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Modulation of the malate content of tomato (Solanum lycopersicum) fruit by altering the expression of mitochondrially localized
enzymes of the tricarboxylic acid cycle resulted in enhanced transitory starch accumulation and subsequent effects on
postharvest fruit physiology. In this study, we assessed whether such a manipulation would similarly affect starch
biosynthesis in an organ that displays a linear, as opposed to a transient, kinetic of starch accumulation. For this purpose,
we used RNA interference to down-regulate the expression of fumarase in potato (Solanum tuberosum) under the control of the
tuber-specific B33 promoter. Despite displaying similar reductions in both fumarase activity and malate content as observed in
tomato fruit expressing the same construct, the resultant transformants were neither characterized by an increased flux to, or
accumulation of, starch, nor by alteration in yield parameters. Since the effect in tomato was mechanistically linked to
derepression of the reaction catalyzed by ADP-glucose pyrophosphorylase, we evaluated whether the lack of effect on starch
biosynthesis was due to differences in enzymatic properties of the enzyme from potato and tomato or rather due to differential
subcellular compartmentation of reductant in the different organs. The results are discussed in the context both of current

models of metabolic compartmentation and engineering.

Starch is the most important carbohydrate used for
food and feed purposes and represents the major re-
source for our diet (Smith, 2008). The total yield of starch
in rice (Oryza sativa), corn (Zea mays), wheat (Triticum
aestivum), and potato (Solanum tuberosum) exceeds 10°
tons per year (Kossmann and Lloyd, 2000; Slattery et al.,
2000). In addition to its use in a nonprocessed form,
extracted starch is processed in many different ways, for
instance as a high-Fru syrup, as a food additive, or for
various technical purposes. As a result of this consider-
able importance, increasing the starch content of plant
tissues has been a major goal for many years, with both
classical breeding and biotechnological approaches being
taken extensively over the last few decades (Martin and
Smith, 1995; Regierer et al., 2002).
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The pathway by which carbon is converted from Suc
to starch in the potato tuber is well established
(Kruger, 1997; Fernie et al., 2002; Geigenberger et al.,
2004; Geigenberger, 2011). Imported Suc is cleaved in
the cytosol by Suc synthase, resulting in the formation
of UDP-Glc and Fru; the UDP-Glc is subsequently
converted to Glc-1-P by UDP-Glc pyrophosphorylase.
The second product of the Suc synthase reaction, Fru,
is efficiently phosphorylated to Fru-6-P by fructokinase
(Renz et al., 1993; Davies et al., 2005). Fru-6-P is freely
converted to Glc-6-P, in which form it normally enters
the amyloplast (Kammerer et al., 1998; Tauberger et al.,
2000; Zhang et al., 2008), and once in the plastid, it is
converted to starch via the concerted action of plastidial
phosphoglucomutase, ADP-Glc pyrophosphorylase
(AGPase), and the various isoforms of starch synthase
(Martin and Smith, 1995; Geigenberger, 2011). Of these
reactions, although some of the control of starch syn-
thesis resides in the plastidial phosphoglucomutase
reaction (Fernie et al.,, 2001b), the AGPase reaction
harbors the highest proportion of control within the
linear pathway (Sweetlove et al., 1999; Geigenberger
et al.,, 1999, 2004). In addition, considerable control
resides in both the Glc-6-P phosphate antiporter
(Zhang et al., 2008) and the amyloplastidial adenylate
transporter (Tjaden et al., 1998; Zhang et al., 2008) as
well as in reactions external to the pathways, such as
the amyloplastidial adenylate kinase (Regierer et al.,
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2002), cytosolic UMP synthase (Geigenberger et al.,
2005), and mitochondrial NAD-malic enzyme (Jenner
et al., 2001).

As part of our ongoing study of the constituent en-
zymes of the tricarboxylic acid (TCA) cycle, we made
an initially surprising observation that increasing or
decreasing the content of malate via a fruit-specific
expression of antisense constructs targeted against
the mitochondrial malate dehydrogenase or fumarase,
respectively, resulted in opposing changes in the levels
of starch (Centeno et al.,, 2011). We were able to de-
monstrate that these plants were characterized by an
altered cellular redox balance and that this led to
changes in the activation state of the AGPase reaction.
Given that starch only accumulates transiently in to-
mato (Solanum lycopersicum; Beckles et al., 2001) as a
consequence of this activation, the fruits were charac-
terized by altered sugar content at ripening, a fact that
dramatically altered their postharvest characteristics
(Centeno et al., 2011). Here, we chose to express the
antisense fumarase construct in potato in order to as-
certain the effect of the manipulation in an organ that
linearly accumulates starch across its development.
The results obtained are compared and contrasted
with those of the tomato fruit and within the context of
current models of subcellular redox regulation.

