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Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have
revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify addition-
al genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of ER-negative dis-
ease to date, comprising 4754 ER-negative cases and 31 663 controls from three GWAS: NCI Breast and
Prostate Cancer Cohort Consortium (BPC3) (2188 ER-negative cases; 25 519 controls of European ancestry),
Triple Negative Breast Cancer Consortium (TNBCC) (1562 triple negative cases; 3399 controls of European
ancestry) and African American Breast Cancer Consortium (AABC) (1004 ER-negative cases; 2745 controls).
We performed in silico replication of 86 SNPs at P ≤ 1 3 10-5 in an additional 11 209 breast cancer cases (946
with ER-negative disease) and 16 057 controls of Japanese, Latino and European ancestry. We identified two
novel loci for breast cancer at 20q11 and 6q14. SNP rs2284378 at 20q11 was associated with ER-negative
breast cancer (combined two-stage OR 5 1.16; P 5 1.1 3 1028) but showed a weaker association with overall
breast cancer (OR 5 1.08, P 5 1.3 3 10–6) based on 17 869 cases and 43 745 controls and no association with
ER-positive disease (OR 5 1.01, P 5 0.67) based on 9965 cases and 22 902 controls. Similarly, rs17530068 at
6q14 was associated with breast cancer (OR 5 1.12; P 5 1.1 3 1029), and with both ER-positive (OR 5 1.09;
P 5 1.5 3 1025) and ER-negative (OR 5 1.16, P 5 2.5 3 1027) disease. We also confirmed three known loci
associated with ER-negative (19p13) and both ER-negative and ER-positive breast cancer (6q25 and
12p11). Our results highlight the value of large-scale collaborative studies to identify novel breast cancer
risk loci.
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INTRODUCTION

Breast cancer is a heterogeneous disease and has multiple
histological and molecular subtypes, likely with distinct eti-
ologies. Tumors that lack expression of the estrogen receptor
(ER) tend to have more aggressive disease, higher histological
grade and lower survival rates (1). ER-negative breast cancer
is more common in women of African ancestry, accounting for
as much as 40% of cases in African American women com-
pared with 15–20% in women of European ancestry. The etio-
logic heterogeneity between breast cancer subtypes is
supported by different associations with ER-positive versus
ER-negative disease for many of the known breast cancer
risk factors (such as reproductive factors and BMI) (2).
Tumors in women with BRCA1 mutations are predominantly
ER-negative, while tumors in BRCA2 mutation carriers are
predominantly ER-positive (3). Furthermore, GWAS have
identified multiple common genetic variants more strongly
associated with ER-positive than ER-negative breast cancer
(4). Through collaborative efforts, we recently identified risk
loci on 5p15 and 19p13 that are associated specifically with
ER-negative and triple negative (TN) [ER-negative, progres-
terone (PR)-negative and HER2-negative] breast cancer (5–7).

In order to identify genetic loci associated with the risk of
ER-negative breast cancer, we conducted a meta-analysis of
three GWAS of ER-negative breast cancer, comprising 4754
cases and 31 663 controls with further replication in an add-
itional 11 209 cases (946 with ER-negative disease) and 16
057 controls.

RESULTS

The meta-analysis included genome-wide association studies
(GWAS) of ER-negative breast cancer (4754 ER-negative
cases and 31 663 controls) from the NCI Breast and Prostate
Cancer Cohort Consortium (BPC3) (2188 ER-negative cases
and 25 519 controls of European ancestry), the Triple Negative
Breast Cancer Consortium (TNBCC) (1562 TN cases and
3399 controls of European ancestry) and the African American
Breast Cancer Consortium (AABC) (1004 ER-negative cases
and 2745 controls). (Fig. 1, Supplementary Material,
Table S1). We observed little evidence of over-inflation in
the test statistics (l ≤ 1.04 for each study; l ¼ 1.04 for
meta-analysis) (Supplementary Material, Fig. S1). A total of
86 SNPs were associated with ER-negative breast cancer at
P ≤ 1025 (Supplementary Material, Table S2). An in silico
replication of the 86 SNPs was conducted using GWAS of
European (BCAC combined), Latino (MEC-LAT, SFBCS/
NC-BCFR) and Japanese (MEC-JPT) ancestry populations, to-
taling 11 209 breast cancer cases (946 with ER-negative
disease) and 8404 controls (Stage 2) (Supplementary Material,
Table S1).

