutrient use efficiency is not clear (Scharfy et al.,
2009; Aguilera et al., 2010). The resistance of native
plants to alien invasion is linked to their capacity
to maintain the lowest possible levels of nutrient

availability (Davis et al., 2000; James et al., 2008).
Segregating the requirements of nutrient ratios from
the invaders can allow native species to persist in
invaded communities (James et al., 2008; Peñuelas
et al., 2010), a persistence that increases plant diversity
(Tilman et al., 1997) and thus helps to reduce compe-
tition between native and alien plants. Most studies
suggest that increasing the availability of nutrients
increases the invasive success of plants (Fig. 2). Cur-
rent information is insufficient for reaching a clear
understanding of whether low N-P ratios in soils favor
alien success in nutrient-rich ecosystems, as expected
from the growth rate hypothesis, affecting species with
higher rates of growth, as is frequently the case for
aliens relative to their native competitors (Sterner and
Elser, 2002; Sardans et al., 2012c). Despite some studies
suggesting the confirmation of this hypothesis, Neves
et al. (2010) found lower N-P ratios in alien than in
native competitor plants. Therefore, more studies are
needed on these two elements in native and alien
plants to determine whether some general relation-
ships exist between alien plant success and N-P ratios,
at least in nutrient-rich ecosystems.

A higher capacity of N uptake can have further
positive consequences for invasive success through
the facilitation of the synthesis of N-rich allelopathic
compounds that can inhibit the growth of natives
(Hewins and Hyatt, 2010). In fact, allelopathic sub-
stances in the litter of alien plants can inhibit growth
(Hata et al., 2010; Cipollini et al., 2012; Rashid and
Reshi, 2012), mycorrhization and the capacities of nu-
trient uptake (Zhang et al., 2007), and N2 fixation in
native plants (Wardle et al., 1994) and change soil
nutrient decomposition rates (Chen et al., 2007a), fre-
quently stimulating soil nutrient cycling (Chen et al.,
2007b). Allelopathic compounds in the litter of native
plants, however, can also inhibit the growth of alien
plants (Hou et al., 2012). The “weapon hypothesis”
claims that the roots of alien plants exude allelopathic
substances that inhibit the growth of native plants,
alter soil microbial communities, and confer a com-
petitive advantage to alien plants in the uptake of soil
nutrients (Lorenzo et al., 2010; Weidenhamer and
Callaway, 2010).

N2-fixing plants can have an advantage in N-poor
soils dominated by nonfixing plants (Londsdale et al.,
1989; Yelenik et al., 2004; Hughes and Denslow, 2005;
Morris et al., 2011). Communities dominated by le-
gumes growing in soils with limited availabilities of
soil P or water, however, are vulnerable to competition
by nonfixing plants with high capacities of P uptake or
stomatal control (Suriyagoda et al., 2011), and low
availabilities of P reduce the chances of successful in-
vasion by N2-fixing plants (Haubensak and D’Antonio,
2011). The success of alien nonfixing plants in native
communities dominated by N2-fixing plants is reduced
when P is added (Brewer and Cralle, 2003). Con-
versely, in soils poor in N and P, plants able to acquire
extra N by a stable symbiosis with N2-fixing bacteria
can increase their allocation to P uptake and increase

Figure 2. Studies reporting information on the dependence of plant-
invasion success on soil nutrient availability. Detailed results and
bibliographic references are provided in Supplemental Table S2.
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their invasive success (Rout and Chrzanowski, 2009).
The more limiting N is, the higher the possibility of
alien invasion by N2-fixing plants, especially if P is not
so limiting.
Conversely, most studies suggest that the success

of invasive plants in nutrient-poor soils depends on
more conservative strategies, such as a higher nutri-
ent use efficiency (Funk and Vitousek, 2007; González
et al., 2010; Matzek, 2011), especially on short time
scales (Funk and Vitousek, 2007), long nutrient resi-
dence times (Laungani and Knops, 2009) with high
C-nutrient ratios in tissues (González et al., 2010),
high nutrient competitive ability enabling resistance
to low levels of nutrients (Muth and Pigliucci, 2007;
Schumacher et al., 2009; Kueffer, 2010), and high
plasticity of stoichiometric ratios (González et al.,
2010). In ecosystems poor in resource availability (e.g.
with deficits of water and nutrients), stress-tolerant
plants with efficient metabolisms, such as C4 plants,
can increase their chances of invasive success (Szente
et al., 1996). Interestingly, a high capacity to allocate
N to photosynthesis aids invasive success in both
nutrient-rich and nutrient-poor sites (Feng, 2008; Feng
et al., 2008, 2009; Matzek, 2011).