RESULTS
Generation of Transgenic Plants and Screening

A 1,860-bp fragment of the fumarate hydratase
(fumarase) gene from potato (Nast and Miiller-Rober,
1996) was cloned using an RNA interference (RNAi)
approach into the pBinAR transformation vector under
the control of the tuber-specific patatin class I promoter
(Twell and Ooms, 1987) and the ocs terminator (Fig. 1A).
Plants obtained by Agrobacterium tumefaciens transfor-
mation were grown on Murashige and Skoog medium
containing kanamycin, and approximately 50 lines re-
sistant to this antibiotic were transferred to the green-
house and cultivated under normal growth conditions.
Tubers were harvested from 10-week-old, nonsenescent
plants, and promising lines were selected by using an
enzymatic assay for fumarase activity, with three lines,
FL60, FL34, and FL31, being confirmed to displays re-
ductions of activity of 65%, 63%, and 24%, respectively
(Gibon et al.,, 2004; Fig. 1, B and C).

Metabolic Profiling Reveals Mild Alterations in the
Primary Metabolism of Transgenic Lines

A previously established gas chromatography-mass
spectrometry (GC-MS) protocol (Roessner et al., 2001;
Lisec et al., 2006) was used in order to gain an overview
of primary metabolism in tubers exhibiting reduced fu-
marase activity. A total of 36 polar metabolites were
identified by GC-MS, providing good coverage of the
metabolic pathways of starch synthesis and degradation,
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glycolysis, the TCA cycle, and amino acid metabolism.
These studies revealed mild changes in the level of sug-
ars, organic acids, and amino acids (Fig. 2). An additional
more sensitive enzymatic assay for malate and fumarate
revealed significant decreases in malate (significant for
lines FL60 and FL31) and fumarate (all lines; Table I).
No major changes, however, were observed for other
TCA cycle intermediates, namely citrate and succinate,
although in the case of FL60, which presented the
strongest decrease in fumarase activity, a reduced level
of y-aminobutyrate was observed. These studies also
revealed changes in the levels of amino acids. Notably,
Tyr (significant for FL34 and FL60), Phe (FL60), Ile and
Val (FL31, FL60) were significantly decreased, while
Lys (FL34), Orn (FL31, FL60), and Asp (FL31, FL34)
were significantly increased (Fig. 2). Furthermore, met-
abolic profiling revealed decreased levels of myoinositol
(FL34, FL60), Suc (FL60), and Glc (FL31).

An additional enzymatic assay was performed in
order to precisely measure levels of sugars and starch.
Levels of spectrophotometrically measured Glc were
significantly reduced (P < 0.05) for line FL31 (wild
type, 2.8 * 0.65 umol Glc g~' fresh weight; FL31,
1.85 + 0.13; FL34 2.67 = 0.47; FL60, 2.2 = 0.43), with
mild reduction for other lines staying in agreement with
previous GC-MS measurements. Despite the change in
Glc and importantly in malate, no alteration in starch
level was observed (Table II). In addition, and in further
contrast to the results obtained in tomato (Centeno
et al., 2011), there was no significant differences in tuber
number, weight, or yield in the transformants (Table II).

Rates of Respiration Remain Unchanged in the
Transgenic Lines

To estimate rates of respiration in the transformants,
the evolution of CO, was recorded following incu-
bation of potato tuber discs in positionally labeled
["*C]Glc. Freshly cut potato tuber discs were supplied
with [1-"*C]Glc, [3,4-"“CIGlc, and [6-"“C]Glc over a
period of 6 h. During that time, evolved '*CO, was
collected at hourly intervals, allowing the estimation of
fluxes through the oxidative pentose phosphate path-
way (OPPP), glycolysis, TCA cycle, and amino acid
biosynthesis. While CO, released from position C1 of
Glc is attributed to decarboxylation processes in the
OPPP and the TCA cycle, CO, that is released from
positions C3:4 (by the action of pyruvate dehydrogenase
or malic enzyme) and C6 (during the third turn of the
TCA cycle) is derived from the mitochondria. The ratio
of *CO, released from the C1 position of Glc to that re-
leased from the C6 position gives an estimate of the re-
lative activities of glycolysis and the OPPP (ap Rees and
Beevers, 1960). Thus, the C1-C6 ratio of released CO,
reflects a flux through the OPPP, while the ratio of CO,
evolution from the C1 position of Glc to that from the
C3:4 position of Glc provides an indication of the relative
rate of the TCA cycle with respect to other processes of
carbohydrate oxidation (Nunes-Nesi et al., 2005).
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Surprisingly, there was no significant alteration in
1CO, evolution in the transgenic lines in comparison
with the wild type (Fig. 3). While it was possible to
observe a tendency of lower evolution of *CO, for the
transgenic lines from position C1 and higher release of
1O, from the C6 Glc position in the most strongly in-
hibited line, FL60, these changes were not statistically
significant.

Evaluation of Other Major Fluxes in the Transgenic Lines

In order to expand the above study to encompass other
major pathways of carbon metabolism, labeling of discs
cut from fresh tubers using [U-"*C]Glc was performed.
Isolated discs were incubated in 2 mL of incubation
medium containing [U-C]Glc. Samples were incu-
bated for 4 h, extracted, and fractionated into organic
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acids, amino acids, starch, protein, cell wall, phos-
phoesters, and Suc in order to analyze flux alterations
between wild-type and transgenic plants. This time
period was chosen based on two considerations. First,
it is not so long as to be compromised by wound-induced
changes in respiration (Roessner-Tunali et al., 2004); sec-
ond, it allows labeling of more distant metabolite pools,
such as those of the cell wall (which our previous studies
in tomato root suggest may be affected following inhi-
bition of TCA cycle activity; van der Merwe et al., 2009,
2010). There were no significant alterations in the level
of incorporation of label or in the respired CO, (Table
III). The redistribution of label was unaltered in the
transgenic lines. In order to estimate absolute fluxes in
the transgenic lines, we calculated the specific activi-
ties of the hexose phosphate pool and used these
to calculate the fluxes to starch, Suc, cell wall, and

2229



Szecowka et al.