Combining results for ER-negative breast cancer from
Stages 1 and 2, variants in three regions showed genome-wide
significance [20q11-rs2284378, T allele: odds ratio, OR ¼
1.16, P ¼ 1.1 × 1028 (Table 1); 19p13-rs8100241, G allele:
OR ¼ 1.14, P ¼ 3.5 × 1028; 6q25-rs9383938, T allele:
OR ¼ 1.28, P ¼ 2.37 × 10210]. Variants at 6q25 have previ-
ously been associated with breast cancer risk (8), and variants
at the 19p13 locus have been associated with ER-negative and

TN breast cancer risk (5,7). The rs2284378 variant at 20q11 is
located in a region containing RALY (RNA binding protein,
autoantigenic), EIF2S2 (eukaryotic translation initiation
factor 2, subunit 2 beta) and �100 kb upstream of ASIP
(agouti signaling protein), and is in high linkage disequilib-
rium (LD) (r2 ¼ 0.96 and D′ ¼ 1) with rs4911414, which
has been associated with melanoma and basal cell carcinoma
(9) (Supplementary Material, Fig. S2). The T allele at
rs2284378 was associated with an increased ER-negative
breast cancer risk (OR.1) in all racial/ethnic populations,
except Japanese (OR ¼ 0.99) (Table 1). However, this group
had the smallest sample size. Furthermore, no significant evi-
dence of heterogeneity was observed by race (P ¼ 0.28) or
study (P ¼ 0.54) (Table 1, Supplementary Material,
Table S3). When the study was extended to include all avail-
able breast cancer cases (ER-positive and ER-negative) and
controls from the participating GWAS, rs2284378 showed a
weaker association with overall breast cancer (OR ¼ 1.08,
P ¼ 1.3 × 1026 based on 17 868 cases and 43 744 controls;
Table 1) and no evidence for association with ER-positive
disease [OR ¼ 1.01, P ¼ 0.67 based on 9965 cases and 22
902 controls (Supplementary Material, Table S5)]. A case-
only analysis of ER-negative versus ER-positive breast
cancer indicated a highly significant difference in ORs by
ER status (P ¼ 1.3 × 1024, Supplementary Material,
Table S5). Furthermore, rs2284378 appeared more strongly
associated with TN breast cancer (OR ¼ 1.16; P ¼ 6.4 ×
1023), than ER-negative, PR-negative and HER2-positive
breast cancer (OR ¼ 1.07, P ¼ 0.41), although these differ-
ences were not statistically significant (case-only P ¼ 0.44)
(Supplementary Material, Table S5).

Next, we examined the associations between all candidate
loci from Stage 1 (n ¼ 86 SNPs) and overall breast cancer
risk using all available breast cancer cases and controls from
the studies in Stages 1 and 2 (Fig. 1). We identified genome-
wide statistically significant associations with variants at 6q25
(rs9383938, T allele: OR ¼ 1.20; P ¼ 8.7 × 10214), and a re-
cently reported risk locus near the PTHLH gene at 12p11
(rs1975930, T allele: OR ¼ 1.22; P ¼ 1.4 × 10213) (10). In
addition, we observed genome-wide significant associations
with multiple variants in a gene-desert located at 6q14.
Allele C of rs17530068 at 6q14 was associated with increased
risk for overall breast cancer risk (OR ¼ 1.12; P ¼ 1.1 ×
1029) (Table 2, Supplementary Material, Fig. S3 and
Table S4) and both ER-positive (OR ¼ 1.09; P ¼ 1.5 ×
1025) (Supplementary Material, Table S6) and ER-negative
(OR ¼ 1.16, P ¼ 2.5 × 1027) (Table 2) breast cancer. We
observed no evidence of risk heterogeneity for rs17530068
by ER status (case-only analysis P ¼ 0.53) (Supplementary
Material, Table S6); study (Phet ¼ 0.16); or race/ethnicity
(Phet ¼ 0.30) (Table 2). Furthermore, rs17530068 appeared
more strongly associated with ER-negative, PR-negative and
HER2-positive breast cancer (OR ¼ 1.26, P ¼ 8.0 × 1023)
than TN breast cancer (OR ¼ 1.12, P ¼ 0.07), although
these differences were not statistically significant (case-only
P ¼ 0.17) (Supplementary Material, Table S6).

