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Abstract
This paper describes a free energy principle that tries to explain the ability of biological systems to
resist a natural tendency to disorder. It appeals to circular causality of the sort found in synergetic
formulations of self-organization (e.g., the slaving principle) and models of coupled dynamical
systems, using nonlinear Fokker Planck equations. Here, circular causality is induced by
separating the states of a random dynamical system into external and internal states, where
external states are subject to random fluctuations and internal states are not. This reduces the
problem to finding some (deterministic) dynamics of the internal states that ensure the system
visits a limited number of external states; in other words, the measure of its (random) attracting
set, or the Shannon entropy of the external states is small. We motivate a solution using a principle
of least action based on variational free energy (from statistical physics) and establish the
conditions under which it is formally equivalent to the information bottleneck method. This
approach has proved useful in understanding the functional architecture of the brain. The
generality of variational free energy minimisation and corresponding information theoretic
formulations may speak to interesting applications beyond the neurosciences; e.g., in molecular or
evolutionary biology.
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1. Introduction
What are the basic principles that underwrite the self-organisation or self-assembly of
biological systems like cells, plants and brains? This paper tries to address this question by
asking how a biological system, exposed to random and unpredictable fluctuations in its
external milieu, can restrict itself to occupying a limited number of states, and therefore
survive in some recognisable form. The answer we entertain is based upon a variational free
energy minimisation principle that has proved useful in accounting for many aspects of brain
structure and function. In brief, biological systems can distil structural regularities from
environmental fluctuations (like changing concentrations of chemical attractants or sensory
signals) and embody them in their form and internal dynamics. In essence, they become
models of causal structure in their local environment, enabling them to predict what will
happen next and counter surprising violations of those predictions. In other words, by
modelling their environment they acquire a homoeostasis and can limit the number of states
they find themselves in. This perspective on self-organisation is interesting because it
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connects probabilistic descriptions of the states occupied by biological systems to
probabilistic modelling or inference as described by Bayesian probability and information
theory [1,2]. This connection is exploited to interpret biological behaviour in terms of action
and perception and to show that action and perception (in an abstract sense) can be found
any system that resists a natural tendency to disorder. Furthermore, such systems conform to
information theoretic constraints, of the sort prescribed by the information bottleneck
method.

Over the past decade, a free energy principle has been proposed that explains several aspects
of action, perception and cognition in the neurosciences [3]. This principle appeals to
variational Bayesian methods in statistics to understand how the brain infers the causes of its
sensory inputs based on the original proposal of Helmholtz [4] and subsequent advances in
psychology and machine learning [5–8]. In brief, variational Bayesian methods allow one to
perform approximate Bayesian inference, given some data and a (generative) model of how
those data were generated. The key feature of these methods is the minimization of a
variational free energy that bounds the (negative log) evidence for the model in question.
This minimization eschews the difficult problem of evaluating the evidence directly [9],
where evidence corresponds to the probability of some data, given the model. The
underlying variational methods were introduced in the context of quantum physics by
Richard Feynman [10] and have been developed by Geoffrey Hinton and others in machine
learning [11,12]. These variational methods furnish efficient Bayesian procedures that are
now used widely to analyze empirical data; e.g., [13]. Crucially, under some simplifying
assumptions, these variational schemes can be implemented in a biologically plausible way,
making them an important metaphor for neuronal processing in the brain. One popular
example is predictive coding [14]. The same variational formalism has also found a
powerful application in the setting of optimal control and the construction of adaptive
agents. For example, Ortega and Braun [15], consider the problem of optimising active
agents, where past actions need to be treated as causal interventions. They show that that the
solution to this variational problem is given by a stochastic controller called the Bayesian
control rule, which implements adaptive behaviour as a mixture of experts. This work
illustrates the close connections between minimising (relative) entropy and the ensuing
active Bayesian inference that is the focus of this paper.

Minimising variational free energy (maximising Bayesian model evidence) not only
provides a principled explanation for perceptual (Bayesian) inference in the brain but can
also explain action and behaviour [15,16]. This rests on noting that minimizing free energy
implicitly minimizes the long-term time average of self-information (surprisal) and, under
ergodic assumptions, the Shannon entropy of sensory states. The principle of variational free
energy minimization has therefore been proposed to explain the ability of complex systems
like the brain to resist a natural tendency to disorder and maintain a sustained and
homoeostatic exchange with its environment [17]. Since that time, the free energy principle
has been used to account for a variety of phenomena in sensory [18,19], cognitive [20] and
motor neuroscience [21–23] and has provided useful insights into structure-function
relationships in the brain (Table 1). Free energy formulations also provide a powerful
account of optimal control beyond biological settings and can be derived axiomatically by
considering the information costs and complexity of bounded rational decision-making [24].
These formulations provide an important link between information theory (in the sense of
statistical thermodynamics) and general formulations of adaptive agents in terms of utility
theory and optimal decision theory.

