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ABSTRACT

The current method for reconstructing gene regula-
tory networks faces a dilemma concerning the study
of bio-medical problems. On the one hand, static
approaches assume that genes are expressed in a
steady state and thus cannot exploit and describe
the dynamic patterns of an evolving process. On the
other hand, approaches that can describe the
dynamical behaviours require time-course data,
which are normally not available in many bio-
medical studies. To overcome the limitations of
both the static and dynamic approaches, we
propose a dynamic cascaded method (DCM) to re-
construct dynamic gene networks from sample-
based transcriptional data. Our method is based
on the intra-stage steady-rate assumption and the
continuity assumption, which can properly charac-
terize the dynamic and continuous nature of gene
transcription in a biological process. Our simulation
study showed that compared with static appro-
aches, the DCM not only can reconstruct dynamical
network but also can significantly improve network
inference performance. We further applied our
method to reconstruct the dynamic gene networks
of hepatocellular carcinoma (HCC) progression. The
derived HCC networks were verified by functional
analysis and network enrichment analysis. Further-
more, it was shown that the modularity and network
rewiring in the HCC networks can clearly character-
ize the dynamic patterns of HCC progression.

INTRODUCTION

Unravelling the dynamic nature of gene regulation during
a biological process is a key challenge in systems biology.
The activities of a gene and its functional products reflect

the dynamic and integrative influence of its transcription
regulators, and other molecules in the signalling
pathway (1). The dependencies between these molecular
entities are often represented as regulatory relationships
in a gene regulatory network (GRN) (1,2), which is
normally reconstructed from transcriptional data using a
reverse engineering approach (3,4).
The effects of bio-medical interventions on a biological

system are normally measured by static (steady-state) or
time-course experiments, from which static or dynamic
GRNs can be developed. However, many bio-medical
studies face a dilemma regarding the use of such an
approach. On the one hand, static approaches assume
that genes are expressed in a steady state, and hence are
not able to exploit and describe the dynamic mechanisms
of gene regulation. In fact, it has been shown that the
topology of gene regulations in yeast can dramatically
change its structure during a cellular process (5). The
dynamics of gene regulatory machinery have also been
observed in nuclear microenvironments (6). On the other
hand, approaches that can describe the dynamic behav-
iours of a process require time-course data, which are not
available for many bio-medical problems such as cancer or
diabetes. Indeed, disease samples (tissues or body fluids)
are normally acquired for clinical purposes, such as diag-
nosis or treatment, rather than for research needs.
Furthermore, a disease may span a period of months or
years, thus making it infeasible to sample the entire disease
process. Consequently, most gene-profiling data for
medical problems are sample based, thereby impeding
the application of dynamic approaches.
Although the elapsed time between disease onset and

the collection of disease samples may be unknown, the
samples are normally classified with staging information
(e.g. cancer stages) that shows the clinical or pathological
status of disease progression. In this article, we show that
this staging information can be used to reproduce the
gene-evolving trend and based on which to reconstruct
dynamic GRN from the sample-based data by adopting
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two biologically plausible assumptions: the intra-stage
steady-rate (or linear-dynamic) assumption and the con-
tinuity assumption, as illustrated in Figure 2. The
intra-stage steady-rate assumption assumes that gene ex-
pression can be dynamic, and the dynamic profile should
be associated with a linear trend within each stage of a
process. The continuity assumption states that there are
no discrete or abrupt changes in the gene profile even at
the time of stage transition. The continuity assumption is
natural because gene expression is an accumulated
process, and thus cannot vary abruptly. Based on these
two assumptions, we develop a dynamic cascaded method
(DCM) to reconstruct the dynamic GRN from widely
available sample-based transcriptional data.
Our DCM was first implemented on an in silico network

as a simulation study. The performance of the DCM was
confirmed by comparing it with static and dynamic
approaches. The method was further applied to recon-
struct the gene networks of hepatocellular carcinoma
(HCC) progression. HCC is one of the most common
cancers and causes of cancer deaths worldwide (7,8).
The development of HCC is a complex multistep process
involving several molecular and cellular changes. The
precise mechanisms for these alterations are poorly under-
stood (9,10). The DCM overcomes the limitations of
current approaches and provides a new way of
investigating the dynamic mechanisms of HCC progres-
sion using sample-based high-throughput data. The
derived HCC networks were verified by functional
analysis and network enrichment analysis. In addition,
the modularity and network rewiring shown in the
networks clearly characterize the dynamics of gene regu-
lation during HCC progression.