We also evaluated associations for 25 known breast cancer
risk markers in European-ancestry women from our study
(Supplementary Material, Table S7 and Fig. S4). In our
samples 8 of the 13 markers previously associated with both
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ER-negative and ER-positive disease or with ER-negative
disease only (TERT and 19p13.1) were nominally significantly
associated (P , 0.05) with ER-negative disease. In contrast,
none of the 10 markers previously associated with ER-positive
disease only was associated with ER-negative disease. A risk
score formed by summing the risk alleles at all 25 previously
identified loci was significantly associated with ER-negative
disease in our study [OR ¼ 1.06 (1.04–1.07); P ¼ 2.9
x10214]. Risk scores for subsets of markers associated with
ER-negative disease only (2 markers) or both ER-negative
and ER-positive disease (11 markers) were also significantly
associated with ER-negative disease [OR ¼ 1.22 (1.14–
1.31), P ¼ 1.0 × 1028 and OR ¼ 1.08 (1.05–1.10), P ¼ 9.5
× 10212, respectively]. A risk score for the subset of loci pre-
viously associated with ER-positive disease only (10 markers)
was not associated with the risk of ER-negative disease [OR ¼
1.02 (1.00–1.04), P ¼ 0.08]. These score results provide some
confirmation of earlier results and an estimate of the effects of
previously identified breast cancer risk markers on the risk of
ER-negative disease.

DISCUSSION

We present results from the largest meta-analysis to date to spe-
cifically focus on ER-negative disease. We identify two novel
loci for breast cancer: 20q11 associated with ER-negative and

TN, but not ER-positive breast cancer, and 6q14 associated
with both ER-positive and ER-negative breast cancer. In add-
ition, we confirm three known regions previously associated
with ER-negative (19p13) or ER-negative and ER-positive
breast cancer (6q25 and 12p11). Correction for genomic
control results in similar but attenuated findings for
20q11-rs2284378 (PGC ¼ 2.4 × 1028) and 6q14-rs17530068
(PGC ¼ 3.2 × 1029).

The novel association at 20q11 with ER-negative breast
cancer spans the ASIP, RALY and EIF2S2 genes. Agouti sig-
naling protein (product of the ASIP gene) was first described
to inhibit melanogenesis in human melanocytes in 1997
(11). ASIP is a melanocortin 1 receptor (MC1R) ligand
that antagonises the function of the transmembrane receptor
(12). The variants we identified at 20q11 for breast cancer
are highly correlated with variants previously associated
with pigmentation traits as well as the risk of both cutaneous
melanoma and basal cell carcinoma (9), suggesting a pos-
sible biological link between these cancers. Further studies
have confirmed the importance of the genetic variation span-
ning the ASIP locus, where a variant at 20q11 showed the
strongest association with pigmentation and was implicated
in a probable LD with variants within an ASIP regulatory
region (13). EIF2S2 encodes eukaryotic translation initiation
factor 2, subunit 2 beta, which is involved in early steps of
protein synthesis by forming a ternary complex with GTP
and initiator tRNA. The deletion of Eif2s2 has been

Figure 1. Multi-stage study design.
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Table 2. Association of SNP rs17530068 (C/T) at chromosome 6q14 and breast cancer risk by study and race/ethnicity

Consortium/study Race/ethnicity Case/controla RAF (C allele)b OR (95% CI)c P-valued PHet-study/PHet-race
e

Stage 1: ER-negative cases versus controls
BPC3 European 2188/25 519 0.24 1.23 (1.12–1.35) 2.23 × 1025

TNBCC European 1478/3345 0.24 1.13 (1.02–1.26) 0.023
AABC African 1004/2745 0.07 1.07 (0.86–1.34) 0.54
Stage 1 4670/31 609 1.17 (1.09–1.26) 3.5 × 1026 0.37/0.41
Stage 2: ER-negative cases versus controls
BCAC combined GWAS European 562/6410 0.22 1.09 (0.95–1.25) 0.24
MEC-JPT Japanese 84/830 0.19 1.16 (0.79–1.71) 0.45
MEC-LAT Latino 112/553 0.23 1.06 (0.75–1.50) 0.73
SFBCS/NC-BCFR Latino 188/611 0.22 1.40 (1.07–1.84) 0.014
Stage 2 (ER-negative) 946/8404 1.14 (1.02–1.28) 0.022 0.41/0.52
Stage 1 + 2 (ER-negative) 5616/40 013 1.16 (1.10–1.23) 2.5 × 1027 0.54/0.78
All breast cancer cases versus controls
AABC African 3016/2745 0.07 1.04 (0.89–1.21) 0.63
BCAC combined GWAS European 8785/10 142 0.22 1.08 (1.02–1.14) 0.0021
MEC-JPT Japanese 886/830 0.19 1.13 (0.96–1.34) 0.14
MEC-LAT Latino 546/553 0.23 1.21 (0.99–1.47) 0.056
SFBCS/NC-BCFR Latino 970/611 0.22 1.27 (1.07–1.51) 0.006
Stage 2 (all cases) 14 203/14 881 1.10 (1.05–1.15) 1.8 × 1025 0.31/0.20
Stage 1 + 2 (all cases) 17 869/43 745 1.12 (1.08–1.16) 1.1 × 1029 0.16/0.30