In what follows, we motivate the free energy principle in general (and abstract) terms –
using random dynamical systems and information theory – starting with the premise that
biological agents resist a dispersion of their states in the face of fluctuations in the
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environment. We presume that this characterizes open biological systems that exhibit
homoeostasis (from Greek: ὅμoιoς, hómoios, similar and στάσις, stásis, standing still) –
in other words, systems that maintain their states within certain bounds [17,25–30] Using
minimal assumptions, we show that this sort of behaviour can be cast in terms of Bayesian
modelling of causal structure in the environment; in a way that is consistent with both the
good regulator theorem (every Good Regulator of a system must be a model of that system
[31]) and Jaynesian perspectives on statistical physics [32]. Having established that
variational free energy minimization is a sufficient account of self-organising behaviour, we
then consider this behaviour in terms of information theory, in particular the information
bottleneck criterion. We conclude by illustrating the implications of the theoretical
arguments with a neurobiological example. This example focuses on perception in the brain,
to show how it informs the functional architecture of brain circuits.

2. Entropy and Random Dynamical Attractors
The problem addressed in this section is how low-entropy probability distributions over
states are maintained, when systems are immersed in a changing environment [17]. In
particular, how do (biological) systems resist the dispersive effects of fluctuations in their
external milieu? We reduce this problem to finding a deterministic mapping among the
physical states of the system that ensures they occupy a small number of attracting states. In
the following, we describe the sort of behaviour that we are trying to explain and consider a
solution based on the principle of least (stationary) action.

2.1. Setup and Preliminaries
This section uses the formalism provided by random dynamical systems [34–36]. Roughly
speaking, random dynamical systems combine a measure preserving dynamical system in
the sense of ergodic theory, with a smooth dynamical system, generated by the solution to
random differential equations. Random dynamical systems consist of a base flow and a
dynamical system on some physical state space X ∈ Rd . The base flow ϑ : R × Ω → Ω
comprises measure-preserving measurable functions ϑt : Ω → Ω for each time t ∊ R. These
functions constitute a group of transformations of a probability space (Ω,B,P), such that
(Ω,B,P,ϑ) is a measure preserving dynamical system. Here B is a sigma algebra over Ω and

P : B → [0,1] is a probability measure. The dynamical system  comprises a solution
operator or flow map . This is a measurable function that maps to the
(metric) state space X ∈ Rd and satisfies the cocycle property:

. The flow map can be regarded as (being generated from)
the solution  to a stochastic differential equation of the form:

(1)

We use a Langevin form (as opposed to a differential form) for equation (1) because the
fluctuations ω(t) :=ϑt(ω) generated by the base flow can be continuous (differentiable).
Here, we consider the base flow to represent universal or environmental dynamics and Ω to
be a sample space. This sample space is the set of outcomes ω(t) ∈ Ω that result from the
environment acting on the system. In other words, the environment is taken to be the

measure preserving dynamical system (Ω,B,P,ϑ) in which the dynamical system  is
immersed. The dynamical system is our biological system of interest and can be regarded as
being generated from the solution to the differential Equation (1) describing its dynamical
behaviour.

Karl Page 3

Entropy (Basel). Author manuscript; available in PMC 2012 November 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



In what follows, we denote a particular system by the tuple . Equation (1) is
particularly appropriate for biological systems, given that biological systems are normally
cast as differential equations; from the microscopic level (e.g., Hodgkin Huxley equations)
through macroscopic levels (e.g., compartmental kinetics in pharmacology) to population
dynamics (e.g., Lotka-Volterra dynamics) [37]. In other words, the flow maps of random
dynamical systems have the same form as existing models of biological systems that are cast
in terms of differential equations pertaining to physical states. For example, the Hodgkin
Huxley equations describe the dynamics of intracellular ion concentrations and
transmembrane potentials, while Lotka-Volterra equations described changes in the
ensemble distribution of physical states over large numbers of neurons or, indeed,
conspecifics in evolution.

Crucially, we allow for a partition of the state space X = R×S, where R ⊂ X is distinguished
by the existence of a map  that precludes direct dependency on the base flow.
In this sense, R ⊂ X constitutes an internal state space, while S ⊂ X constitutes an external
state space. In this construction, the internal and external maps satisfy the following
equalities:

(2)

These maps can be regarded as the solutions to stochastic differential equations of the form:

(3)

Finally, we allow for the possibility that the external map  may only
depend on a subset of internal states A ⊂ R. We will see later that these states allow the
agent to act upon the environment. In this set up, internal states have dynamics that depend
on external states and themselves, while external states depend on internal states and
themselves but are also subject to fluctuations. See Figure 1 and Table 2. The distinction
between external and internal states will become important below when considering self-
organization in terms of constraints on, and only on, the dynamics of internal states.