MATERIALS AND METHODS

Letting xiðtÞ be the expression level of gene i at time t, then
the ordinary differential equation (ODE) of transcrip-
tional kinetics can be written as (2)

dxiðtÞ

dt
¼ ��ixiðtÞ+

X
j2R

i

�ijxjðtÞ, ð1Þ

where �i is the mRNA turnover rate (i.e. the probability
that mRNA will be degraded in a given time interval), Ri

is the set of regulators of gene i and �ij is the regulatory
strength from gene j to gene i. Equation (1) can be utilized
in dynamic approaches to reconstruct dynamic GRNs
based on time-course data, in which the model coefficients
(degradation rate and regulatory strengths) can be
determined by a linear regression method, such as
LASSO (11,12).
If temporal information is not available, static

approaches are virtually the only way of re-engineering
gene networks. Static approaches assume that genes are
expressed in steady state, so there is no evolving trend
among the samples, i.e. dxiðtÞ=dt ¼ 0. Therefore, (1)
becomes xiðkÞ ¼

P
j2Ri
ð�ij=�iÞ � xjðkÞ, in which the model

coefficients for the static GRN can be solved by linear
regression after injecting the sample-based data.

Instead of letting dxiðtÞ=dt ¼ 0 as in static approaches,
our DCM assumes that the gene-evolving rate (dx=dt) is a
constant (but unknown) at each stage, corresponding to
the intra-stage steady-rate assumption. By combining this
with the continuity assumption, we can derive both the
theoretical model and the algorithm for the DCM.
The principles underlying the DCM, and the comparisons
to dynamic and static approaches, are schematically
illustrated in Figure 1.

Here, we briefly introduce the main model equations
for the DCM. The details of this method can be
found in Section 1 of the Supplementary Data. Let
XðsÞ ¼ fx

ðsÞ
i ðkÞgi¼1,p;k¼1,NðsÞ be the sample-based transcrip-

tional data for stage s of a process, in which P is the
number of genes, and NðsÞ the number of samples.
According to the intra-stage steady-rate assumption and
the continuity assumption, we can construct an equation
that connects the gene profiles of two consecutive stages:

�x
ðsÞ
i ¼ �a

ðs�1,sÞ
i � �x

ðs�1Þ
i +

X

j2Rðs�1Þ
i

b
ðs�1Þ
ij � �x

ðs�1Þ
j

� �
+
X

j2RðsÞ
i

b
ðsÞ
ij � �x

ðsÞ
j

� �
,

ð2Þ

in which �x
ðsÞ
i and �x

ðs�1Þ
i are the mean expressions of gene

i in stage s and s�1, respectively. The coefficients in (2) are
related to the kinetic parameters in (1) with the following
functions:

a
ðs�1,sÞ
i ¼

2� �iL
ðs�1Þ

2+�iL
ðsÞ

,bðs�1,sÞ
ij ¼

Lðs�1Þ

ð2+�iL
ðsÞÞ
� �ðs�1Þij ,bðsÞij

¼
LðsÞ

ð2+�iL
ðsÞÞ
� �ðsÞij ,

ð3Þ

where LðsÞ is the time span of stage s, �i is the degradation
rate and �ðsÞij is the regulatory strength. Note that the
inter-stage influence coefficient a

ðs�1,sÞ
i is a constant with

a value between �1 and 1, as the degradation rate �i and
the time span are both positive values. Equation (2) de-
scribes the pooled-average relationship of the gene expres-
sion status across stages, or it describes the average
inter-stage dynamics of the GRN (i.e. average inter-stage
dynamical GRN).

To describe the dynamic patterns within a stage, we
define the �-fraction of a stage as the proportional inter-
polation between the earliest and the latest time points
of the stage (according to the intra-stage steady-rate
assumption). If we use t

ðsÞ
1 and t

ðsÞ

NðsÞ
to denote the earliest

and the latest time points of stage s, then the time
of the �-fraction in stage s can be expressed as
t
ðsÞ
� ¼ t

ðsÞ
1 +� � ðt

ðsÞ

NðsÞ
� t
ðsÞ
1 Þ. Following a series of transform-

ations, we obtain the dynamic model equation (details of
the mathematical manipulations can be found in Section 1
of the Supplementary Methods):

x
ðsÞ
i ðt
ðsÞ
� Þ ¼ a

ðs�1,sÞ
i � x

ðs�1Þ
i ðt

ðs�1Þ
� Þ

+
X

j2Rðs�1Þ
i

b
ðs�1,sÞ
ij �x

ðs�1Þ
j ðt

ðs�1Þ
� Þ

� �
+
X

j2RðsÞ
i

b
ðsÞ
ij �x

ðsÞ
j ðt
ðsÞ
� Þ

� �
,

ð4Þ
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Figure 1. Schematic illustrations of network inference approaches. Dynamic approach (upper block) can reconstruct the dynamic network to
describe the dynamic behaviours of transcriptional regulation by using time-course data, which is normally not available for many bio-medical
problems; static approach (middle block) reconstruct static network which can only describe the (pooled average) static behaviours of transcriptional
regulation by using sample-based data; our DCM (lower block) is able to reconstruct the dynamic network which describe the dynamic gene
regulation even by using the sample-based data.