aNumber of cases and controls with genotype data for rs17530068.
bRisk allele frequency (RAF) in controls.
cAdjusted for age, study and principal components in AABC. Adjusted for age and country in TNBCC. Adjusted for age categories and top six eigenvectors in
BPC3. Adjusted for age and top 10 eigenvectors in MEC-JPT, MEC-LAT and SFBCS/NC-BCFR studies. Combined analysis (Stage 1, Stage 2 and Stage 1 + 2)
are from the meta-analysis.
dP for trend.
eP for heterogeneity by study and race/ethnicity, respectively.

Table 1. Association of SNP rs2284378 (T/C) at chromosome 20q11 and breast cancer risk by study and race/ethnicity

Consortium/study Race/ethnicity Case/controla RAF (T allele)b OR (95% CI)c P-valued PHet-study/PHet-race
e

Stage 1: ER-negative cases versus controls
BPC3 European 2188/25 519 0.31 1.14 (1.05–1.24) 0.0028
TNBCC European 1478/3345 0.33 1.18 (1.07–1.30) 0.0010
AABC African 1004/2744 0.16 1.19 (1.03–1.37) 0.020
Stage 1 4670/31 608 1.16 (1.09–1.23) 6.5 × 1027 0.85/0.76
Stage 2: ER-negative cases versus controls
BCAC combined GWAS European 562/6410 0.35 1.10 (0.96–1.25) 0.17
MEC-JPT Japanese 84/830 0.26 0.99 (0.68–1.44) 0.95
MEC-LAT Latino 112/553 0.29 1.27 (0.94–1.71) 0.13
SFBCS/NC-BCFR Latino 188/611 0.29 1.45 (1.13–1.87) 0.004
Stage 2 (ER-negative) 946/8404 1.16 (1.04–1.29) 0.0048 0.98/0.12
Stage 1 + 2 (ER-negative) 5616/40 012 1.16 (1.10–1.22) 1.1 × 1028 0.54/0.28
All breast cancer cases versus controls
AABC African 3016/2745 0.16 1.06 (0.95–1.17) 0.30
BCAC combined GWAS European 8785/10 142 0.35 1.04 (0.99–1.09) 0.11
MEC-JPT Japanese 886/830 0.26 1.08 (0.91–1.24) 0.46
MEC-LAT Latino 546/553 0.29 1.24 (1.03–1.48) 0.021
SFBCS/NC-BCFR Latino 970/611 0.29 1.23 (1.05–1.44) 0.011
Stage 2 (all cases) 14 202/14 880 1.06 (1.02–1.10) 0.0025 0.14/0.073
Stage 1 + 2 (all cases) 17 869/43 745 1.08 (1.05–1.12) 1.3 × 1026 0.056/0.19