2.2. Ergodic Behaviour and Random Dynamical Attractors
To provide some intuition about the sorts of systems that might be modelled in this way,
consider two special cases, open and closed systems: open systems have no internal states
and X = S ∈ Rd. In this case, all states are subject to environmental fluctuations and the flow
map corresponds to the solution to stochastic differential equations—as in equation (1).
Examples here might include models in computational biology that are used to study self-
organizing systems that attain non-equilibrium steady-state [29,38–40] or persistence in
fluctuating environments . The key aspect of these systems is that they possess a
characteristic distribution of physical states—usually referred to as steady-state and yet
operate far from equilibrium. Key examples here range from intracellular kinetics in
molecular biology through to neuronal circuits in neuroscience and, at the highest level, the
self organisation of entire phenotypes, as studied in theoretical biology and situated
(embodied) cognition.

Closed systems have no external states and X = R ∈ Rd such that random fluctuations can be
discounted. The corresponding flow map then becomes a deterministic mapping among
internal states and can be associated with the solution to ordinary differential equations with
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deterministic attractors (in the classical or Milnor sense). Examples of these systems could
be classical attractors [42] and coupled networks that exhibit complicated and itinerant
behaviour, with weakly attracting sets [43,44,37,45]. Here, we consider systems with both
external and internal states that furnish models of a system in a changing (and possibly non-
ergodic) environment.

2.3. Circular Causality and Active Systems
In synergetics and the study of self-organizing systems [46,47], one could associate the
external states with microscopic system variables (stable modes) that show fast fluctuations,
while the internal states might correspond to the macroscopic order parameters (unstable
modes) that enslave them. The same theme of circular causality is seen in nonlinear Fokker-
Planck formulations of coupled nonlinear random dynamical systems [48,49], where
(macroscopic) mean field effects couple back to the density over (microscopic) states by
changing their flow. This is a ubiquitous sort of behaviour that arises when some states ‘see’
a large number of other states, such that their flow is determined, effectively, by the average
over the states they see. This means the microscopic dynamics are caused by macroscopic
mean field effects that are constituted (caused by) microscopic states.

The sorts of systems we have in mind here are biological systems, where one can regard the
(microscopic) external states  as the state of sensory receptors, while the
internal states  that include a(t) ∈ A ⊂ R, respond to sensory perturbations.
For example, in a single cell, external states could be associated with the states of
transmembrane receptors, while the internal states might include the concentrations of
intracellular metabolites, depolarization or temperature [50,51]. Later, we will consider the
brain, were external states could correspond to sensory input and internal states to
macroscopic variables, like neuronal firing rates. We will refer to a(t) ∈ A) as active states
because they control how environmental fluctuations are sampled by the sensory states.
Active states could correspond to the states of the system that change its physical
configuration or exposure to outcomes (e.g., the motion of flagella in single cell organisms
or sensory epithelia like the retina). In summary, the opportunity for circular causality arises
because internal states depend on external states, while the internal couple back to the
external states by changing their flow or motion: see equation (3).

We are interested in systems whose physical states  are confined to a
bounded subset of states and remain there indefinitely. In terms of random dynamical
systems, this means the system possesses a random dynamical attractor [34,35,52], which
we assume is ergodic. This is a random compact set A(ω) ⊂ X that is invariant under the
flow map such that . In terms of ergodic theory [53], this means
there is a unique and stationary ergodic density p(x|m) that is proportional to the amount of
time each state is occupied. Alternatively, the recurrence time between visits to states in the
attracting set is inversely proportional to the ergodic density. This ergodic density is central
to the arguments in this paper. It characterises the distribution of states occupied by a system
over the long term and is therefore subject to important constraints, given that the system
persists over long periods of time. Later, we will see that marginal ergodic density over
external states can be interpreted in a statistical or information theoretic sense as the
marginal likelihood or evidence for a model of external dynamics entailed by the system.
This allows us to interpret the internal dynamics of the system as an abstract form of
inference and information exchange with the environment.

The ergodic density can be characterized by its Shannon entropy, to which the long-term
average of self-information or surprisal L(x(t)) converges, almost surely:
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(4)

The ergodic density p(x|m) is an invariant probability measure that can be regarded as the
probability of finding the system in any state when observed at a random point in time. The
existence of the ergodic density and its underlying attractor ensures the system has invariant
characteristics that underwrite its existence over time. Strictly speaking, the entropy in (4) is
a differential entropy (as opposed to a normal or absolute entropy), because we are dealing
with continuous states.

