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Abstract

Background—African Americans (AAs) are predisposed to non-diabetic (non-DM) end-stage
renal disease (ESRD) and studies have shown a genetic component to this risk. Rare mutations in
ACTN4 (a-actinin-4) an actin binding protein expressed in podocytes cause familial focal
segmental glomerulosclerosis.

Methods—We assessed the contribution of coding variants in ACTN4to non-DM ESRD risk in
AAs. Nineteen exons, 2800 bases of the promoter and 392 bases of the 3’ untranslated region of
ACTN4 were sequenced in 96 AA non-DM ESRD cases and 96 non-nephropathy controls (384
chromosomes). Sixty-seven single nucleotide polymorphisms (SNPs) including 51 novel SNPs
were identified. The SNPs comprised 33 intronic, 21 promoter, 12 exonic, and 1 3’ variant. Sixty-
two of the SNPs were genotyped in 296 AA non-DM ESRD cases and 358 non-nephropathy
controls.

Results—One SNP, rs10404257, was associated with non-DM ESRD (p<1.0E-4, odds ratio
(OR)=0.76, confidence interval (C1)=0.59-0.98; additive model). Forty-seven SNPs had minor
allele frequencies less than 5%. These SNPs were segregated into risk and protective SNPs and
each category was collapsed into a single marker, designated by the presence or absence of any
rare allele. The presence of any rare allele at a risk SNP was significantly associated with non-DM
ESRD (p = 0.001, dominant model). The SNPs with the strongest evidence for association (n = 20)
were genotyped in an independent set of 467 non-DM ESRD cases and 279 controls. Although,
rs10404257 was not associated in this replication sample, when the samples were combined
rs10404257 was modestly associated (p=0.032, OR=0.78, C1=0.63-0.98; dominant model). SNPs
were tested for interaction with markers in the APOL 1 gene, previously associated with non-DM
ESRD in AAs and rs10404257 was modestly associated (p = 0.0261, additive model).
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Conclusions—This detailed evaluation of ACTN4 variation revealed limited evidence of
association with non-DM ESRD in AAs.
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Introduction

Methods
Subjects

Alpha-actinin-4 (ACTN4) is an actin-bundling protein which is widely expressed in a
number of tissues, most notably glomerular podocytes [1]. ACTN4binds actin in the cell
cytoskeleton, contributes to cell structure, and regulates cell motility [2, 3]. Deficiency in the
protein in mice has been shown to be directly related to a loss of normal podocyte
function[4]. In humans, mutations in ACTN4 have been shown to cause familial focal
segmental glomerulosclerosis (FSGS) [1, 5, 6]. Most mutations led to increased actin
binding by a-actinin-4 with subsequent formation of actin aggregates [7-9]. This form of
familial FSGS is an autosomal dominant disorder which is believed to be rare in the general
population.

Non-diabetic (non-DM) end-stage renal disease (ESRD) is the second most common cause
of advanced kidney disease in African Americans after diabetic nephropathy. African
Americans are particularly susceptible to FSGS, even when hypertension and socioeconomic
factors are considered [10]. Studies in African American families have shown that there is a
genetic component to this predisposition to kidney disease [11, 12].

As rare variants in AC7/N4 have been shown to lead to familial forms of FSGS, we
hypothesized that similar rare variants in ACTN4 may also lead to increased susceptibility to
non-DM ESRD in African Americans and thus be more readily detectable. To test this
possibility, we sequenced 19 (of 21 total) exons in the ACTN4 gene in African American
cases with ESRD and controls.

Non-DM ESRD cases self-reporting their race as African American were collected from
dialysis clinics in Network 6, from North Carolina, South Carolina, Georgia, Virginia and
Tennessee. Patients were classified as having non-DM ESRD if they had hypertension or
chronic glomerular disease listed as their primary cause of renal disease. Cases confirmed
the onset of high blood pressure prior to development of ESRD, in the absence of other risk
factors for kidney disease such as diabetes mellitus. Non-DM ESRD was typically
diagnosed in the presence of proteinuria < 1.5 gm/day, urinalysis < 100 mg/dl protein, or
spot urine protein:creatinine ratio < 1.5 gm/gm (when data available); with either EKG
evidence of left ventricular hypertrophy or presence of hypertensive retinopathy. Chronic
glomerulonephritis was diagnosed in those with kidney biopsy evidence or higher levels of
proteinuria. Patients with polycystic kidney disease, Alport’s syndrome, urologic disease or
surgical nephrectomy were excluded. Non-nephropathy controls were self-identified healthy
African Americans born in North Carolina, age = 18 years, and denying a personal or family
history of kidney disease in 15t degree relatives. Each participant provided 40mL blood for
DNA isolation. DNA was isolated from whole blood using an AutoPure LS automated DNA
extraction robot (Gentra Systems, Minneapolis, MN). Recruitment and sample collection
procedures were approved by the Institutional Review Board at Wake Forest School of
Medicine. All of the subjects in the Wake Forest case control cohort were tested for
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relatedness prior to inclusion in the study via identity by descent statistics. Individual which
appear to be first or second degree relatives are removed from the sample set.