) | % Amino acids
Arginine ek
Tryptophan
R-Alanine =i Thx
Glutamate ,;*
Pyroglutamate ®
Omnithine/Arginine * ek
Lysine %ﬂ*
Gitamine %
)
R — )
Prenynine
|
R —— '
Methionine
A
p
Threonine
Serine
Proline
Glycine
Isoleucine
- T
Valine 3 FL60
N FL34
Alanine CFL31

2.0

Organic acids
Shikimate *

*
Quinate

o ——

Fumarate * *

*
Malate

Citrate
Succinate
Phosphoric acid

Glycerol

Glycerol-3-phosphate * . T
[ FLe0
is-Aconitat | I FL34
o E—— —
; r . T
0.0 0.5 1.0 1.5 2.0
* Sugars
,
Glucose :
—1
e E
—— e
Al *
e ‘E—(
I T T T T
00 0.5 1.0 15 20 25

Figure 2. Relative metabolite content in potato tubers from 10-week-old transgenic and wild-type (WT) plants. Data are
normalized to the mean response calculated for the wild type of each measured batch. Values are presented as means = sp of
six individual plants per line. Bars are as follows: wild type, black bar; FL60, gray bar; FL34, dark gray bar; FL31, light gray bar.
Asterisks indicate values that were determined by Student ¢ test to be significantly different (P < 0.05) from the wild type.

respiration using the assumptions documented by
Geigenberger et al. (2000). The specific activities of the
hexose phosphates were essentially unaltered, as were
fluxes to starch, Suc, cell wall, and, importantly, res-
piration. This final result is in close accordance with
the minor impact that diminished fumarase activity
had on the respiratory flux and the steady-state me-
tabolite levels determined in the GC-MS analysis.

Malate Seems to Play No Role in the Redox Regulation of
AGPase in Potato Tuber

Following an extensive metabolic study of tomato
fruit development (Carrari and Fernie, 2006), malate
was identified as a potential important regulatory me-
tabolite. It was recently demonstrated that alterations in
the level of malate resulted in dramatic effects on tran-
sitory starch metabolism in tomato fruits: lines displaying
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low malate content displayed an increased flux to, and
accumulation of, starch, whereas those displaying high
levels of malate displayed an opposite effect (Centeno
et al., 2011). Although malate levels decreased signifi-
cantly in FL.31 and FL60 lines (Table I), no alterations in
starch content (Table II) could be observed. Therefore,
we next decided to assess the maximal catalytic ac-
tivities of AGPase enzyme in all transgenic lines (Fig.
4A). No significant changes could be observed, which
is most likely the reason for the lack of alteration in
starch content (Table II). Since malate control over
AGPase redox state was only demonstrated in tomato
fruits (Centeno et al., 2011), we next decided to in-
vestigate the influence of malate on the potato AGPase
activity. Isolated potato discs from 10-week-old wild-
type plants were incubated in the presence of 50 mm
malate for 2 h. After this time, discs were washed and
total AGPase activity was determined as described in
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Table 1. Relative malate and fumarate content in potato tubers from 10-week-old transgenic and wild-type

plants

Data are normalized to the mean response calculated for the wild type. Values are presented as
means * sp of six individual plants per line. Boldface values were determined by Student’s t test to be

significantly different from the wild type (P < 0.05).

Variable Wild Type FL60 FL34 FL31
Malate 1.00 = 0.13 0.66 = 0.09 0.78 £ 0.11 0.67 = 0.08
Fumarate 1.00 = 0.09 0.71 £ 0.05 0.81 = 0.05 0.75 £+ 0.06

“Materials and Methods.” These analyses revealed
that, in contrast to the situation in tomato fruits
(Centeno et al., 2011), in potato tubers malate does not
alter either the total AGPase activity (Fig. 4B) or its
activation state (data not shown). We also measured
the activation state of potato AGPase in crude extracts
isolated in the presence or absence of either the allo-
steric regulator 3-P-glycerate (3-PGA) or dithiothreitol
(DTT). This experiment indicated that the AGPase ac-
tivation by both 3-PGA and DTT is unaffected in the
transgenic lines (Fig. 4C), again in contrast to the sit-
uation observed in tomato. Additionally, tuber tissue
slices were incubated in the presence of 25 and 50 mm
malate together with [U-"C]Glc to estimate the changes
in flux toward the starch synthesis (Table IV). These
feeding experiments revealed no changes in the starch
biosynthetic flux, suggesting that, unlike in the tomato
fruit, malate does not affect the flux to starch in potato
tubers.