Remarks—The integral in the final equality above is over the Lebesgue measure λ(B) of
any measurable subset B ⊂ X of the (metric) state space and defines the ergodic density in
terms of the system’s flow. The slightly unusual conditioning of probability densities on the

system  simply associates the probability densities with a particular system. This
notation comes from Bayesian statistics, where one can consider different systems (with
different internal states) that might possess the same external states. We will exploit this

perspective later, under which  can be regarded as a model of environmental
fluctuations and internal states,  as representations of their causes. Finally,
note that the Shannon entropy above is an information entropy as opposed to a metric or
Kolmogorov Sinai entropy. In other words, it is an invariant measure that summarizes the
number of distinct states the system occupies. This can be expressed more formally in terms
of the entropy of the ergodic density:

Lemma 1 (ergodic entropy): the entropy of the ergodic density of a random dynamical

system  is upper bounded by the Lebesgue measure of its attractor (if it exists):

(5)

Proof—The entropy is maximal when the ergodic density is distributed uniformly over the
attracting set A (ω) ⊂ X [54]. In this case:

(6)

where the first equality ensures that the integral of the ergodic density over states is unity.

In brief, the measure or volume of a system’s attracting set places an upper bound on the
entropy of its ergodic density. In other words, if the measure is small then the entropy must
be small[er]. We now use this to motivate a definition of ergodic random dynamical systems
that actively maintain low entropy. These systems occupy a limited repertoire of attracting
states and will thereby exhibit a homoeostasis [25]. We associate this sort of system with
biological systems, like single cells and more complex organisms.
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Definition 1 (active systems): an ergodic random dynamical system  is said to be
active if it possesses an internal map that satisfies (locally) the extremal condition:

(7)

In other words, the internal states  minimize the entropy of the ergodic
density over external states. The minimization of the entropy with respect to internal states
generated by the deterministic map  will depend upon the probabilistic map
from the environment . Put simply, the internal states of active systems
minimise the dispersion of their external or sensory states.

The motivation for Definition 1 is simple: systems that do not minimize their entropy are
unlikely to exist, in the sense that the measure of their random dynamical attractors A (ω)
can be arbitrarily large and their recurrence times arbitrarily long. In this view, (active)
random dynamical systems that exist are simply solutions to (7), under the constraints
provided by environmental fluctuations. Crucially, active systems minimize surprisal and
conform to the principle of least action:

Lemma 2 (principle of least action): the internal states of an active system minimize the
Lagrangian or surprisal L(s(t)) such that the variation δrS of action S with respect to its
internal states r(t) ∈ R vanishes:

(8)

Here, action S is the time or path-integral of the Lagrangian L(s(t)), which is the surprisal
(or more simply surprise) associated with external states. Equation (8) also implies the
converse; if the variation of action with respect to internal states is zero, then the system is
active (from Definition 1)

Proof—The proof is straightforward and rests on noting that action and the entropy of the
ergodic density over external states are related via the ergodic theorem [53]. From (7):

(9)

where T ∈ R+ is a suitably long observation time. This equivalence means that

, where  by
the fundamental Lemma of variational calculus.

Remark (evidence maximization): Because the Lagrangian or surprise L(s(t)) = −ln p(s(t)|
m) is the negative log-evidence in Bayesian statistics, active systems maximize the long
term time-average of their log-evidence (by Definition 1). Heuristically, this means that they
actively sample their environment to maximize the evidence for their own existence [2]. We
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will now look more closely at this heuristic from the point of view of active (Bayesian)
inference and the free energy principle:

3. Active Inference and the Free Energy Principle

The notion of random dynamical systems  that possess internal states allows one
to cast self-organization in terms of a deterministic map  (Definition 1), with
minimal assumptions about how the system is coupled to the environment through

, or the dynamics of the environment (ΩB,P,ϑ). In this setting, self-
organization can be understood in terms of a circular causality, in which internal (e.g.,
macroscopic) states entrain the external (e.g., microscopic) states from which they are
derived. The outstanding issue is how the deterministic internal map minimizes the surprise
or entropy of external states, given that internal states do not ‘know’ how they affect
external states. Intuitively, the solution considered below regards the system as optimizing a
probabilistic (generative) model of external dynamics, which is used to minimize surprise.
More formally, we want to express the internal states in terms of some real valued and
measurable functional F :R × X → R of states that satisfies (7). To see how this can be done
we need to define three further quantities:

Definition 2 (the generative model): Let the density p(s(t)|m) defined in equation (7) be
expressed in terms of some arbitrary parameters ψ(t) ∈ Ψ that are themselves (fictive)
random variables:

(10)

The generative model is then defined by the probability density function p(s(t),ψ (t) | m). In
statistics p(s(t) | ψ (t),m) is known as the likelihood and p(ψ(t)|m) is called a prior. As noted
above, p(s(t)|m) is known as the marginal likelihood or evidence.

Definition 3 (the proposal density): Let q(ψ(t) | μ(t)) denote a mapping 
such that for all ψ(t) ∈ Ψ :

(11)

This means that q(ψ(t) | μ(t)) plays the role of an arbitrary probability density function over
the parameters of the generative model, where this density is parameterized by μ(t) ∈ R.
Crucially, μ(t) ⊂ r(t) are internal states, such that the internal state of the system induces a
proposal density over the variables that parameterise the evidence or marginal likelihood of
external states.