Subjects were sampled in two groups. Set 1 comprised 296 non-DM ESRD cases and 358
non-nephropathy controls. For the exon sequencing SNP discovery stage, 96 cases and 96
controls were randomly selected from Set 1 samples. We followed up the initial analysis
with replication in Set 2 samples, which comprised 467 non-DM ESRD cases and 279 non-
nephropathy controls. Finally, we performed a combined association analysis of all the
samples, 763 non-DM ESRD cases and 637 non-nephropathy controls.

We sequenced 19 exons, 2800 bases of the promoter region and 392 bases of the 3’
untranslated region in the ACTN4 gene in 96 African American non-DM ESRD cases and
96 African American non-nephropathy controls. PCR primers were designed to amplify
regions approximately 500 bases at a time, and nested to provide complete coverage of the
promoter region and exons. Primer sequences are available upon request. Each 500 base
region was PCR amplified and the product was purified. DNA sequencing was performed
using Big Dye Ready Reaction Mix (Applied Biosystems, Foster City, CA) on an
ABI3730xI sequencer (Applied Biosystems, Foster City, CA). Sequence data was visualized
using Sequencher Software Version 4.6 (GeneCodes Corporation, Ann Arbor, MI). Exons
20 and 21 and a portion of the 3’ untranslated region of the AC7TN4 gene could not be
sequenced due to a region on chromosome 4 with a highly similar sequence.

SNP genotyping

Forty-one of the 67 SNPs were genotyped using the Sequenom MassARRAY genotyping
system (Sequenom, San Diego, CA). Genotyping primers were designed using the
MassARRAY Assay Design 3.4 Software (Sequenom, San Diego, CA); sequences will be
provided upon request. Twenty-one SNPs could not be designed using the MassARRAY
system due to close proximity of other SNPs or other assay design issues. These SNPs were
sequenced using the primer sequences for the initial screen as described above. The 21 SNPs
for sequencing were chosen based on their location with the intent to maximize the number
of SNPs that could be captured using the least number of primers. Five SNPs that were not
genotyped by sequenom or sequencing (see SNPs shaded in gray in Table 2). Four of these
SNPs (C-2752T, C58279T, C61663G, and G76310A) were extremely rare, with only 1 or 2
individuals identified, and we elected not to pursue them. The fifth SNP, G61675T was in
high LD with another SNP which was genotyped, G61672A and was not genotyped
separately.

To calculate percentage of African ancestry, 70 ancestry informative markers were
genotyped on all cases and controls. Percentage of African ancestry was calculated using the
computer program FRAPPE as described previously [13].

Statistical Analysis

Age, BMI and percentage of African ancestry for the non-DM ESRD cases and healthy
controls was compared using an unpaired t-test or a Mann-Whitney Rank Sum Test where
appropriate (SigmaStat 3.5, SYSTAT Software, San Jose, CA). Departures from Hardy-
Weinberg Equilibrium (HWE) were tested for each SNP using chi-square goodness-of-fit
statistics in our association analysis program SNPGWA [14]. Tests for association included
the overall 2 degree of freedom genotype test of association and the three a priori genetic
models (i.e. dominant, additive, and recessive).
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To test for association at rare alleles, (MAF < 0.05), we collapsed these variants into a single
marker using the following technique. For each individual, the presence of any rare allele (at
any SNP), the individual was coded with the genotype “1 2”. Individuals with no rare alleles
at any SNP were coded with the genotype “2 2”. Therefore, all samples were coded with
either a 1 2 or 2 2 genotype. This single marker was then tested for association with case
status using SNPGWA as described above. This technique was used to test for association at
SNPs in the promoter region only and the promoter region combined with sequenced exons.
We collapsed 47 of the 62 SNPs genotyped in Set 1 into a single marker. In addition, we
also collapsed just the 17 rare SNPs that were located in the promoter region (which were
also included in the 47 SNPs).