There are two possible explanations for this finding.
Either the potato AGPase may be differentially regu-
lated than the tomato, or malate may be differentially
compartmented in the two tissue types. In order to
discriminate between these two possibilities, we per-
formed a number of studies. First, simple comparison
of the gene and protein structures was carried out. In
keeping with the close genetic relationship between
these two solanaceous species, we found that the gene
and protein of the small AGPase subunit were 97%
and 98% identical, and the proteins exhibited only 12
different amino acid residues. Perhaps most impor-
tantly, the seven Cys residues putatively involved in
redox regulation were conserved in the proteins of both
origins. Second, we carried out nonaqueous fractiona-
tion on tuber material from the wild type and line FL60
(which was chosen on the basis of displaying the greatest
reduction in fumarase activity) and determined the
subcellular distribution of malate by using the BestFit
algorithm (Riens et al., 1991; Klie et al., 2011; Krueger

et al., 2011). These analyses revealed that the marker
enzyme distribution was similar to that documented
previously (Farré et al., 2001; Junker et al., 2006). De-
spite the fact that the organelle separation was not
complete in this analysis, it was sufficient for calculating
malate distribution in three main compartments where
malate synthesis takes place (cytosol, plastid, and vac-
uole) using the BestFit algorithm. By comparing the
marker enzyme distribution (UDP-Glc pyrophosphor-
ylase and inorganic pyrophosphate-dependent phospho-
fructokinase for the cytosol; ADP-Glc pyrophosphorylase
and shikimate:NADP oxidoreductase for the plastid;
a-mannosidase for vacuole) with malate distribution,
it was verified that in both wild-type and transgenic
lines, malate was localized mainly in the vacuole. In-
terestingly, the percentages of the total malate pool
assigned to the cytosol, plastid, and vacuole were sim-
ilar between the wild-type and transgenic lines. While
in the wild type, 42% of the malate was located in the
vacuole, 39% in the cytosol, and 19% in the plastid, in
the transgenic line, 56% was located in the vacuole,
31% in the cytosol, and 13% in the plastid (Fig. 5). It is
important to note that, despite the fact that the sub-
cellular distribution of malate was slightly modified in
the transgenic line, the absolute levels of malate de-
termined for each subcellular compartment were, like
the absolute malate content, significantly reduced in
both the cytosol and plastid. Intriguingly, however,
the storage pool of malate in the vacuole was increased
in the transgenics.

DISCUSSION

Improving starch content in potato tubers has been
the focus of intensive metabolic engineering strategies
over the last two decades (Fernie and Willmitzer, 2001;
Jenner, 2003; Smith, 2008). A comprehensive review of
these strategies alongside application of the framework of
metabolic control analyses revealed that a considerable

Table Il. Yield and starch content of potato tubers harvested from 10-week-old transgenic and wild-type

plants
Values are presented as means = sp of determinations from six individual plants per line.
Variable Wild Type FL31 FL34 FL60
Tuber number 82=*+24 8415 6+ 1 12 =42
Yield (g) 230 = 23 222 * 54 207 = 33 223 £ 56
Tuber weight (g) 29.4 £ 6.1 2752 +9.46 3491 =596 20.87 £ 9.46

Starch (umol Glc g7T fresh weight) 410.5 * 53.1 416.7 = 28.1 423.8 = 38.2 422.8 £ 254
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portion of the control of starch biosynthesis in this
organ resided in the reaction catalyzed by AGPase
(Geigenberger et al., 2004). In addition, considerable
control has been demonstrated to be harbored by the
plastidial adenylate and Glc-6-P transporter (Tjaden
et al., 1998; Zhang et al., 2008), with a minor yet con-
siderable proportion also vested in the plastidial phos-
phoglucomutase reaction (Fernie et al., 2002). Studies
beyond the direct pathway of starch biosynthesis also
indicate important roles for the mitochondrial NAD-

malic enzyme (Jenner et al,, 2001) and the plastidial
adenylate kinase (Regierer et al., 2002). However, al-
though the exact mechanism underlying this link in the
former case has yet to be resolved, the latter has been
characterized to affect both the substrate levels and acti-
vation status of the AGPase reaction (Oliver et al., 2008).
In the light of these observations, it is interesting that
reciprocal up- and down-regulation of starch biosynthesis
was observed in tomato fruits exhibiting depressed
expression of mitochondrially localized fumarase and

Table Ill. Effect of decreased fumarase activity on the metabolism of [U-"*C]Glc by potato tubers

Tuber discs were preincubated in 10 mm MES-KOH (pH 6.5) containing 2 mm Glc in the presence of 10 mm [U-"*C]Glc (specific activity of 8.11
MBq mmol~"). Each sample was extracted with boiling ethanol, and the amount of radioactivity in each metabolic fraction was determined as
described in “Materials and Methods.” Values are means = s of six biological replicates. Boldface values were determined by Student’s ¢ test to be

significantly different from the wild type (P < 0.05).