aNumber of cases and controls with genotype data for rs2284378.
bRisk allele frequency (RAF) in controls.
cAdjusted for age, study and principal components in AABC. Adjusted for age and country in TNBCC. Adjusted for age categories and top six eigenvectors in
BPC3. Adjusted for age and top 10 eigenvectors in MEC-JPT, MEC-LAT and SFBCS/NC-BCFR studies. Combined analysis (Stage 1, Stage 2 and Stage 1 + 2)
are from the meta-analysis.
dP for trend (1-d.f.).
eP for heterogeneity by study and race/ethnicity, respectively.
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associated with suppression of testicular germ cell tumor in-
cidence and recessive lethality in mice (14). The
agouti-yellow (AV) deletion is a genetic modifier known to
suppress testicular germ cell tumor susceptibility in mice
and humans. The AV mutation deletes both RALY and
Eif2s2, and induces the ectopic expression of agouti, all of
which are potential testicular germ cell tumor-modifying
variations (14). Both RALY and EIF2S2 are expressed in
many tissues, including mammary gland (15). The SNP
rs2284378 was not consistently associated with expression
of EIF2S2, RALY or ASIP in lymphocytes (11), adipocytes
or skin cells(16), although there was marginal evidence for
association between rs2284378 and EIF2S2 expression in
one study (16) (Supplementary Material, Table S8).
However, several SNPs in high LD with SNP rs2284378
(r2.0.8) within a 1 Mb region were significantly associated
with expression of nearby genes EIF2S2 and RALY.
Rs4911379 (r2 ¼ 0.96) is statistically significantly associated
with EIF2S2 expression in fibroblasts (P ¼ 3.6 × 1024) (17)
and SNPs rs761238 and rs761236 (r2 ¼ 0.85) are associated
with RALY expression in lymphocytes (P ¼ 8.3 × 1024)
(16). An additional 13 SNPs (r2 . 0.85) have been asso-
ciated with expression of RALY, GGTL3, DYNLRB1 and
AK054906 in liver cells, monocytes and lymphoblastoid
cell lines (Supplementary Material, Table S9). In addition
to expression, several enhancer as well as promoter
regions defined by overlapping chromatin marks in human
mammary epithelial cells (HMEC) were found at 20q11
(Supplementary Material, Fig. S5). SNPs in high LD with
rs2284378 (r2 . 0.7), such as rs4911395, rs4911396 and
rs1007090, are located in the promoter region of RALY.
SNPs rs6142101, rs6087557 and rs4911408 (r2 . 0.7) are
present in the promoter region of EIF2S2, and rs1054534,
rs1555075, rs2268086, rs2268088, rs4911401, rs2284388,
rs2284389 and rs932388 are located in predicted enhancer
regions in introns of RALY. Thus, variants at 20q11 may in-
fluence expression of multiple genes in mammary epithelial
cells, as has been seen in prostate cancer (18).

In contrast, rs17530068 at 6q14 is located in a gene desert
with no evidence of an open/active regulatory region in
HMEC (Supplementary Material, Fig. S6). The closest gene
(�262 kb), family with sequence similarity 46, member A
(FAM46A/C6orf37), encodes a protein of unknown function.
Five SNPs in this region in low LD with SNP rs17530068
(r2 , 0.02) were associated with expression of IBTK in lym-
phoblastoid cell lines (Supplementary Material, Table S10).
Additional studies of both of these novel regions will be neces-
sary to identify the underlying biologically relevant variant/s.

The SNP rs17530068 at chromosome 6q14 was associated
with overall breast cancer risk and showed no differential as-
sociation depending on ER status. The association of SNP
rs2284378 at 20q11, however, was stronger for ER-negative
than ER-positive breast cancer. This finding underscores the
importance of investigating genetic variants for specific sub-
types of breast cancer, as this locus had not been previously
identified in the many GWAS of breast cancer to date that
did not focus on this specific breast cancer subtype. The eti-
ology of ER-negative disease is largely unknown. Identifying
new loci associated with ER-negative and TN breast cancer
will continue to provide insight into the biological

mechanisms underlying this more aggressive form of breast
cancer, and could result in improvements in risk prediction
and treatment.

MATERIALS AND METHODS

Study populations

Stage 1 included the studies of the NCI BPC3, TNBCC and
AABC. The BPC3 study includes 2188 ER-negative cases
and 25 519 controls, AABC includes 3153 cases (1004
ER-negative) and 2745 controls from 9 studies and TNBCC
includes 1562 cases and 3399 controls from 15 studies (Sup-
plementary Material, Table S1). Replication studies include
886 cases (84 ER-negative) and 830 controls from a GWAS
of breast cancer in Japanese (MEC-JPT) women and 546
cases (112 ER-negative) and 558 controls from a GWAS of
breast cancer in Latino (MEC-LAT) women in the Multiethnic
Cohort (MEC), 992 cases (188 ER-negative) and 640 controls
from the San Francisco Bay Area Breast Cancer Study
(SFBCS) and the Northern California Breast Cancer Family
Registry (NC-BCFR), and 8785 cases (562 ER-negative) and
14 029 controls from 8 combined GWAS of breast cancer
from BCAC. All participants in these studies have provided
written consent for the research and approval for the study
was obtained from the ethical review board from all local
institutions. A description of each participating study has
been provided in Supplementary Material.