Figure 2. Schematic illustration of the dynamic cascaded model derived from the intra-stage steady-rate (or linear-dynamic) assumption and the
continuity assumption. In the dynamic cascaded model defined in Equation (4), the time of l-fraction of a stage is defined as the proportional
interpolation between the earliest and the latest of the stage. The model variables, x

ðsÞ
i ðt
ðsÞ
� Þ and x

ðs�1Þ
i ðt

ðs�1Þ
� Þ, are highlighted with rectangles.
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in which the gene expressions at the same (�) fraction
of two consecutive stages are connected by a linear
equation. Clearly, Equation (4) describes the inter-stage
dynamics of the GRN (i.e. inter-stage dynamical GRN).
Note that, during each stage, the intra-stage dynamics of
the GRN (i.e. intra-stage dynamical GRN) is described by
Equation (1).
Theoretically, all of the coefficients a

ðs�1,sÞ
i , b

ðs�1,sÞ
ij , b

ðsÞ
ij in

(4) can be solved using a linear regression approach.
Therefore, the existence and strength of the regulatory rela-
tionships (�ðs�1Þij and�ðsÞij ) can be obtained according to the
functions in (3). However, due to the lack of temporal
information in the sample-based data, the model variable
x
ðsÞ
i ðt
ðsÞ
� Þ in (4) is not directly available. From Figure 2,

we can see that x
ðsÞ
i ðt
ðsÞ
� Þ can be estimated by a quantile

function of the samples from stage s, according to the
linear-dynamic (steady-rate) behaviour of gene expression.
In summary, if the gene evolves in an ascending trend (such
as stage s� 1 in Figure 2), the quantile function will be
Qð�Þ ¼ inffx 2 R : � � Prðxi � xÞg; otherwise, if it evolves
in a descending trend (such as stage s), the quantile
function becomes Qð�Þ ¼ inffx 2 R :� � Prðxi � xÞg.
Clearly, the specific assignment of the quantile function
depends on the gene-evolving trend in each stage. To de-
termine the gene-evolving trend, we introduce a method of
gene-evolving trend analysis based on the intra-stage
steady-rate assumption and the continuity assumption.
Details of the gene-evolving trend analysis can be found
in Section 2 of the Supplementary Methods.
During the process of network reconstruction, a

bootstrapping strategy is employed to better utilize the
limited samples. For each gene, the model equations in
(4) with different settings of the fraction factor are
produced from each bootstrap group, after which the
model coefficients are determined using LASSO on all of
the model equations.
In summary, the algorithm for the DCM is described as

follows:

Step 1: Preprocess the original data to obtain the
stage-wise sample-based transcriptional data
fx
ðsÞ
i,j

���s 2 ½1,S�,i 2 ½1,p�,j 2 ½1,NðsÞ�g.
Step 2: Perform the gene-evolving trend analysis
described in Section 2 of the Supplementary Methods
to determine the gene-evolving trend (ascending or
descending) of each gene for each stage.

Step 3: Conduct the bootstrapping procedure and then
produce the model equations in (4) of the inter-stage
dynamical GRN.

(i) Obtain a random group of bootstrapping
samples for each gene at each stage;

(ii) Produce the model equations using different
settings for the fraction factor (�) for each boot-
strap group; and

(iii) Iterate (i) and (ii) to obtain the model equations.
Step 4: Estimate the model’s coefficients of (1), i.e.,
reconstruct the intra-stage dynamical GRN:

(i) Based on the model equations obtained in
Step 3, perform a LASSO regression to solve
the model coefficients with different network
sparsities;

(ii) Determine the model coefficients that have the
most appropriate sparsity for different stages
using a cross-validation approach; and

(iii) Reconstruct the GRNs described for each stage
s by (1) according to b

ðsÞ
ij , which is proportional

to �ðsÞij .
Step 5: (Optional) repeat Steps 3 and 4 to calculate the

confidence of the network connection.

RESULTS

Simulation study

Four in silico networks were constructed to simulate the
regulatory behaviours of six genes during the four
consecutive stages of a continuous process, in which the
ODE, dxiðtÞ=dt ¼ �aixiðt� 1Þ+

P
�ijxjðt� 1Þ, was used to

represent the regulatory relationship. The topological
structure of the four networks can be found in
Supplementary Figure S1. Some common regulatory
motifs (13) were randomly assigned to different
networks, such as loop structure (3-5-4 in stage I; 2-6-3
and 1-4-5 and 2-6-3 in stage II; 2-6-4-3 in stage III; and
2-3-4 and 1-2-3-5-6 in stage IV), feed-forward structure
(3-5-2 and 3-2-1-6 in stage I; 2-6-1 and 5-4-3 in stage III;
and 3-5-4 in stage IV), and central structure (3-2-5-6 in
stage I). Meanwhile, the degradation rates of all genes
were set to 0.05, and the regulatory strengths were
randomly selected to be either 0.1 or �0.1. The initial ex-
pression levels of all genes were set to 1.0 at the beginning
of the process. The time spans of the four stages were set
to 20, 30, 20 and 30, respectively. The continuity of the
gene profile was ensured across the whole process,
including the stage transition points. Using the above con-
figurations, we generated the time-course gene profiles
shown in Supplementary Figure S2. We then produced
the stage-wise sample-based data by ignoring the time
sequence of the samples while keeping their staging
information.