Variable

Wild Type

FL31 FL34 FL60

Label incorporated (Bq)
Total uptake
Total metabolized
Redistribution of radiolabel (% of total assimilated)

318.22+23.14
257.88%25.86

335.02+26.98
292.25+21.84

391.07+36.51
326.05+27.29

332.45+20.71
281.20£20.82

CO, evolution 8.20£0.65 8.42+0.63 8.29*0.66 8.92+0.67
Organic acids 20.69*4.16 22.39%+4.39 29.74%1.90 25.38*3.41
Amino acids 9.41%£0.76 12.55*+2.02 9.63%0.35 11.35+0.84
Suc 28.62*3.78 35.76%3.04 21.73%1.96 27.51*x2.46
Starch 19.79%+4.36 9.05%2.77 15.95*3.61 11.96%3.52
Protein 3.01+0.23 3.59%+0.18 3.09%0.18 3.53+0.30
Cell wall 7.90+0.92 6.57%0.70 6.32%0.70 7.29%1.05
Fru 2.38%1.01 1.68%1.46 5.25%+1.52 4.06*+1.66
Specific activity of hexose phosphates (Bq nmol ") 0.40+0.04 0.44%+0.12 0.61+0.05 0.45+0.07

Metabolic flux (nmol hexose equivalents g71 fresh wt h™")
Starch synthesis
Suc synthesis
Respiration
Cell wall synthesis

217.94%68.30

245.42+39.73

472.11£28.27
77.18%x8.55

137.39£48.53

545.17+136.00

627.73+106.49
94.13%23.42

146.87*£43.79

176.98+£12.93

425.62+40.07
53.71%£9.20

140.98+48.37

359.60+134.36

556.38+118.06
98.01x42.02
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Figure 4. AGPase total activity and activation in potato tubers from
10-week-old transgenic and wild-type (WT) plants. A, AGPase activity
measured in tubers of 10-week-old plants from wild-type and trans-
genic lines. B, Influence of malate on the AGPase activity determined
in potato tuber discs from 10-week-old wild-type plants incubated in
the presence of 50 mm malate for 2 h. C, AGPase activity in the
presence and absence of either the allosteric regulator 3-PGA or DTT
as determined in protein extracts from potato tuber harvested from
10-week-old plants. Values are presented as means = sp of five tubers
per line. The statistical differences between values were determined by
Student’s t test (P < 0.05). FW, Fresh weight.

malate dehydrogenase, respectively (Centeno et al.,
2011). Rather unexpectedly, in this context, was the
fact that down-regulation of fumarase in a tuber-
specific manner had no effect on the level of starch in
this organ (Table II). This fact was perhaps even more
surprising given that the level of malate in the trans-
formants (Table I) was similarly altered to that ach-
ieved in the tomato transformants (Centeno et al.,
2011). This is striking, as in the tomato study they did
not correlate strongly to the activity of fumarase; how-
ever, this is likely due to adjustments in other routes
of malate production (Fernie and Martinoia, 2009).
Thus, two possible explanations for the lack of effects
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on modulating fumarase activity in potato are (1) that
the enzyme is present in massive excess and thus the
level of reduction obtained here was not great enough
to provoke metabolic consequences, or (2) that subtle
compensatory mechanisms are invoked in potato but
not in tomato. In support of either of these hypotheses is
the fact that other metabolites displayed relatively small
changes, implying that the global effect of the reduction
of fumarase was relatively minor. However, we think
that neither of these explanations is the predominant
reason, given that clear changes in malate and fumarate
content were observed, and it is important to note that
the levels of malate normally observed in tomato fruits
(Centeno et al., 2011) are considerably higher than those
found in potato tubers (Fig. 5; Farré et al., 2001); thus,
despite the fact that small changes in the plastidial
malate were observed, these changes may not provoke
a large enough change in redox state to affect the acti-
vation state of AGPase. Interestingly, although the rate
of starch biosynthesis is controlled at least partially at
the level of ADP-Glc production by redox regulation of
the AGPase enzyme, it has been recently demonstrated
that other starch-associated enzymes are also under re-
dox control (Glaring et al., 2012); therefore, much work is
still required to clarify the role and significance of redox
regulation for both individual enzymes and the path-
ways in which they operate in vivo.

We had initially thought that the previous observation,
that decreased NAD-malic enzyme levels resulted in el-
evated starch yields in potato, may also have been linked
to malate-related redox regulation. However, close in-
spection of the data reveals that at least the overall levels
of malate are unaltered in these high-starch lines (Jenner
et al., 2001). Comparison of the mitochondrial fumarase
gene and protein revealed high similarity between potato
and tomato (Nunes-Nesi et al., 2007), as would be ex-
pected given the genetic similarity of these species. Taken
together, these data led us to conclude that the influence
of malate on plastidial starch biosynthesis is context de-
pendent rather than that the potato tuber enzyme had
lost its malate regulability.