Impacts of Plant Invasion on the Availability and
Stoichiometry of Nutrients in Soil

Alien plants frequently alter soil conditions. Several
studies report significant impacts on the availability of
soil nutrients, the decomposition of organic matter,
nutrient cycling, and soil stoichiometry (Fig. 3). Plant
invasive success in northern Europe was related to
increases in nutrient content in nutrient-poor soils and

to decreases in nutrient content in nutrient-rich soils
(Dassonville et al., 2008). In a recent review, Pysek
et al. (2012) reported that of 436 case studies on the
effects of invasive plants on soil nutrient content, 192
found increases, 72 found decreases, and 158 found
inconclusive changes. We have reviewed the effect on
N and P availability, C-N-P ratios of soils, rates of soil
decomposition, and mineralization and nutrient cy-
cling (Fig. 3). Of 65 studies conducted in environments
with unclear limitations of nutrients (except some
conducted mainly in arid and semiarid areas of the
United States), 48 reported increases in the availability
of soil nutrients, 14 reported decreases, and three were
inconclusive. Most of the 14 studies reporting de-
creases in soil nutrients were studies with Bromus tec-
torum, an invader plant of semiarid areas of the United
States (six studies) and with N2-fixing invasive plants
(three studies), showing that most invasions in nutrient-
rich ecosystems tend to increase the availability of soil
nutrients. This effect is related to increases in nutrient
cycling. The effects on SOM decomposition and min-
eralization are not as clear, despite a trend of increases
in most reports.

Results for C-nutrient and N-P ratios in soil are in-
conclusive and variable (Fig. 3). Increases in soil nu-
trient contents are accompanied by higher productions
of biomass that lead to more C in the system. In the
long term, more C in the soil counteracts higher stocks
of soil nutrients. An insufficient number of studies are
available for reaching a more solid conclusion of the
impact of plant invasion on ecosystemic (plant and
soil) N-P ratios. A higher rate of growth in alien spe-
cies in nutrient-rich soils should be a favorable trait for
invasive success, so low N-P ratios in alien species
should favor their success. This important question

Figure 3. Studies reporting informa-
tion on plant-invasion effects on soil
nutrient availability, soil decomposi-
tion rates, soil nutrient cycling, soil
organic matter stocks, and soil stoi-
chiometry. Detailed results and bib-
liographic references are provided in
Supplemental Table S3.
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cannot yet be resolved due to the lack of data. N de-
position, however, can favor invasion, as has been
observed frequently (Tomassen et al., 2003; Bidwell
et al., 2006; Dong et al., 2006; Gilliam, 2006; Huebner
et al., 2009; He et al., 2011; Miki, 2012). These results
thus suggest that possible increases in soil N-P ratios
do not decrease alien success, but further studies are
warranted to discern the role of plant invasion in
ecosystemic stoichiometry. Current data suggest a
decrease in C-nutrient ratios of plant communities
when the number of alien plants and the availability of
soil nutrients increase, but inconclusive results prevent
the claim of a clear impact on soil stoichiometry. The
role of N-P ratios on the invasive success of plants is
thus particularly uncertain in both the invasive phase
and the shifts during the invasion.