For the genotyping of the Set 2 DNA samples, 20 SNPs were selected from the list of 62
SNP genotyped in Set 1 (Table 3). The SNPs were ranked by the 2 degree of freedom p-
value and were combined into the largest possible single assay in succession. If a SNP did
not plex with the assay, the next ranked SNP would be chosen for assay design. As a result,
there are SNPs included in the assay that were not necessarily the most associated SNP by
rank (Table 4).

We tested the 20 SNPs that were genotyped on both sets of samples as well as the collapsed
rare alleles for interaction with risk at the apolipoprotein L1 (APOLI) risk variants. The G1
and G2 risk variants (as described by [15]) were genotyped on all samples using the
Sequenom MassArray system (Sequenom, San Diego, CA). Case only and case control tests
of association were performed for gene-gene interaction between the 20 SNPs and the
APOL1G1 and G2 risk haplotypes. This test models APOL 1 risk as the response for all
individuals with recessive haplotypes at either G1 or G2 or heterozygosity at both G1 and
G2. Interaction analyses were adjusted for age, gender and percentage of African ancestry.

Table 1 summarizes characteristics of the study samples. Two sample sets were evaluated.
Set 1 consisted of 296 African Americans with non-diabetic ESRD and 358 non-
nephropathy controls in which the non-DM ESRD cases were older, had lower BMI and
were slightly higher in percentage of African ancestry (Table 1) than controls. There was no
significant difference in gender proportions between cases and controls in this group. The
replication sample, designated as set 2 consisted of 467 African Americans with non-
diabetic ESRD and 279 non-nephropathy controls. Similar to set 1, the set 2 cases were
older, had fewer females, lower BMI and higher percentage of African ancestry than the set
2 controls. These trends remained consistent when the samples were combined in a final set
of 763 cases and 637 controls.

The variants identified by sequencing the 384 chromosomes in 96 non-DM ESRD cases and
96 non-nephropathy controls are listed in Table 2. Known variants are identified by their
dbSNP ID and novel variants are identified by position relative to the first nucleotide of
exon 1. We identified 67 variants in the a-actinin-4 gene, 51 of which were novel. Twenty-
one SNPs were in the promoter region, 12 were coding SNPs, 33 were intronic and 1 SNP
was in the 3’ untranslated region. Of the 12 coding SNPs, only C58409T in exon 5, was
non-synonymous, resulting in a proline to leucine amino acid change. The majority of the
SNPs (n = 47) were rare, with minor allele frequencies (MAF) less than 0.05 in the control
samples. One SNP, rs2112649, had three alleles in our samples. As the A allele has not been
previously reported for this SNP, we sequenced this individual in the forward and reverse
directions to confirm the presence of the third allele. A single case individual possessed an
A allele at this locus, where as all other individuals tested had a G or C. For association
tests, which require 2 alleles, we coded the A allele as unknown.
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Sixty-two SNPs were genotyped in set 1 cases and controls. As set 1 samples comprised the
96 cases and controls that made up the SNP discovery set, we compared the genotypes
derived from sequencing with those derived from Sequenom genotyping and all genotypes
were 100% concordant. Association analysis revealed significance at rs10404257 (p <
0.0001, additive model), A-98C (p = 0.001, dominant model), and rs2112649 (p = 0.010,
additive model) (Table 3). Another SNP, C62517T, was significantly associated; however,
this SNP deviated significantly from Hardy-Weinberg proportions in all groups of control
samples. This SNP is a coding, synonymous variant and was eliminated from further
analysis. Both rs10404257 and rs2112649, remained significantly associated after
adjustment for age, BMI, gender and African ancestry, (p = 0.004, odds ratio (OR) = 0.60,
confidence interval (Cl) = 0.43 — 0.85, dominant model and p = 0.026, OR = 1.31, Cl =
1.03-1.67, additive model, respectively).

A number of SNPs were rare (MAF < 0.05) and our current association tests are not
powerful at such low frequencies. To overcome this limitation, we collapsed rare alleles
together and tested for association. Rare SNPs in the promoter region only (17 SNPs) and
throughout the entire gene including the promoter (47 SNPs) were collapsed into a single
marker where the presence of a rare allele was coded as “1 2” and the absence of a rare
allele was coded as “2 2” (see Methods for complete details). A total of 251 individuals had
at least 1 rare allele whereas 404 individuals had only the common alleles. Neither the rare
SNPs in the promoter region (p = 0.981), nor those throughout the entire gene (p = 0.166)
were associated with non-DM ESRD in the set 1 samples.