Remark
The (fictive) variables ψ(t) ∈ Ψ are not observable quantities; they are induced with the
proposal density and only exist to parameterise the marginal likelihood. We will see later
that they can be regarded as the (fictive) causes of environmental fluctuations, under a
generative model. In statistics and machine learning they are often called hidden states,
because they are not observable.

Definition 4 (free energy): the free energy is now defined in terms of the proposal and
generative densities as the following expectation [9,12,6]:
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(12)

Note that the free energy is a scalar function of, and only of, the system states
. With these definitions in place, we can now express the internal

dynamics of active systems in terms of a free energy principle:

Proposition 1 (the free energy principle): Let  be an ergodic random dynamical
system with state space X = R × S ∈ Rd . If the internal states r(t) ∈ R minimize free energy,
then the system conforms to the principle of least action and is an active system (by Lemma
2):

(13)

Proof
From Definition 3, we can express free energy in terms of surprise and a Kullback-Leibler
divergence or cross entropy

(14)

By Gibbs inequality DKL ≥ 0 [55]. This means that when free energy is minimized with
respect to μ(t) ∈ R the divergence will be zero (provided such a solution exists – please see
below). This means free energy becomes surprise F (x(t)) = L (s(t)) and its variation with
respect to a(t) ∈ R vanishes:

(15)

From (8) we see that surprise does not depend on μ(t), which means 
and therefore δrS = 0 from (15).

Remarks
these are standard results that underlie variational Bayesian methods such as variational
Bayes and Bayesian filtering [9,11,12]. In short, minimizing free energy with respect to the
internal states renders it the surprise that is minimized by active states. This implicitly
minimizes the path integral of surprise over time (action). In the above proof, we have
assumed that – when minimised – the divergence term is zero. This rests on the assumption
that the proposal density can have the same form as the conditional density in the
denominator of the divergence term. As we will see below, this corresponds to exact
Bayesian inference. More generally, when the form of the proposal density does not permit
an exact match to the conditional density, the free energy becomes a bound approximation to
surprise and we have what is known as approximate Bayesian inference [9]. To conclude
this section, we consider three important corollaries of the free energy principle, starting
with the Bayesian interpretation:

Corollary 1 (Bayesian inference): Systems that conform to the free energy principle
represent the causes of their sensory states in a Bayesian sense: This follows from (14),
where minimizing free energy with respect to the internal states minimizes the divergence
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between the proposal density and the posterior density over the parameters of the likelihood
function:

(16)

In other words, the optimal proposal density q(ψ(t) | μ(t)) – parameterized by internal states
– becomes the posterior p(ψ(t) | s(t),m), under the model entailed (see below) by the system.
In a neurobiological setting, this is known as the Bayesian brain hypothesis [7,8] and
appeals to the notion that the brain makes inferences about the causes of its sensory inputs
[4,6]: see [2] for a review. In this setting, the parameters of the likelihood function can be
regarded as hidden states in the environment or hidden causes of sensory states, while the
internal states become representations; in the sense that they parameterize the posterior
density over (fictive) causes. Generally, because one cannot guarantee the disappearance of
the divergence in Equation 14, the ensuing inference is referred to as approximate Bayesian
inference. This form of inference underlies the majority of variational Bayesian procedures.

Corollary 2 (active inference): Systems that conform to the free energy principle will
selectively sample what they ‘expect to see’. This follows from a final rearrangement of free
energy in terms of complexity and accuracy or the log likelihood of sensory states under the
proposal density:

(17)

This is called active inference and manifests as a selective sampling of (typical) sensory
states that are most likely under the system’s posterior beliefs (by Corollary 1). It should be
noted that we have not been explicit about how sensory states depend upon active states. In a
practical setting, (17) is usually implemented using a generalized gradient descent (see next
section), where the generalized motion of sensory states is controlled by active states. Active
inference in biological systems has been introduced as a way of understanding motor control
and behaviour in neuroscience. In this setting, the minimisation of free energy with respect
to action reduces to simple reflexes. See Table 1 and [21].

Corollary 3 (Maximum entropy principle): From the representational perspective of
corollary 1, minimizing variational free energy entails maximizing the entropy of the
proposal density. This can be seen easily by rewriting the expression for free energy in terms
of the negative entropy of the proposal density and an expected log density:

(18)

This means that the proposal density encoding a probabilistic representation of hidden states
should conform to the maximum entropy principle [32] (under the constraint that it provides
a plausible explanation for sensory states), which can be regarded as a generalization of
Laplace’s principle of indifference. Heuristically, this ensures generic explanations for
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external or sensory states that do not depend on overly specific (low entropy) beliefs about
how they were caused (cf., Occam’s razor).