The DCM algorithm was implemented to reconstruct
the GRN by the produced sample-based data so as to
evaluate the effectiveness of our method. First, the gene
trend analysis was performed to reproduce the
gene-evolving trend (ascending or descending) of each
gene in each stage. Then, the bootstrapping approach
was performed to generate bootstrap groups. For each
group, model equations in (4) were produced, correspond-
ing to the gene-evolving trend determined in the first step
and the settings of the fraction factor. Multiple fraction
factors were used to ensure the linearity of the model
equations at different check-points. In the absence of the-
oretical proof, we heuristically set the fraction factors to
be 0, 0.5 and 1.0. The fraction factor of 0.5 corresponded
to the middle of a stage, whereas the settings 0 and 1.0
were responsible for the linearity at the beginning and end
of a stage. In addition to the interpolation of a stage, we
generally found it useful to control the linearity of the
model equations on the extrapolation of a stage. Two
linear extrapolations, including the head-end extrapola-
tion Qð�headÞ ¼ x1 � �head � ðxN � x1Þ and the tail-end
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extrapolation Qð�tailÞ ¼ xN+�tail � ðxN � x1Þ were used. In
general, �head and �tail should be large enough to control
the linearity at the far ends of a stage. Here, both �head and
�tail were set to 4.0 (the DCM performed almost equally in
simulations when these two parameters were set within the
range 3.0–8.0). Finally, a total of 200 bootstrap groups
were generated and 1000 corresponding model equations
were obtained. The model coefficients b

ðsÞ
ij were then

solved by LASSO regression, in which the model param-
eter a

ðs�1,sÞ
i was set to a value between �1 and 1. Based on

the beta matrix obtained by LASSO, cross validation was
implemented to determine the relevant sparsity of the
network topology. Supplementary Figure S3 shows a
group of GRNs obtained from an iteration of the above
process.

The performance of the network reconstruction is
normally measured by the receiver operating characteristic
(ROC) curve. The ROC shows the true positive rate
(sensitivity) as a function of the false positive rate
(1� specificity) corresponding to different cut-offs of the
decision threshold (14). Based on the ROC curve, the area
under the curve (AUC) can be calculated to represent the
predictive ability of a network inference approach. In
addition, the Z-score, which describes the difference
between a prediction and a random guess, and the
P-value of the significance test, were used to indicate the
significance of a network inference. The F2-score and
Matthews Correlation Coefficient (MCC, a balanced
measure of performance) (15) were computed as a refer-
ence indicator, with higher values indicating better per-
formance for both measures.

In the simulation study, the modelling process was
repeated 100 times to cancel the randomness effect. The
overall AUC was then calculated on the networks for all
four stages. All of the above analyses were performed pro-
grammatically in MATLAB 7.12. The predictive perform-
ance of the DCM is presented in Table 1, which shows
that the overall AUC was 0.75 (the performance obtained
with non-optimal settings), indicating the good predictive
ability of the DCM. The P-value of the Z-test was 0.0065,
suggesting that the network inference was significantly dif-
ferent from random guesses. The overall MCC value was
also much >0, further confirming that the network pre-
diction was significant.

We have conducted the performance test on sensitivity
and robustness of the DCM. Figure 3a shows the result of
sensitivity test in corresponding to different settings for
the inter-stage influence coefficient a

ðs�1,sÞ
i , in which most

of the overall AUCs were over 0.7. In particular, the
overall AUC remained on the peak value of 0.76 when
a
ðs�1,sÞ
i was set to a value in the range from 0.5 to 0.65.

The result of sensitivity test on various settings for the
number of samples in a bootstrap group is shown in
Figure 3B, in which it can be found that the DCM is
not sensitive to this parameter. The overall AUCs were
above 0.75 when the number of samples in a bootstrap
group was set in the range from 8 to 18 (recall that the
number of samples for stage I, II, III and IV are 20, 30, 20
and 30, respectively).
The robustness of the DCM was tested by corrupting

the transcriptional data with different levels of random
noise. In this test the number of samples in each bootstrap
group was set to 16, and a

ðs�1,sÞ
i was fixed at 0.6. The trend

of overall AUCs versus different levels of noise corruption
is shown in Figure 3C. It can be seen that the performance
of DCM was quite robust (overall AUCs were over 0.73)
when the noise-to-signal level was smaller than 0.15. When
the noise level increased to 0.2–0.3, the overall AUC
gradually dropped to 0.67. It further dropped to 0.62
when the noise-to-signal level increased to 0.4, and even-
tually became unacceptable (�0.55) when the noise level
reached 0.5.
As a comparison, we implemented the static (steady-

state) approach using the sample-based transcriptional
data to reconstruct the GRNs. The model equations
were obtained by letting dxiðtÞ=dt ¼ 0 in (1), and were
then solved by LASSO. Cross validation was used to de-
termine the appropriate sparsity of the network topology.
The performance of the static approach is presented in
Table 2. The overall AUC was 0.56 and the P-value of
the significance test was 0.28, suggesting that the predict-
ive ability was quite poor. This result implies that the task
of network reconstruction using sample-based data is
quite difficult. Our DCM, however, significantly
improved the predictive ability of network inference
from 0.56 to above 0.75 (achieved with fair settings)
with a net increase of around 34%.
We also reconstructed the dynamic GRN based on