Although the data presented here show that the overall
cellular malate levels were depleted in the fumarase-
deficient potato tubers to a similar extent to that pre-
viously reported in tomato fruit (Centeno et al., 2011),
several lines of evidence, both direct and indirect,
suggest that this did not result in major changes in
plastidial metabolism. Other characteristics of metab-
olism were broadly conserved between tomato fruit
and potato tuber, with little effect either on the rate of
respiration, as would be predicted from metabolic con-
trol analysis studies (Aratjo et al., 2012), or the levels of a
broad range of metabolites. Thus, we conclude that the
fumarase reaction plays little role in the overall control of
the respiratory flux. Returning to starch synthesis, the
indirect evidence for the lack of change in the plastidial
redox state is provided by the lack of effect on the
AGPase activation state (Fig. 4), the starch biosyn-
thetic flux (Table III), and the absolute starch accu-
mulation (Table II) in the transgenic lines. While this
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Table IV. Effects of malate on the redistribution of radiolabel after incubation in the presence of [U-"*C]Glc and absolute fluxes by potato tuber discs

Tuber discs were preincubated in 10 mm MES-KOH (pH 6.5) containing 2 mm Glc in the absence (control) or presence of varying concentrations of
malate for 2 h in addition to 10 mm [U-"*C]Glc (specific activity of 8.11 MBq mmol ™). Each sample was extracted with boiling ethanol, and the
amount of radioactivity in each metabolic fraction was determined as described in “Materials and Methods.” Values are expressed as means * st of
six biological replicates. No statistical significance from the control (P < 0.05) following the performance of Student’s t tests was observed.

Variable

Malate Concentration

0 mm 25 mm 50 mm

Label incorporated (Bq)
Total uptake
Total metabolized
Redistribution of radiolabel (% of total assimilated)
CO, evolution
Organic acids
Amino acids
Suc
Starch
Protein
Cell wall
Fru
Specific activity of hexose phosphates (Bq nmol™")
Metabolic flux (nmol hexose equivalents g~' fresh wt h™')
Starch synthesis
Suc synthesis
Respiration
Cell wall synthesis

565.69+36.95
450.19%20.44

589.44+28.65
468.05+20.91

574.58+22.47
461.99+21.38

0.94%0.06 1.05*0.15 1.21+0.07
12.79%+1.12 11.84+1.32 12.27*x1.16
10.78%+0.67 9.82%1.60 9.51%+1.28
14.49%x1.24 13.69*+0.37 12.88%+0.59
21.93%1.63 19.94+0.91 21.59*1.27
3.89%+0.39 3.61+0.26 3.38%+0.37
22.05*£1.39 20.97%=1.09 21.64*1.38
6.12x0.71 6.58+1.02 6.52+1.27
0.65*+0.05 0.59%+0.04 0.64*0.06
66.40£7.13 69.12+6.95 67.33+6.18
76.87x7.91 82.15%2.74 79.47*+4.19
83.65+10.42 80.87*x10.98 81.99+9.17
87.15%£6.06 64.33+2.95 68.82+6.42

is essentially circumstantial, considerably stronger evi-
dence is provided by the lack of a major effect on the
activation state of the plastidial malate dehydrogenase
and by the fact that the changes in plastidial malate
levels are relatively minor (Fig. 5). It is also interesting
that, in contrast to our expectations, there was no major
impact on the flux to the cell wall (Table III).

As mentioned above, the difference here may be
partially due to the fact that absolute malate levels are
not of the same magnitude in potato and tomato and
partially that the changes in the plastidial levels of
tomato would likely be more strongly influenced by
the operation of the malate valve. Despite the fact that
we were previously unable to provide analogous data
for subcellular malate compartmentation in tomato, due
to the intractability of this method with tomato fruit
material, we were previously able to provide strong
cumulative evidence for an altered redox status of the
green fruit plastid. This evidence included a strong ac-
tivation of the plastidial malate dehydrogenase and
modulation of pigment metabolism, both of which have
been demonstrated to be diagnostic of an altered plas-
tidial redox status (Scheibe, 1991; Foyer et al., 1992;
Nashilevitz et al., 2010). We previously postulated that
this altered redox status was due to an inhibition of the
malate valve caused by the accumulation of malate in
the cytosol following the inhibition of fumarase. The
malate valve is a well-described mechanism by which
excess reductant can be removed from the plastid in
order to allow the maintenance of efficient photosyn-
thesis (Scheibe, 2004). The activation of NADP-malate
dehydrogenase, which uses excess NADPH to convert
oxaloacetate to malate in order to regenerate the elec-
tron acceptor NADDP, is inhibited by the product NADP,
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thus switching off its own activity when all NADPH
is required and consumed for assimilatory processes and
therefore should not be exported as malate (Scheibe 1991).
A lowered cytosolic malate level, however, would fa-
cilitate the export of malate from the plastid by means
of establishing a concentration gradient across the
plastid envelope membrane system, likely resulting in
an altered plastidial redox state. That plastidial redox

3.0 | HEE WT *
3 FL60
2.5 A

2.0

1.5 4

Malate content
(umol g™ FW)

1.0 4

0.5 4

0.0 -

Cytosol Plastid Vacuole

Figure 5. Distribution of malate content in different compartments
after nonaqueous fractionation from potato tubers of 10-week-old
plants. Malate content was spectrophotometrically measured in tubers
of 10-week-old plants from the wild type (WT) and transgenic line FL
60. Values are presented as means * sp of three individual fraction-
ations per genotype. Asterisks indicate values that were determined by
Student’s t test to be significantly different (P < 0.01) from the wild
type. FW, Fresh weight.
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balance changes are apparent in the (photosynthetic)
green tomato fruit but not in the (heterotrophic) potato
tuber most likely reflects the lack of need for an op-
erational plastidial malate valve in the latter situation,
given that the plastid is not active as a major source of
ATP or reductant in this organ.