Corollary 4 (entailment): A system can be said to entail a generative model when a pair of
probability density functions p(s(t),ψ (t) | m) and q(ψ(t)|μt) satisfy (13). The existence of
the proposal density q(ψ(t) | m(t)) is central to this entailment and means that the internal
states ‘represent’ the parameters of the generative model in a probabilistic sense.

Entailment is important because it means the internal states of a system encode or transcribe
causal regularities in the processes generating external states. This means that the system
behaves as if it is a model of the environment. This means that much can be inferred about
the system’s environment from the dynamics of its internal states; provided one can identify
or approximate the proposal and generative densities that satisfy (13). In one sense,
identifying these densities is the key to understanding the nature of the system and how it
has adapted to its environment. This is probably best illustrated when applying the free
energy principle to the brain to understand its functional architecture and the nature of
neuronal codes [57]. In the final section, we will look at message passing in the brain under
the free energy principle to illustrate how the theoretical approach above has been applied in
practice. First, we examine systems that minimise free energy in terms of information
theoretic descriptions.

4. Perception, Free Energy and the Information Bottleneck
In the next two sections, we will focus on perception from the point of view of information
theory and biological implementation in the brain, respectively. This section considers free
energy minimisation in light of the information bottleneck method to show that they are
internally consistent – therefore suggesting that the information bottleneck approach may be
a useful way to describe biological self-organisation.

4.1. The Information Bottleneck
In its broadest (and simplest) sense, the information bottleneck method seeks to optimise the
trade-off between accuracy and complexity when summarising hidden states, given a joint
probability distribution over hidden states and observations (the generative model in
Definition 2). This trade-off provides an important constraint on inferring hidden states and
– in Bayesian terms – inference. Given that both the information bottleneck method and the
free energy formulation are information theoretic formulations one might anticipate that they
lead to the same sorts of optimal inference. Indeed, (17) shows that minimising free energy
corresponds to minimising complexity, while maximising accuracy. The corresponding
trade-off in the information bottleneck method can be expressed in terms of a criterion:

(19)

Here I(R; Ψ) and I(S;R) correspond to the mutual information between internal states and
hidden states and between sensory (external) states and internal states, respectively.
Minimising the first term, corresponds to minimising complexity, while minimising the
second maximises the accuracy of the representation of sensory states by internal states. In
the present context, we can express the information bottleneck criterion in terms of its
constituent entropies:

(20)
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The entropies in (20) have been conditioned on to emphasise that the underlying probability

distributions are defined in relation to a generative model. The quantity  is a reduced
information bottleneck criterion that follows from the fact that – from the point of view of
inference – the entropy of sensory states is fixed and can be eliminated from the criterion.
Similarly, the conditional entropy (equivocation) of the internal states, given the hidden
states can be eliminated, because the hidden states are unknown. In this reduced form, the
information bottleneck requires the internal states (representations) to predict sensory states
accurately, under the constraint that their entropy is small. In other words, there are a small
number of internal states with minimal dispersion that ensure complexity is minimised. So
can the (reduced) information bottleneck criterion be derived from free energy
minimisation?

4.2. Free Energy Minimisation and the Information Bottleneck
If we assume (for simplicity) that the proposal density is a point of mass (delta function)
over a particular value of hidden states μ(t) ∈ R, then the ensuing (reduced) free energy can
be expressed as (from equation 17):

(21)

From point of view of Bayesian inference, this corresponds to maximum a posteriori point
estimation and returns the most likely value of hidden states. If we now consider minimising
the path integral of this (reduced) free energy, under ergodic assumptions we obtain:

(22)

This path integral is exactly the same as the (reduced) information bottleneck criterion,
demonstrating a pleasing consilience between the free energy formulation and the
information bottleneck approach. This formal equivalence rests upon the ergodic reduction
of variational free energy through maximum a posteriori Bayesian inference. Heuristically,
is illustrates that the complexity minimisation, implicit in the information bottleneck
method, appeals to the prior beliefs entailed by the system; which reduce the dispersion of
internal states summarising hidden states. In summary, this section suggests that active
systems that minimise variational free energy – through optimising their internal states –
comply with the constraints afforded by the information bottleneck method. The next section
we consider how real biological systems might implement this minimisation. The following
section is a brief summary of the material presented in [2].