time-course data using ODEs (16). Again, the parameters
in the model equations were solved by LASSO and
then determined by cross validation. The performance
of the dynamic approach is presented in Table 3. The
overall AUC of the dynamic approach was around 0.94,
suggesting a performance improvement of 68%
(i.e. ð0:94� 0:56Þ=0:56) compared with the steady-state
approach, due to the use of the temporal information.
In other word, our DCM can recover around 50% of
the (ignored or missed) dynamic patterns,
i.e. ð0:75� 0:56Þ=ð0:94� 0:56Þ. This result suggests that
the DCM can appropriately exploit the staging informa-
tion to reproduce a significant portion of the temporal
information for reconstructing the dynamic GRN, by

Table 1. Performance metrics of the DCM on the sample-based data of the simulation study

Stage I Stage II Stage III Stage IV Overall

AUC 0.72 0.82 0.68 0.73 0.75±0.056
P-value <0.0001 <0.0001 0.0029 <0.0001 0.0065
F2-score 0.74±0.000 0.81±0.020 0.67±0.041 0.77±0.038 0.75±0.058
MCC 0.44±0.017 0.60±0.035 0.39±0.033 0.38±0.030 0.46±0.092
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modelling the linear-dynamic behaviour of gene regula-
tion based on the intra-stage steady-rate assumption and
the continuity assumption.

Application of GRN modelling to HCC progression

Sample-based gene-profiling data of HCC progression
were extracted from (17), in which 10 normal tissue
samples were obtained from healthy livers and 65
disease samples were obtained from 38 patients with
HCV infection, representing the stepwise carcinogenic
process from pre-neoplastic lesions to HCC. The disease
samples were categorized into 5 consecutive stages along
the carcinogenic process: 13 samples for the cirrhotic
stage, 17 for the dysplastic stage, 18 for early HCCs and
17 for advanced HCCs.
Among the signalling pathways that may be influenced

by HCC, we were particularly interested in the cell cycle

pathway because it is the most affected pathway in HCC
and has the highest correlation with cancer progression
(17). From the cell cycle signalling pathway, we extracted
52 TFs that showed significant changes (P < 0.05) during
the HCC process to be the network nodes.

Before DCM modelling, we conducted a gene-evolving
trend analysis for each gene. Supplementary Figure S5
shows the partial results of the gene-evolving trends for
some hub genes (hub genes can be identified according to
the size of the nodes in Figure 6, as illustrated below).
Supplementary Figure S5 confirmed that the continuity
assumption generally held.

During the bootstrapping process, seven samples (i.e.
roughly half of the samples for each stage) were
randomly extracted from each stage to form bootstrap
groups. No particular efforts were made to determine
the settings of the fraction factor; we simply used the
same settings that we used in the simulation study, i.e.,

Figure 3. Results of the performance test on in silico network of the simulation study. (A) Result of sensitivity test on different settings of the
inter-stage influence coefficient a

ðs�1,sÞ
i . The overall AUCs were generally >0.7 for most of settings. In particular, the overall AUC reached the peak

value of 0.76 when a
ðs�1,sÞ
i was set to a value between 0.5 and 0.65. (B) Result of sensitivity test on different settings for number of samples in a

bootstrap group. The overall AUCs were above 0.75 when the number of samples in a bootstrapping group was set in the range from 8 to 18 (recall
that the number of samples for stage I, II, III and IV are 20, 30, 20 and 30, respectively). (C) Result of robustness test on different levels of noise
corruption to the transcriptional data. The overall AUCs were over 0.73 when the noise-to-signal level was smaller than 0.15. When the noise level
increased to 0.2–0.3, the overall AUC gradually dropped to 0.67. It further dropped to 0.62 when the noise level increased to 0.4, and eventually
became unacceptable (�0.55) when the noise level reached 0.5.

Table 3. Performance metrics of dynamic method on the time-course data of the simulation study

Stage I Stage II Stage III Stage IV Overall

AUC 0.97±0.000 0.98±0.000 0.88±0.000 0.93±0.000 0.94±0.040
P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
F2-score 0.98±0.000 0.97±0.000 0.85±0.000 0.91±0.000 0.93±0.052
MCC 0.93±0.000 0.92±0.000 0.78±0.000 0.75±0.000 0.85±0.082

Table 2. Performance metrics of stage-wise static (steady-state) method on the sample-based data of the simulation study