Stage 1: genotyping and quality control

Genotyping in AABC was conducted using the Illumina
Human1M-Duo BeadChip. Of the 5984 samples in the
AABC Consortium (3153 cases and 2831 controls), we
attempted genotyping of 5932, removing samples (n ¼ 52)
with DNA concentrations ,20 ng/ml. Following genotyping,
we removed samples based on the following exclusion criteria:
(i) unknown replicates (≥98.9% genetically identical) that we
were able to confirm, (n ¼ 15); (ii) unknown replicates pair or
triplicate removed, (n ¼ 14); (iii) samples with call rates
,95% after a second attempt (n ¼ 100); (iv) samples with
≤5% African ancestry (n ¼ 36) (discussed below); and (v)
samples with ,15% mean heterozygosity of SNPs in the X
chromosome and/or similar mean allele intensities of SNPs
on the X and Y chromosomes (n ¼ 6). In the analysis, we
removed SNPs with ,95% call rates (n ¼ 21 732) or minor
allele frequencies (MAFs) ,1% (n ¼ 80 193). The concord-
ance rate for blinded duplicates was 99.95%. We also elimi-
nated SNPs with genotyping concordance rates ,98% based
on the replicates (n ¼ 11 701). The final analysis data set
included 1 043 036 SNPs genotyped on 3016 cases (988
ER-negative, 1520 ER-positive and the remaining 508 cases
with unknown ER status) and 2745 controls, with an average
SNP call rate of 99.7% and average sample call rate of 99.8%.

Genotyping for the TNBCC GWAS was conducted on 1718
cases from 10 studies (ABCTB, BBCC, DFCI, FCCC,
GENICA, MARIE, MCBCS, MCCS, POSH, SBCS) using
the Illumina 660-Quad SNP array. In addition, a subset of
MARIE cases (n ¼ 52) was genotyped using the Illumina
CNV370 SNP array. HEBCS cases (n ¼ 85) were genotyped
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using the Illumina 550 SNP array and population allele and
genotype frequencies on healthy population controls (n ¼
222) were genotyped on Illumina 370 SNP array, and obtained
from the NordicDB, a Nordic pool and portal for genome-wide
control data (19) from the Finnish Genome Center. GWAS
data for public controls (n ¼ 3448) were generated using the
following arrays: Illumina 660-Quad SNP array (QIMR), Illu-
mina 550 SNP array (CGEMS), Illumina 550 SNP array
(KORA) and Illumina 1.2M (WTCCC). These GWAS data
were independently evaluated by an iterative QC process
with the following exclusion criteria: MAF ,0.01, call rate
,95%, Hardy–Weinberg equilibrium (HWE) P-value ,1 ×
1027 among controls and sample call rate ,98%. In total,
we excluded previously unknown replicates (n ¼ 2) and
samples with call rates ,98% (n ¼ 83), samples that failed
sex check (n ¼ 10), cases identified as non-TN breast cancer
(n ¼ 20) and related samples (n ¼ 27). We removed SNPs
with ,95% call rates or MAF ,5%. Because a number of
our samples were genotyped at different locations, we
removed SNPs if there was a difference .0.10 between the
study allele frequency and the median frequency across all
studies. The Eigensoft software which uses principle compo-
nent analysis (PCA) was used to evaluate confounding due
to population stratification. We removed 101 subjects that
did not cluster with the CEU HapMap Phase 2 samples, and
a further 179 controls were removed which overlapped with
CGEMS/NHS controls in BPC3, resulting in 1562 cases and
3399 controls in the GWAS analyses.

BPC3 GWAS genotyping was conducted at three genotyp-
ing centers (NCI Core Genotyping Facility, USA; University
of Southern California, USA; and Imperial College London,
UK). Subjects from CPSII, EPIC, MEC, PLCO and PBCS
were genotyped using the Illumina Human 660k-Quad SNP
array (Illumina, Inc.), NHSI/NHSII and part of the PLCO
study were genotyped previously using the Illumina Human
550 SNP array (Illumina, Inc.) (20). SNPs were filtered and
removed based on deviations from Hardy–Weinberg propor-
tions in control subjects (P , 1025), autosomal SNPs with
MAF of ,5% and completion rate ,95%. Samples were
excluded based on genotyping call rates ,95% (n ¼ 195),
samples with extreme heterozygosity were excluded from
the analysis (n ¼ 35), sex discordance (n ¼ 3) and unexpected
duplicates and relatedness (n ¼ 6). Subjects with evidence of
significant non-European ancestry and population structure
were also excluded. Non-European ancestry was assessed util-
izing a subset of unlinked, population informative SNPs (21).
Individuals determined to have ,80% European ancestry
were excluded from future analyses (n ¼ 16). The average
concordance rate of blinded duplicates was 99.95%. In order
to resolve a more detailed population substructure, PCA was
conducted using struct.pca module of GLU (http://code.
google.com/p/glu-genetics/). PCA was only performed in sub-
jects with over 80% European ancestry. Furthermore, 958 con-
trols from NHS (CGEMS) were removed from BPC3 analyses
due to overlap between TNBCC and BPC3 studies. The
overall number of cases and controls after all exclusions
which contributed to the Stage 1 analysis were 1998 cases
and 2305 controls.