5. Perception in the Brain
This section focuses on the implication of the theoretical arguments above– that active
systems perform some form of approximate Bayesian inference. This is probably best
exemplified in sensory neuroscience; where the notion of the Bayesian brain has a long
history [4]. The minimization of free energy with respect to a system’s internal states (16) is
particularly revealing when applied to the brain. The key to link this minimization with the
dynamics of biological systems rests on assuming their internal states perform a gradient
descent on free energy. A general scheme that performs this gradient descent is generalized
filtering [59]:

(23)
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This has the same form as Bayesian (e.g., Kalman-Bucy) filtering, used in time series
analysis. In this setting, the internal states  correspond to conditional expectations or
maximum a posteriori estimates of hidden states ψ(t) ∈ Ψ. In neurobiological formulations,
these are associated with neuronal activity. The ~ notation denotes variables in generalized

coordinates of motion; for example, . The first term in (19) is a prediction
based upon a matrix differential operator D that returns the generalized motion of the

expectation, such that . The second term is usually expressed as a
mixture of prediction errors (see below) that ensures the changes in conditional expectations
are Bayes-optimal predictions about hidden states ‘causing’ fluctuations in the world.
Heuristically, one can regard (19) as a gradient descent in a moving frame of reference, such
that when free energy is minimized, the motion of the mean becomes the mean of the mean
of the motion . See [59] for details.

Solutions of (23) correspond to Bayes-optimal neuronal dynamics that encode the
predictions of hidden states. These predictions depend upon the brain’s model of the world,
which is usually assumed to have the following (hierarchical) form:

(24)

Here, (f(i,u), f(i,v) are nonlinear functions of hidden states and causes ψ(t) ⊃ (u, v) that
generate sensory inputs s(t) at the first (lowest) level. Random fluctuations (ω(i,u),ω(i,v) on
the motion of hidden states and causes are conditionally independent and enter each level of
the hierarchy. They model sensory noise at the first level and induce uncertainty about states
at higher levels. Hidden causes v(t) = (v(1), v(2),…) link levels, whereas hidden states u(t) =
(u(1),u(2),….) link dynamics over time. Hidden states and causes are abstract quantities (like
the motion of an object in the field of view) that the brain uses to explain or predict
sensations. In this hierarchical form, the output of one level acts as an input to the next to
produce complicated models with deep (hierarchical) structure. Gaussian assumptions about
the random fluctuations in (23) provide the generative model in Definition 2: p(s(t),ψ (t) |

m), where their amplitude is encoded by their precisions .

5.1. Predictive Coding and Free Energy Minimization
Given the form of the generative model (24), one can now write down the differential
equations (25) describing neuronal dynamics in terms of (precision-weighted) prediction

errors  that represent the difference between conditional expectations about

hidden states and causes  and their hierarchical predictions (using A·B):= AT B):
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(25)

This particular form of generalized filtering is called generalized predictive coding and rests
on assuming a Gaussian form for the proposal density in Definition 3: .
This is known as the Laplace assumption; see [14] for an introduction to predictive coding in
visual neuroscience and [13] for an introduction to the Laplace assumption in the setting of
variational free energy minimization.

It is difficult to overstate the generality and importance of (25): its solutions grandfather
nearly every known statistical estimation scheme, under parametric assumptions about
additive noise. These range from ordinary least squares to advanced variational
deconvolution schemes. In neural network terms, (25) says that error-units receive
predictions from the same level and the level above. Conversely, prediction-units are driven
by prediction errors from the same level and the level below. These constitute bottom-up
and lateral messages that drive conditional expectations towards a better prediction to reduce
the prediction error in the level below. This is the essence of recurrent message passing
between hierarchical levels in the brain that suppress free energy or prediction error. See
[18] for a more detailed discussion. In neurobiological implementations of this scheme, the
sources of bottom-up prediction errors, in the cortex, are thought to be superficial pyramidal
cells that send forward connections to higher cortical areas. Conversely, predictions are
conveyed from deep pyramidal cells, by backward connections, to target (polysynaptically)
the superficial pyramidal cells encoding prediction error [60]. See Figure 2. A detailed
consideration of the form of (25) leads to several predictions about the brain circuits
subtending perception; many of which are remarkably consistent with empirical
observations. A few examples are provided in Table 3.

Although we have cast generalized Bayesian filtering in terms of neuronal message passing,
the generality of the principles established in the previous sections suggests that the same
formalism might be applied to any biological system that exhibits dynamics. Indeed, there
are current attempts to apply exactly the same analysis above to the intracellular kinetics of
single cells [51]. In this context, the internal states are not neuronal firing rates but are
transmembrane depolarization or the intracellular concentrations of various ionic or
molecular substrates. Whether the same sort of analysis could be applied to the dynamical
systems seen in evolutionary theory and behavioural economics remains to be seen but is an
intriguing possibility: see e.g., [61].

6. Conclusions
This paper describes a general, if somewhat abstract, motivation for a variational free energy
principle that has a wide explanatory scope in neurobiology and has construct validity in
relation to important information theoretic treatments, in particular, the information
bottleneck method [58]. We have tried to show that free energy minimization may be an
imperative for all self-organizing biological systems and speculate that the attending
biological insights may generalize beyond the neurosciences. The implication is that any
biological system, from a single-cell organism to a social structure should have, encoded in
its internal (macroscopic) states, a representation of causal structure in its external milieu;
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and should act to fulfil predictions based on that representation. Put simply, biological
systems entail a model of their environment and act to maximize the evidence for that model
and, implicitly, their own existence.