One major drawback to this method of collapsing the rare alleles is that directionality of the
alleles (ie risk vs protective) is not taken into consideration. To overcome this limitation, we
have segregated the SNPs into “protective” and “risk” categories based on their allele
frequencies in cases and controls. Sixteen SNPs were categorized as protective whereas 24
SNPs were categorized as risk. The two categories were collapsed and tested for association
as described above. The SNPs collapsed into the protective category were not significantly
associated with ESRD, p = 0.260. However, the SNPs collapsed into the risk category were
significantly associated with ESRD, p = 0.006, two degree of freedom test, and 0.001,
dominant model.

Twenty of the SNPs from the set 1 analysis which had the greatest evidence of association
were genotyped in the set 2 samples, 467 cases and 279 controls (Table 4). A single SNP,
A-98C, was associated, (p = 0.0002, OR =0.23, Cl = 0.08 — 0.64, additive model). When
the two sample sets were combined, one SNP rs10404257 was modestly associated (p =
0.032, OR = 0.78, Cl = 0.63 — 0.98, dominant model). Adjustment for age, gender, BMI and
African ancestry did not change the p-value, (p = 0.033). As rs10404257 was not associated
in set 2 samples, the significant p-value in the combined sample set is driven by association
in set 1. This result does not meet evidence of association accounting for multiple
comparisons. The other modestly significant SNP, rs2112649, failed genotyping in set 2
samples.

Recently, two markers on APOL 1 were shown to significantly contribute to risk of ESRD in
AAs [15], These risk variants have been designated as G1 (a haplotype consisting of
rs73885319 and rs60910145) and G2 (rs71785313). Despite the highly significant
contribution to risk, second hits (gene-gene or gene-environment interactions) are required
for initiation of renal disease. We hypothesize that there are other genetic markers that may
interact with APOL1 G1 and G2 risk variants. Therefore, we tested rs10404257 and the
collapsed rare alleles for interaction with APOL 1 risk alleles G1 and G2 [15]. There was no
evidence of interaction with APOL 1 risk alleles for the marker derived from collapsed rare
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alleles (p = 0.16, recessive model); however, rs10404257 was modestly associated (p =
0.026, additive model).

Discussion

We sequenced 19 of the 21 exons in the ACTN4 gene and identified a total of 67 variants in
96 African American non-diabetic ESRD cases and 96 African American non-nephropathy
controls. Although initial genotyping of 62 markers revealed some evidence of association
in set 1 samples, when set 2 samples (with a combined total of 763 cases and 637 controls)
were included these SNPs were no longer associated, leading us to conclude that they are the
result of spurious association.

The majority of the identified variants are rare (MAF < 0.05), as would be expected from
exon sequencing. Tests for association in these rare variants are low in power and largely
limited to variants of large effect. Given the impact of other ACTN4 mutations, this
remained a reasonable possibility. In order to analyze these variants for association we
collapsed the rare variants into a single variant. We were able to compare the presence or
absence of rare variants in cases and controls using this method. We did not find any
association when the rare variants were collapsed, although once samples were segregated
based of directionality (risk ve protective) the variants which were categorized as risk were
significantly associated with increased risk of ESRD. While it appears as though the
presence of rare “risk” alleles contributes to ESRD, it should be noted that the two
individuals who possessed the largest numbers of rare risk alleles (one individual had 7 risk
alleles, and one had 6) were both non-nephropathy controls. Clearly the role of these rare
variants is more complicated that the initial analysis indicates. We propose that additional
investigation using a larger sample size into is warrented, with some additional
consideration for the potential functional roles of these variants.

The absence of variants in the promoter and exons of the ACTN4 gene associated with non-
DM ESRD in AAs is surprising but not entirely unlikely. This gene is ubiquitously
expressed and is important for maintaining cell structure and motility. It is possible that
defects in this gene result in significant alterations of function that would be catastrophic
and unable to be retained across generations. Indeed the familial FSGS cases that have been
identified are isolated in individual families and afflicted members suffer a range of kidney
diseases at young ages. We have scanned the available literature for previous examples of
association at the variants we have identified, however none of the variants we have noted
are described as being associated with FSGF previously. This outcome is not entirely
unexpected considering that little to none work has been done in African American samples
and highlights the need for continuing research on this sample group.

Through the genotyping of the promoter region and 19 exons of a-actinin-4 we have
identified a total of 62 variants, most of which are in the non-coding regions of the gene.
Despite the large number of variants identified, few were common and none were associated
with non-DM ESRD in AA cases and controls. Collapsing of the risk variants into a single
marker, did result in significant association, which should be followed up in future studies.
Despite the role of ACTN4in familial FSGS, the function of the ACTN4 gene is clearly
important and variants in this gene do not appear to contribute significantly to non-DM
ESRD in AAs.
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