The WHS cohort subjects in BPC3 were previously geno-
typed using the Human-Hap300 Duo-plus BeadChip (22).

Among the final 23 294 individuals of verified European an-
cestry, genotypes for a total of 2 608 509 SNPs were
imputed from the experimental genotypes and LD relation-
ships implicit in the HapMap r. 22 CEU samples. WHS con-
tributed 190 cases and 23 214 control subjects to Stage 1.
WHS was meta-analyzed with the remaining BPC3 studies
contributing a total of 2188 cases and 25 519 control subjects
to Stage 1 analysis.

SNPs rs2284378 and rs17530068 were genotyped in all
Stage 1 studies.

Stage 2: genotyping and quality control

The SFBCS (23) and the NC-BCFR (24) study samples were
genotyped with the Affymetrix 6.0 array according to the man-
ufacturer’s instructions (https://www.affymetrix.com) in the
laboratory of Esteban Gonzalez Burchard at UCSF. A total
of 15 cases and 30 controls were excluded from the SFBCS
and NC-BCFR sample set that had a genotyping call rate
,95% or showed either known or cryptic relatedness. The
final sample included in the analysis was 992 cases (188
ER-negative cases) and 640 controls. Imputation was con-
ducted with the program BEAGLE, with all unrelated
HapMap Phase II samples included as references (http://
hapmap.ncbi.nlm.nih.gov).

GWAS of breast cancer in Latino (MEC-LAT) and Japa-
nese (MEC-JPT) samples from the MEC were genotyped
with the Illumina 660W array at USC. For MEC-LAT, we
excluded 48 samples from the MEC that had a genotyping
call rate of ,95% and 34 that showed either known or
cryptic relatedness. The final MEC-LAT sample included
546 (112 ER-negative) and 558 controls. With similar exclu-
sions, the final MEC-JPT sample included 886 (84
ER-negative) and 830 controls.

The BCAC combined GWAS includes primary genotype
data from eight breast cancer GWAS in populations of Euro-
pean ancestry (ABCFS, BBCS, GC-HBOC, MARIE,
HEBCS, SASBAC, UK2, DFBBCS). All studies were geno-
typed with various versions of Illumina arrays, except
GC-HBOC which was performed with the Affymetrix 5.0
(cases) and 6.0 (controls) arrays. Standard QC was performed
on all scans. Specifically, all individuals with low call rate
(,95%), extreme high or low heterozygosity (P,1025),
and all individuals evaluated to be of non-European ancestry
(.15% non-European component, by multidimensional
scaling using the three Hapmap2 populations as a reference)
were excluded. SNPs with call rate ,95%; call rate ,99%
and MAF,5%, all SNPs with MAF,1%, and SNPs with
genotype frequencies departing from HWE at P,1026 in con-
trols or P , 10212 in cases were also excluded. Data were
imputed for �2.6 M SNPs for all scans using Mach v1.0
with HapMap version 2 CEU as a reference. BBCS and
UK2 used the same control data (WTCCC2). These studies
were imputed separately. For the combined analysis, the
control set was divided randomly between the two studies,
in proportion to the size of case series, to provide disjoint
strata. Estimated per-allele ORs and standard errors were gen-
erated from the imputed genotypes using Probabel (25).

SNPs rs2284378 and rs17530068 were genotyped in all
Stage 2 studies except SFBCS and NC-BCFR where they
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were imputed. Both SNPs were genotyped by TaqMan in 483
samples from these studies and genotype concordance versus
imputed genotypes was 93.3% for rs2284378 and 94.9% for
rs17530068.