We conclude by noting that active systems do not purposefully construct the models that
they entail, in the sense that if they did not entail a model that satisfies (13) they would not
exist; or only exist for short periods of time (until their external states were dispersed by
environmental fluctuations). In other words, Equation (13) simply provides dynamics that
enable systems to persist in the face of fluctuating environmental influences. In summary,
the free energy principle is just a delicate reconstruction of the principle of least action, in
the setting of random dynamical systems. Credit for the principle of least action is
commonly given to Pierre Louis Maupertuis [62,63], who wrote: “The laws of movement
and of rest deduced from this principle being precisely the same as those observed in nature,
we can admire the application of it to all phenomena. The movement of animals, the
vegetative growth of plants… are only its consequences; and the spectacle of the universe
becomes so much the grander, so much more beautiful, the worthier of its Author, when one
knows that a small number of laws, most wisely established, suffice for all movements.”
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Figure 1.
This figure shows the statistical dependencies between fluctuations (assigned to the
environment) and the states of a system (assigned to a biological agent). These dependencies
are shown in terms of a probabilistic graphical model, where the arrows or edges denote
conditional dependence. These dependencies are mediated by a (stochastic) external map
and a (deterministic) internal map that constitute the dynamical system.
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Figure 2.
This figure provides a schematic overview of the message passing scheme implied by
Equation 21. In this scheme, neurons are divided into prediction (black) and prediction error
(red) units that pass messages to each other, within and between hierarchical levels
(macrocolumns). Superficial pyramidal cells (red) send forward prediction errors to deep
pyramidal cells (black), which reciprocate with predictions that are conveyed by
(polysynaptic) backward connections. This process continues until the amplitude of
prediction error has been minimized and the predictions are optimized in a Bayesian sense.
The prediction errors are the (precision-weighted) difference between conditional
expectations encoded at any level and top-down or lateral predictions. The Roman numerals
designate the cortical layers in which neurons are situated.
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Table 1

Processes and paradigms that have been modelled using the scheme in this paper.

Domain Process or paradigm

Perception • Perceptual categorisation (bird songs) [18]
• Novelty and omission-related responses [18]
• Perceptual inference (speech) [19]

Sensory learning • Perceptual learning (mismatch negativity) [33]

Attention • Attention and the Posner paradigm [20]
• Attention and biased competition [20]

Motor control • Retinal stabilization and oculomotor reflexes [21]
• Saccadic eye movements and cued reaching [21]
• Motor trajectories and place cells [22]

Sensorimotor integration • Bayes-optimal sensorimotor integration [21]

Behaviour Heuristics and dynamical systems theory [23]
• Goal-directed behaviour [23]

Action observation Action observation and mirror neurons [22]
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Table 2

Summary of the random dynamical system formulation.

Variable Description

X = R × S ∈ Rd Physical state space a random dynamical system

ϑ : R × Ω → Ω Base flow of a random dynamical system

φ : R × Ω×X → X Flow or mapping to physical states

ω(t) ≔ ϑt(ω) ∈ Ω Fluctuations generated by the base flow

R ⊂ X Internal state space

S ⊂ X External state space

S ⊂ X Active states

φS : R × Ω × A×S → S Mapping to external states

φR : R×R×S → R Mapping to internal states
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Table 3

Structural and functional aspects of the brain that can be explained by free energy minimization: see [33] for
details.

Domain Predictions

Anatomy:
Explains the hierarchical
deployment of cortical areas,
recurrent architectures with
functionally asymmetric forward
and backward connections

• Hierarchical cortical organization
• Distinct neuronal subpopulations, encoding expected states of the world and prediction error
• Extrinsic forward connections convey prediction error (from superficial pyramidal cells) and backward
connections mediate predictions (from deep pyramidal cells)
• Functional asymmetries in forwards (linear) and backwards (nonlinear) connections are mandated by
nonlinearities in the generative model encoded by backward connections
• Principal cells elaborating predictions (e.g., deep pyramidal cells) show distinct (low-pass) dynamics,
relative to those encoding error (e.g., superficial pyramidal cells)
• Recurrent dynamics are intrinsically stable because they suppress prediction error (i.e., no strong loops)

Physiology:
Explains both (short-term)
neuromodulatory gain-control
and the nature of evoked
responses

• Scaling of prediction errors, in proportion to their precision, affords the cortical bias or gain control seen
in attention
• Neuromodulatory factors may play a dual role in modulating postsynaptic responsiveness (e.g., through
after-hyperpolarizing currents) and synaptic plasticity
• Sensory responses are greater for surprising, unpredictable or incoherent stimuli
• The attenuation of responses encoding prediction error, with perceptual learning, explains repetition
suppression (e.g., mismatch negativity in electroencephalography)
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