In summary, plant invasion affects soil conditions,
which in turn affect plant growth and competitive re-
lationships by plant-soil feedbacks. Invasion can fur-
ther interact with other drivers of global change such
as N deposition, as discussed above. Moreover, some
studies have reported that the effects of plant invasion
on soil facilitate further invasion by the initial invasive
species or by other species (Allison and Vitousek, 2004;
Sharma and Raghubanshi, 2009), although not all
studies provide clear results on this topic (Yelenik and
Levine, 2011). Thus, alien success in nutrient-rich soils
is related to higher growth rates, low C-N and C-P
ratios, fast plasticity in resource acquisition capacity
and high reproductive investment; in nutrient-poor
soils, high invasive success is related to conservative
use of resources including nutrients. Apart from the
nutrient residence time, the capacity of nutrient uptake
and other previously mentioned traits, which can be
more or less successful depending on the resource
richness of each environment, and the capacity to ex-
ploit the resources for production and growth would
be useful for alien expansion in all situations. More-
over, the role of N-P ratios (of plant and soil) in in-
vasive success is not well known. These possibilities
merit further research.

CONCLUSION AND FINAL REMARKS

Elevated concentrations of atmospheric CO2 tend to
increase foliar C-N and C-P ratios, because the initial
increase in production can be quickly curtailed by
limitations in the availability of N and P, despite the
investment of more resources for N and P uptake by
plants under high concentrations of atmospheric CO2.

Warming tends to increase C-N and C-P stoichi-
ometry. This effect is related to an increase in growth
that progressively gives a more limiting role to nutri-
ents in wet environments and to the enhancement of
conservative strategies related to increases in soil-
moisture limitation under warming in dry sites.
Drought has a negative effect on SOM mineralization
and plant growth in currently dry areas, where nutri-
ent cycling slows, contributing to increased accumulations

of N and P in the soil, but mainly in recalcitrant forms.
All these direct effects decrease soil fertility, increase
the risk of nutrient losses caused by torrential rainfall,
and have a negative feedback on the capacity of nu-
trient uptake, plant growth, and WUE. Plants thus
frequently present higher C-nutrient ratios under
drought in currently semiarid and arid regions. Clear
evidence that drought can change N-P ratios in ter-
restrial ecosystems has not yet been reported.

N deposition can decrease C-N and increase N-P
ratios of soils and plant tissues, despite the reaction of
ecosystems to increasing rates of P cycling that allow
higher P uptakes. The larger increases of soil N than
of other elements leads to nutrient mismatches and
mainly to increases in N-P ratios that threaten to re-
duce species diversity by favoring species adapted to P
limitation and high N-P ratios. N deposition can have
an interactive effect under higher concentrations of
atmospheric CO2 and under warming in wetter re-
gions by allowing an increase in growth without C-N
stoichiometric changes. However, this can further in-
crease C-P and N-P ratios and the limiting role of P.

Most studies that have investigated the main factors
underlying plant invasion have observed that nutrient
availability is frequently a key factor in explaining the
success of alien plants by the competitive capacity for
nutrient uptake in nutrient-rich environments and
for coping with low levels of nutrient availability in
nutrient-poor sites.

Many unknowns remain in several of these issues,
such as the effects of elevated levels of atmospheric
CO2 on the N-P ratios in plants, soils, and ecosystems.
Although some current reports suggest that warming
can lead to increases in N-P ratios in plants, soils, and
ecosystems by asymmetrical effects on N and P cycles,
more studies are necessary to gain knowledge on this
topic. A sufficient number of studies is also lacking to
reach a more solid conclusion of the impact of plant
invasion on the N-P ratios of ecosystems (plant and
soil). The higher rate of growth in alien species in
nutrient-rich soils appears to be a favorable trait for
invasive success. Low N-P ratios in alien species
should thus favor their success being related to rapid
growth. This question is very important and warrants
extensive and intensive research. Moreover, some
global change drivers, such as warming, increased at-
mospheric CO2 concentrations, and N deposition, can
actuate together at continental scales. Thus, more stud-
ies on the effects of these drivers one by one and in
combination are warranted to reach a better knowledge
of the particular effects of each one and the interaction
effects among them.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. Studies reporting information on the relationships
between drought and warming with soil-nutrient status (mineralization,
content, and availability).
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Supplemental Table S2. Studies reporting information on the relationships
between plant invasion success and nutrient availability.

Supplemental Table S3. Studies reporting information on plant invasion
effects on soil nutrient availability, soil decomposition and mineraliza-
tion rates, soil nutrient cycling, soil C stocks, and soil stoichiometry.
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