It will be interesting in the future to carry out similar
studies on the effect of altering the malate levels in
photosynthetically active leaf tissues. However, there
are already some hints in the literature that the effects
may be similar to those observed in the green fruit.
First, there are transgenic tomato plants in which the
expression levels of mitochondrially localized fuma-
rase (Nunes-Nesi et al., 2007), malate dehydrogenase
(Nunes-Nesi et al., 2005), or succinate dehydrogenase
(Aratjo et al., 2011) were inhibited, resulting in in-
creases (fumarase) and decreases (malate dehydro-
genase or succinate dehydrogenase) in leaf malate
content, respectively. They were additionally charac-
terized by clearly decreased starch contents in the case
of the fumarase antisense lines (Nunes-Nesi et al., 2007)
and increased contents in the malate dehydrogenase
(Nunes-Nesi et al., 2005) and succinate dehydrogenase
(Aradjo et al., 2011) antisense lines. Although a similar
pattern was not seen in the succinate dehydrogenase
knockout mutant of Arabidopsis (Arabidopsis thaliana;
Fuentes et al., 2011), it is important to note that the level
of malate was not altered in this mutant. Unfortu-
nately, the effect of knocking out both mitochondrial
isoforms of malate dehydrogenase in Arabidopsis on
starch levels was not documented (Tomaz et al.,
2010); however, knocking out the cytosolic fumarase
of Arabidopsis resulted in a high-starch leaf phenotype
(Pracharoenwattana et al., 2010). The presence of a
cytosolic fumarase, however, has not yet been reported
in a solanaceous species, despite the fact that the ge-
nomes of tomato and potato seem to encode these
genes. Indeed, on the basis of cumulative evidence that
one is essentially unexpressed, it would seem likely
that it is only expressed in a specialized cell type, such
as guard cells (Nast and Miiller-Rober, 1996). While
the levels of starch in Arabidopsis plants deficient in
the plastidial NADP-malate dehydrogenase were un-
altered (Hebbelmann et al., 2012), it will be interesting
in the future to look at the levels of starch in a range
of other mutants exhibiting altered cellular or sub-
cellular levels of malate, such as those compromised
in the expression of various cellular malate transporters
(Emmerlich et al., 2003; Lee et al., 2008). Finally, a clear
inverse trend can be seen between malate and starch
across a broad range of over 100 Arabidopsis ecotypes
(Sulpice et al., 2009, 2010), suggesting that this regula-
tory mechanism is fairly common.

In summary, we demonstrated here that manipu-
lating tuber malate content is not an effective strategy
for improving tuber starch content and, furthermore,
that repressing fumarase activity in the tuber only
results in minor effects. With the help of subcellular
fractionation techniques, however, we were able to
comprehend the reason for the failure of this strategy
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from a biotechnological standpoint and in doing so to
better understand differences in malate compartmen-
tation that appear to be dependent on the trophic nature
of the tissue under study. These findings, therefore,
reinforce the importance of studies aimed at spatially
dissecting resolution both for improving our funda-
mental understanding of metabolic regulation and for
facilitating its improvement.

MATERIALS AND METHODS
Materials

Radiolabeled Glcs were purchased from GE Healthcare. All other chemicals
were purchased from Sigma-Aldrich or Merck. Potato (Solanum tuberosum
‘Desirée’) was obtained from Saatzucht Lange. Plants were maintained in
tissue culture with 8-/16-h day/night cycles on Murashige and Skoog me-
dium (Murashige and Skoog, 1962), which contained 2% Suc. In the green-
house, plants were grown under the same light regime with a minimum of

250 umol photons m 2 s~ ".

Generation of Transgenic Plants

A 1,860-bp fragment, comprising the entire coding region of the fumarase
gene from potato, was cloned using the RNAi approach into the pBinAR
transformation vector under the control of the patatin class I promoter (Twell
and Ooms, 1987) and the ocs terminator. This construct was introduced into
plants by an Agrobacterium tumefaciens-mediated transformation protocol, and
plants were selected and maintained as described in the literature (Tauberger
et al., 2000). Tubers were harvested from 10-week-old plants and used for the
selection of promising lines. This screening allowed the selection of three lines
that were used for detailed physiological and biochemical analyses.

TCA Cycle Flux Estimation

Estimations of TCA cycle flux on the basis of *CO, evolution were carried
out following the incubation of isolated potato tuber tissue discs in 10 mm
MES-KOH (pH 6.5) containing 2 uCi of p-[1-*C]Glc, p-[3,4-"*C]Glc, or
p-[6-"*C]Gle. CO, evolved was trapped in KOH (in hourly intervals) and
quantified by scintillation counting. The results were interpreted following ap
Rees and Beevers (1960) and Nunes-Nesi et al. (2005).