Stage I Stage II Stage III Stage IV Overall

AUC 0.57±0.033 0.56±0.052 0.51±0.031 0.61±0.016 0.56±0.056
P-value 0.034 0.249 0.747 <0.0001 0.284
F2-score 0.66±0.002 0.72±0.018 0.68±0.019 0.67±0.019 0.68±0.027
MCC 0.34±0.034 0.36±0.035 0.44±0.000 0.37±0.018 0.37±0.055
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0, 0.5 and 1.0 for interpolation, and 4.0 for both head-end
and tail-end extrapolation. We conducted 5 bootstraps
and thus obtained 25 model equations for each gene.
Consequently, 1300 model equations were generated for
52 genes (i.e. 25� 52). The model coefficients were solved
by LASSO regression. A network was constructed using
the top 185 connections [we reserved 185 connections to
ensure that all 52 nodes had an opportunity to be included
in the derived network, according to the Erdo00 s–Rényi
graph theory (18)]. The process was repeated 1000 times,
and correspondingly 1000 networks were obtained. The
confidence of a connection was calculated as its occurring
frequency in all the 1000 networks. The foregoing analyses
were performed in Matlab running in parallel on 20 server
computers (HP Proliant DL360 G7, Dual 6-core Intel
Xeon X5650 with a CPU frequency of 2.66 GHz, 12 MB
L3 Cache and 32G memory) for around 20 h. Figure 4
shows the curves of the connection confidence versus the
network connectivity for all five stages. The network con-
nectivity was defined as the number of connections
reserved in a network. Implementing a threshold either
on the connection confidence or the network connectivity
allowed us to restore the connections of a gene network.
Of the 2652 possible (without self) connections for a set
of 52 genes in the cell cycle signalling pathway, most
connections have very low confidence. For example,
at confidence threshold of 0.5 there are 143, 86, 76,
64 and 79 connections in the networks of normal, cirrho-
tic, dysplastic, early HCC and the advanced HCC
stage. Correspondingly the network connectivity on

these 5 stages are 0.054, 0.032, 0.029, 0.024 and 0.030,
respectively. Moreover, the connection confidence de-
creases exponentially as the network connectivity in-
creases from 0 to 1.0, and the curves of the four disease
stages (cirrhotic, dysplastic, early HCC and the advanced
HCC) have similar shapes, which are apparently different
from the one of the normal stage.

Enrichment analysis
The derived networks can be verified by enrichment
analysis. The known molecular interactions among the
53 TFs were extracted from three databases: the PINA
(protein interaction network analysis) (19), KEGG
(Kyoto encyclopaedia of genes and genomes) (20) and
ITFP databases (21), in which there were 342, 274 and
144 connections, respectively. Consequently, 610 distinct
interactions were retained after removing the overlaps.
Network enrichment was defined as the ratio of the pro-
portion of known interactions over the baseline propor-
tion of a random guess (in this case, the baseline was 0.23,
i.e. 610 known interactions among 2652 connections).
Network enrichment is considered to be significant if
the P-value of the significance test is smaller than 0.05.
Figure 5 shows the network enrichments at different
levels of network connectivity (0.01, 0.02, 0.03, 0.04 and
0.05), in which the significant enrichments are marked
with asterisks. Figure 5 shows that the network enrich-
ments were significant for all five stages when network
connectivity was 0.01 (i.e. 26 connections derived from
2652 connections), 0.02 (53 connections) or 0.03 (79 con-
nections). Meanwhile, network enrichments in the four
HCV-infected networks (cirrhotic, dysplastic, early HCC
and advanced HCC) remained significant when the
network connectivity level was 0.04 and 0.05. The
highest network enrichment was accomplished at connect-
ivity level of 0.01, in which around half of the network
connections were known interactions. More detailed
results of the network enrichment analysis are presented
in Supplementary Table S1 in the Supplementary Data.

Functional analysis
Five DCM networks were reconstructed with the connect-
ivity level of 0.03 (79 connections reserved in each
network) to describe the dynamical regulations during
HCC progression. The networks were visualized with
Cytoscape (http://www.cytoscape.org) and are shown in
Figures 6A–E. In these figures, the size of each node is
drawn in proportion to the sum of the products of the
confidence and strength over all the direct incoming and
outgoing connections, representing the activity of a gene
in a network. The activation and inhibition are denoted
with an arrow (!) and stop (?), respectively. The level of
the grey colour of an edge is in proportion to its confi-
dence level, and the line width is associated with the
strength of the regulation. All known interactions are
drawn in green, and novel ones are in blue.
As expected, in the network of the normal stage most of

the hub genes and key modules are related to the regular
activities of cell cycle regulation. For example, the hub
gene CDC20 encodes the cell-division cycle protein 20,
which is an essential regulator of cell division in humans