TaqMan genotyping in BPC3 for SNP rs2284378 and SNP
rs17530068

In BPC3, genotyping of SNP rs2284378 and rs17530068 was
performed for all available breast cancer cases and controls by
TaqMan in four laboratories (CPS-II and MEC at the Univer-
sity of Southern California; NHS and WHS at Harvard Univer-
sity; EPIC at the German Cancer Research Center in
Heidelberg; and PLCO at the NCI/Core Genotyping Facility).
All studies typed SNP rs17530068; however for SNP
rs2284378, PLCO and CPS-II typed a proxy SNP rs6059651
(r2 ¼ 1, D′ ¼ 1). The concordance for the TaqMan genotyping
data with that generated from Illumina for Stage 1
ER-negative cases and controls was 0.997 for rs17530068
and 0.986 for rs2284378 for CPS2, MEC, NHS, EPIC and
PLCO. The genotype concordance versus imputed for WHS
was 95% for rs2284378 and 97% for rs17530068.

Statistical analysis

In AABC, we tested for gene dosage effects in models adjusted
for age, study and eigenvectors 1–10. OR and 95% confidence
intervals (95% CI) were estimated using unconditional logistic
regression. In TNBCC, unconditional logistic regression was
used to assess each SNP association analyses also assuming a
log-additive model, adjusting for country and the first two prin-
cipal components. In BPC3, unconditional logistic regression
model was used to assess single SNP associations adjusting
for age categories and the top six eigenvectors.

In both AABC and TNBCC, phased haplotype data from the
founders of the CEU and YRI HapMap Phase 2 samples (build
21) were used to infer LD patterns in order to impute untyped
markers. For BPC3, Hapmap Phase 2 (release 21) and Hapmap
Phase 3 were used to impute untyped markers. For all studies,
genome-wide imputation was carried out using the software
MACH. Filtered from the analysis were SNPs with Rsq ,
0.3 and MAF ,1%.

We conducted a fixed effect meta-analysis of AABC,
TNBCC and BPC3 using the inverse variance weighted
method. The number of SNPs available for meta-analysis
from AABC, TNBCC and BPC3 in Stage 1 were 3 055 415,
2 134 490 and 245 3207, respectively. The union of these
three data sets was meta-analyzed using the program
METAL. We conducted in silico replication of 86 SNPs
with P-values ≤ 1025 in Stage 1 in the Stage 2 studies, and
a meta-analysis of these SNPs from Stages 1 and 2 for both
ER- negative and overall breast cancer. P-values from our
top two loci were corrected for genomic inflation (PGC)
using the lambda value from the overall meta-analysis.
Testing for heterogeneity by study was evaluated using the
Q-statistic. Case-only analyses were performed to test for
differences in the association by tumor subtypes, study and
race/ethnicity.

The association between risk scores of 25 previously iden-
tified breast cancer risk alleles and risk of breast cancer in

our samples was calculated using meta-regression, assuming
the per-allele odds ratio was constant across the markers ana-
lyzed. This is equivalent to combining the summary log odds
ratio estimates at independent loci using inverse-variance
weighted meta-analysis. The overlap between subjects contrib-
uting to this study and those contributing to previous studies
varied from marker to marker [e.g. the TNBCC contributed
to the initial report on rs8170 (5) and the BPC3 and TNBCC
contributed to the initial report on the TERT locus (6)].Thus,
the results could be overestimates since some of the studies
here contributed to the discovery of these 25 loci.

Functional analysis

Expression quantitative trait loci (eQTL) were assessed for all
SNPs in the chromosome 6 and 20 loci using the GTEX
database (http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi),
University of Chicago eQTL Browser (http://eqtl.uchicago.
edu) and Genevar (http://www.sanger.ac.uk/resources/software/
genevar/) (26).

In an attempt to identify functionality at the two novel
breast cancer risk loci, we used the open-source R/Bioconduc-
tor package FunciSNP version 0.99 (27), which systematically
integrates the 1000 Genomes Project SNP data (April 2012
data release) with chromatin features of interest. For each of
the two novel breast cancer markers, we analyzed all SNPs
with an r2-value . 0.5 with each index SNP in the 1000
Genomes Project EUR populations in a 1 Mb window
around each index variant. We assessed whether these SNPs
were co-located with 12 different chromatin features generated
by next-generation sequencing technologies, which capture
open chromatin regions, promoters and enhancers genome-
wide in HMEC as well as known DNaseI hypersensitive loca-
tions, FAIRE-seq peaks and CTCF-binding sites from .100
different cell types, which were collected in ENCODE data
(28). We utilized the UCSC Genome Browser (http://genom
e.ucsc.edu/) to illustrate the correlated SNPs, which overlap
chromatin features as well as chromatin feature tracks
(Supplementary Material, Figs S5 and S6).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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