Determination of Enzyme Activities

Enzyme extracts were prepared as described previously (Gibon et al., 2004),
except that Triton X-100 was used at a concentration of 1% and glycerol at
20%. Fumarase activity was determined as described (Gibon et al., 2004).
Extracts, as well as malate standards (0-20 uM) prepared in the extraction
buffer, were incubated in a medium containing 100 mwm Tricine/KOH (pH 8.0),
0.2 mm acetyl-CoA, 5 mm phosphate, 5 mm MgCl,, 0.15 mm NAD", 0.05% (v/v)
Triton X-100, 100 units mL ' malate dehydrogenase, and 1 unit mL™! citrate
synthase. The reaction was started by the addition of fumarate to a final con-
centration of 0 (blank) or 10 mm (maximal activity). The reaction was stopped
with 20 uL of 0.5 M NaOH and heated at 95°C for 5 min. After cooling down,
20 pL of 0.5 M HCl in 0.2 M Tricine/KOH (pH 9.0) was added to neutralize the
pH. NADH was measured in the presence of 10 units mL ™" alcohol dehydro-
genase in 100 mm Tricine/KOH (pH 9.0), 4 mm EDTA, 0.1 mMm phenazine
ethosulfate, 0.6 mm methylthiazolyldiphenyl-tetrazolium bromide, and 500 mm
ethanol. The absorbances were read at 570 nm and at 30°C until the rates were
stabilized. The rates of reactions were calculated as the increase of the absor-
bance. For AGPase, both the maximal and selective assays were carried out
exactly as described previously (Tiessen et al., 2002; Centeno et al., 2011). The
activation of AGPase was performed by the addition of 3-PGA in the reaction
medium at a final concentration of 2 mm for 20 min.

Tuber discs (diameter of 10 mm, thickness of 2 mm) were cut directly from
growing tubers attached to the fully photosynthesizing mother plant and
washed three times with 10 mm MES-KOH (pH 6.5), following an incubation in
Erlenmeyer flasks with (1) 3 mL of incubation medium containing 50 mm
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malate, with pH adjusted to 6.5, or (2) 3 mL of incubation medium containing
50 mm malate (pH 6.5) and 2 mm Gle, containing 1 uCi of [U-"*C]Glc (specific
activity of 1.4 MBq mmolfl). After 2 h, the discs were harvested, washed three
times in MES-KOH buffer (pH 6.5), and frozen in liquid nitrogen to enable
further analysis.

Determination of Metabolite Levels

Plant material was ground to a fine powder using a Retsch ball mill. The
levels of starch, Suc, Fru, and Glc in the potato tuber tissue were determined
exactly as described previously (Fernie et al., 2001b). Malate and fumarate
were determined exactly as detailed by Nunes-Nesi et al. (2007). The levels of
all other metabolites were quantified by the GC-time of flight-MS method as
described by Lisec et al. (2006). Metabolites were manually identified using the
reference library mass spectra and retention indices from the Golm Metab-
olome Database (http://gmd.mpimp-golm.mpg.de; Kopka et al, 2005).
Metabolite profiling data are reported following recent recommendations
(Supplemental Table S1; Fernie et al., 2011).

Nonaqueous Fractionation

Nonaqueous fractionation of tuber tissue was carried out exactly as de-
termined by Farré et al. (2001). Subcellular metabolite distributions were
computed using the new version (version 1.2) of the BestFit command line tool
(Klie et al., 2011).

Incubation of Tuber Discs with [U-C]Glc

Developing tubers were removed from 10-week-old plants, and a 10-mm-
diameter longitudinal core was taken. The core was then sliced into 1-mm-thick
discs, washed three times in fresh incubation medium (10 mm MES-KOH, pH
6.5), and then incubated (15 discs) in 5 mL of incubation medium containing
[U-C]Gle (1.4 MBq mmol ™) to a final concentration of 2 mm. Samples were
then incubated for 2 or 4 h before washing again three times in unlabeled
incubation medium and frozen in liquid N, until further analysis. All incu-
bations were performed in a sealed 100-mL flask at 25°C and shaken at
150 rpm. The evolved CO, was collected in 0.5 mL of 10% (w/v) KOH.

Fractionation of C-Labeled Tissue Extracts

Discs were extracted with 80% (v/v) ethanol at 80°C (1 mL per two discs),
reextracted in two subsequent steps with 50% (v/v) ethanol (1 mL per two
discs for each step), and the combined supernatants were dried under an air
stream at 35°C and taken up in 1 mL of water (Fernie et al., 2001c). The soluble
fraction was subsequently separated into neutral, anionic, and basic fractions
by ion-exchange chromatography; the neutral fraction (2.5 mL) was freeze
dried, taken up in 100 uL water, and further analyzed by enzymic digestion
followed by a second ion-exchange chromatography step (Carrari et al., 2006).
To measure phosphate esters, samples (250 uL) of the soluble fraction were
incubated in 50 uL of buffer (10 mm MES-KOH, pH 6.0) with or without 1 unit
of potato acid phosphatase (grade II; Boehringer Mannheim) for 3 h at 37°C,
boiled for 2 min, and analyzed by ion-exchange chromatography (Fernie et al.,
2001c). The insoluble material left after ethanol extraction was homogenized,
taken up in 1 mL of water, and counted for starch (Fernie et al., 2001a). Fluxes
were calculated as described following the assumptions detailed by Geigenberger
et al. (1997, 2000).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. Metabolite profiling data.
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