Figure 4. The curves of the connection confidence versus the network
connectivity for all five stages during HCC progression. Of the 2652
possible (without self) connections for a set of 52 genes in the cell cycle
signalling pathway, most connections have very low certainty of occur-
rence. The connection confidence decreased exponentially as the
network connectivity increased from 0 to 1.0, also the curves of the
four disease stages (cirrhotic, dysplastic, early HCC and the advanced
HCC) have similar shapes, which are apparently different from the one
of the normal stage.
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(22,23). As indicated in the network, CDC20 also pro-
motes cell cycle progression by suppressing CDKN2B
(the blue edge represents a novel connection), which
encodes a cell growth inhibitor. Another active module
of CCNB1 and CDC2 regulates the activity of mitosis
through the Cyclin B1-Cdc2 kinase (24).
In the cirrhotic network, in addition to the CDC20

module that regulates the regular cell cycle activities, a
new hub gene, TGFB1, became active. It has been
reported that TGF-beta1 (encoded by TGFB1) is signifi-
cantly upregulated by the HCV core protein (25), and the
upregulation of TGFB1 can inhibit the secretin and
activity of many cytokines and various interleukins, and
decrease the expression levels of cytokine receptors to
down-regulate the activity of immune cells (26,27).
Moreover, the novel regulation from ABL1 to TGFB1
in the network can be explained by Cayne and Bergelson
(28), in which it was reported that virus-induced Abl
kinase allows the coxsackievirus to enter through epithe-
lial tight junctions.
In the dysplastic network, the regular cell cycle regula-

tory modules CCNB1 (which encodes Cyclin B1) and
CDC2 (which encodes Cdk1) remain active, and the new
modules CDK2 and CDK4 also become active at this
stage. It has been reported that the activation of CDK2
and CDK4 can only occur in cells expressing full-length
HCV (HCR6-Rz) RNA after 44 days (29). Indeed, the
just-in-time appearance of CDK2 and CDK4 in the dys-
plastic network suggests that the DCM can capture the
dynamic gene regulation patterns in HCC progression.
Moreover, the activated pathways of CDKN1A-CDK2-
E2F4-RBL1 and CDKN2A-CDK2-E2F5 found in the
network confirm the findings in (30), which reported
that the CKI-CDK-E2F-Rb pathway (note that

CDKN1A and CDKN2A are both CKIs—Cyclin depend-
ent kinase inhibitor genes, and RBL1-encoded protein is
similar in sequence and function to the product of the RB1
gene) is activated by HCV infection. Other links, such as
regulation from SMAD2 to TGFB1 (31), regulation from
HDAC1 to SMAD2 (32) and bidirectional regulations
between SMAD2 and EP300 (32), have also been
confirmed.

The most prominent difference between early HCC and
the dysplastic network is the module comprising EP300,
HDAC1, HDAC2, TFDP2 and E2F3. It has been recently
reported that HDAC inhibitors and EP300 (which
encodes the E1A binding protein) are directly responsible
for the up-regulation of microRNA-24 (miR-224), which
is one of the most commonly up-regulated microRNAs in
HCC that affect crucial cellular processes such as apop-
tosis and cell proliferation (33). Meanwhile, the
up-regulation of TDDP2 (which encodes the transcription
factor DP2) and E2F3 in HCC have also been confirmed
(34). Furthermore, most of the connections in the PCNA,
CDC6 and CDKN2A module are known molecular inter-
actions. It has been reported that PCNA express different
isoforms in human HCCs compared to those in cirrhosis,
suggesting that PCNA may play a role in HCC genesis
(35). The cell cycle modules are still one of the most
active modules, including the genes of CCNA2, MCM6,
CHEK1 and CCNB. CCNA2 and MCM6 are highly
conserved genes, responsible for regular cell cycle regula-
tion. Chk1 (encoded by CHEK1) is a kinase that phos-
phorylates cdc25, and the phosphatase cdc25 can
dephosphorylate cdk1, which activates Cyclin B1
(CCNB1).

In the advanced HCC network, the main function of the
cell cycle signalling pathway becomes tumour suppressing.

Figure 5. Network enrichments on the known molecular interactions during HCC progression. Significant enrichments were marked with asterisks.
Network enrichments are significant for all five stages at network connectivity of 0.01 (26 connections), 0.02 (53 connections) and 0.03 (79 connec-
tions). Network enrichments remained to be significant for the four HCV-infected networks (cirrhotic, dysplastic, early HCC and advanced HCC) at
network connectivity of 0.04 and 0.05. The highest enrichment was accomplished with a network connectivity of 0.01.
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The dominant gene is CDKN1A, by which the induced
protein p21 is a potent Cyclin-dependent kinase (cdk)
inhibitor. The expression of CKDN1A is tightly
controlled by the tumour suppressor protein p53,
through which p21 mediates the p53-dependent cell cycle
G1 phase arrest in response to a variety of stress stimuli
(36,37). Like p53, p21 is a tumour suppressor. In the

network, CDKN1A/p21 inhibits EP300, HDAC1 and
HDAC2, and thereby down-regulates the expression of
microRNA-24 (one of the most commonly up-regulated
microRNAs in HCC) (33). Meanwhile, CDKN1A/p21
also inhibits CCNE and CCNA (both up-regulated in
HCC) (17). Furthermore, the PCNA, PRKDC and
RAD21 module is important to DNA repair as it also

Figure 6. The GRNs reconstructed by our DCM using the sample-based transcriptional data of the five consecutive stages during HCC progression.
(A) The reconstructed GRN for the normal stage; (B) The reconstructed GRN for cirrhotic stage of HCC; (C) The reconstructed GRN for the
dysplastic stage of HCC; (D) The reconstructed GRN for the early HCC stage; and (E) The reconstructed GRN for the advanced HCC stage.
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helps to suppress tumours. For example, PCNA-induced
protein is ubiquitinated in response to DNA damage, and
is involved in the RAD6-dependent DNA repair pathway
(38). DNA-PKcs induced by PRKDC is required for
the non-homologous end-joining (NHEJ) pathway of
DNA repair, which rejoins double-strand breaks. The
double-strand-break repair protein rad21 homologue is
a protein that is encoded by the RAD21 gene in
humans (39).

DISCUSSION

Conventional dynamic network inference approaches are
not applicable to sample-based data, which is the most
common type of data for many bio-medical processes
such as human diseases (40,41). To overcome the limita-
tions of dynamic approaches, we developed a DCM to
reconstruct dynamic gene networks from sample-based
data. A simulation study showed that our method was
more accurate in recovering the true interactions compared
with the existing approach using the same data.
Our method was applied to modelling the HCC progres-

sion using the existing sample-based transcriptional data.
The resulting networks were verified by network enrich-
ment analysis and functional analysis. These networks sig-
nificantly and robustly enriched the known interactions at
different levels of network connectivity. In general, the
known interactions were more condensed in sparser
networks, suggesting that the confidence measure can ac-
curately reflect the true regulatory relationship. In particu-
lar, when the network was very sparse with a network
connectivity level of 0.01 (i.e. with only 26 connections
preserved), around half of the predicted connections can
be associated with known molecular interactions.
Modularity and network rewiring phenomena were

observed in the DCM networks. The activation and inhib-
ition of different hub genes and modules reflect the
dynamic alterations of network functionality that may
be responsible for, or responsive to HCC progression.
For instance, the TGFB1 module was turned on by the
immune system when triggered by HCV infection, as
shown in Figure 6B, which coincides well with the char-
acteristic of the cirrhotic stage. Activations of CDK2 and
CDK4, which are transient patterns that only occur after
a certain period successive to HCV infection, were clearly
identified in the dysplastic network, as shown in
Figure 6C. Transient patterns were also observed in the
early HCC network, including activation of the HDAC
and EP300 module and the PCNA module, suggesting
that the tissue was evolving towards HCC. Moreover,
the dominant role of CDKN1A in the advanced HCC
network suggests that the main function of the cell cycle
signalling pathway, have evolved from cell cycle regulating
to tumour suppressing.
Another thing that we observed is that the DCM

networks may retain significantly different levels of
network connectivity for different stages of HCC, even
with the same confidence threshold. For instance, with a
confidence threshold of 0.5, there were 143, 86, 76, 64 and
79 connections reserved for the normal, cirrhotic,

dysplastic, early HCC and advanced HCC stages. The
normal stage retained the largest number of connections,
suggesting that gene regulation in the normal stage was
more stable (or in other word, gene-evolving speed is
slower) than in the disease stages. Similarly, the early
HCC network retained the fewest connections, suggesting
that the speed of gene evolution in early HCC may be
faster than in other stages.

From the viewpoint of dynamic theory, disease progres-
sion can be considered a state transition process (40), from
a normal state, to a disease onset state and its advanced
state. In the case of HCC, the stable trajectory of gene
regulation in the normal system, once disturbed by
tumour initiation, may gradually drifted to a dynamic tra-
jectory of cancer development towards the terminal HCC
stage. The overall trajectory of gene transcription may be
highly nonlinear and time dependent, hence time-course
measurement is naturally an ideal way of describing this
dynamic behaviour. To that end, the DCM model can be
regarded as an alternative to the time-course approaches,
by using a stage-cascaded linear approximation to
estimate the actual nonlinear trajectory.

Our method provides a new way of re-engineering
dynamic networks even when time-course data are not
available. We expect that it will bring maximal benefits
in studying gene regulations during the dynamic processes
of many chronic genetic diseases, such as cancer, diabetes,
etc. However, the improvement of the DCM over the
steady-state approach may be minor when the state
spaces are truly or nearly steady. In addition, the perform-
ance of the DCM may deteriorate if the samples are
unevenly distributed in a stage, e.g. when the samples
are concentrated within a narrow range of a stage. The
programs and relevant data are available from http://
www.comp.hkbu.edu.hk/�hlzhu/NAR_codes.html.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figures 1–5 and
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30. Tsukiyama-Kohara,K., Toné,S., Maruyama,I., Inoue,K.,
Katsume,A., Nuriya,H., Ohmori,H., Ohkawa,J., Taira,K. and
Hoshikawa,Y. (2004) Activation of the CKI-CDK-Rb-E2F
pathway in full genome hepatitis C virus-expressing cells. J. Biol.
Chem., 279, 14531–14541.

31. Derynck,R. and Zhang,Y.E. (2003) Smad-dependent and
Smad-independent pathways in TGF-family signaling. Nature,
425, 577–584.

32. Wotton,D., Lo,R.S., Lee,S. and Massagué,J. (1999) A Smad
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