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Abstract
Various heptasubstituted derivatives of β-cyclodextrin (β-CD) bearing 1, 2 and 3 methyl substituents per glucose unit were synthe-

sized by regioselective methods. Binding free energies and binding enthalpies of these hosts towards 4-tert-butylbenzoate and

adamantane-1-carboxylate were determined by isothermal titration microcalorimetry (ITC). It was found that methyl substituents at

the secondary positions of β-CD lead to a tremendous reduction of the binding potential, while methylation at the primary positions

significantly improved binding. Stabilizing intramolecular hydrogen bonds between the glucose units were made responsible for the

high binding potentials of those β-CD derivatives that possess secondary hydroxy groups.
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Introduction
Cyclodextrins (CDs) are a well-known class of organic hosts

able to include various guests, preferably in aqueous solution

[1-3]. Inclusion is mainly driven by hydrophobic and van der

Waals interactions [4-6]. The host–guest complexes, so-called

cyclodextrin inclusion compounds, find many applications such

as solubilization of pharmaceutical drugs, dispersion of

cosmetics, catalysis, or chromatographic separation of

enantiomers [2,7,8]. Application of β-CD 1 is hampered by its

low solubility of 18.8 g L−1 at 25 °C [9]. Solubility of β-CD and

its inclusion compounds can be significantly increased by the

covalent attachment of neutral or ionic substituents [10].

Methylated β-CDs, such as heptakis(2,6-di-O-methyl)-β-CD 2

and heptakis (2,3,6-tri-O-methyl)-β-CD 3, are well known for

their high solubilities in water (2: > 300 g L−1) and their
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interesting inclusion behavior [11-13]. Because of the tedious

synthesis of the disubstituted derivative 2 [11,14], the readily

available randomly substituted derivative RAMEB with a

degree of substitution DS = 1.7–1.8 is preferred nowadays and

produced on an industrial scale [15].

Methylated CDs have already found several applications in drug

delivery [10] and polymer chemistry [16]. They allow radical

polymerizations of hydrophobic vinyl monomers in homo-

genous aqueous solution [17-20] and living RAFT polymeriza-

tions as well [21]. Methylated CDs are already applied industri-

ally on a large scale, e.g., for switching the viscosity of poly-

meric thickeners [22], for decontamination of soil [23,24], or

for cosmetic formulations [25]. High binding potentials of the

methylated CDs are essential for their specific functions in

these applications. Therefore, a quantitative understanding of

the binding potential as a function of the degree and pattern of

methylation is highly desirable.

The attachment of methyl groups to β-CD improves its solu-

bility in water because it reduces formation of intermolecular

hydrogen bonds. Methylation should also extend the

hydrophobic cavity of β-CD and therefore improve the binding

potential for hydrophobic guest molecules. Up to now, only

little is known about the influence of methyl substituents on the

inclusion potential of β-CD [26,27]. The dimethyl derivative 2

binds adamantane derivatives with a similar binding constants K

to those of native β-CD, while the trimethyl derivative 3 binds

much more weakly [28]. Similar differences in binding affini-

ties between native 1 and permethylated β-CD 3 were observed

for the inclusion of anti-inflammatory drugs [29].

For the systematic investigation of the influence of the pattern

of methylation on the complexation of amphiphilic guests, we

synthesized well-defined model compounds 2–6 (Figure 1) of

methylated β-CD, using regioselective procedures already

published [30]. 4-tert-Butylbenzoate and adamantane-1-

carboxylate were chosen as representative guests. Complexa-

tion of these guests should sensitively respond to changes in the

methylation pattern, because they fit tightly into the cavity of

β-CD giving rise to high binding constants [26,27]. Binding

data were measured by isothermal titration calorimetry (ITC)

because it is known to be the most accurate method, and

because it additionally yields binding enthalpies and entropies

[31,32].

Results
Since methylated β-CD derivatives 2–6 are highly water-soluble

they are well suited for ITC. The ITC titration curves for all the

β-CD derivatives 1–6 were exothermic and were in accordance

with a 1:1 stoichiometry of the host–guest complexes. Thermo-

Figure 1: Structures of the methylated β-CD derivatives investigated.

dynamic data obtained for the guests 4-tert-butylbenzoate and

adamantane-1-carboxylate are listed in Table 1 and Table 2, res-

pectively.

Remarkable differences in the binding constants for 4-tert-

butylbenzoate were found for the β-CD derivatives 2–7. The

completely methylated β-CD 3 and the 2,3-dimethylated deriva-

tive 6 showed the lowest binding constants K, less than one

tenth of the one of native β-CD 1. These very low binding

constants are accompanied by positive values of the entropy

term −TΔS° weakening the binding free enthalpy ΔG°. On the

other hand, binding constants of the 2,6-di-O-methyl derivative

2 as well as the 6-O-methyl derivative were higher than the one

of β-CD. Apparently, methylations of secondary hydroxy

groups lead to a decrease of the binding constant, while

methylation at primary hydroxy groups leads to an increase. For

the 2,6-di-O-methyl derivative both effects seem to compensate

each other giving rise to a binding constant K similar to the one

of native β-CD. The randomly methylated β-CD 7 also showed

an inclusion potential very similar to β-CD for the same reason.

The thermodynamic data (Table 2) measured for the inclusion

of adamantane-1-carboxylate in β-CD and β-CD derivatives

2–6, showed a similar trend to that observed before. This guest,
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Table 1: Thermodynamics of the inclusion of 4-tert-butyl-benzoate in β-cyclodextrin 1 and its methyl derivatives 2–6.

Host No. K (M−1) ΔG° (kJ mol−1) ΔH° (kJ mol−1) −TΔS° (kJ mol−1)

unsubstituted β-CD 1 16400 ± 4 −24.34 −19.00 ± 0.08 −3.82
2,6-di-O-methyl-β-CD 2 17000 ± 485 −24.13 −19.98 ± 0.14 −4.18
2,3,6-tri-O-methyl-β-CD 3 1190 ± 21 −17.54 −30.54 ± 0.37 12.98
6-O-methyl-β-CD 4 30700 ± 898 −25.60 −20.14 ± 0.12 −5.49
2-O-methyl-β-CD 5 12300 ± 428 −23.33 −14.30 ± 0.11 −9.05
2,3-di-O-methyl-β-CD 6 869 ± 28 −16.77 −19.24 ± 0.84 +2.45
RAMEBa 7 14700 ± 363 −23.77 −14.60 ± 0.09 −9.20

arandomly methylated β-CDs.

Table 2: Thermodynamics of the inclusion of adamantane-1-carboxylate in β-cyclodextrin 1 and its methyl derivatives 2–6.

Host No. K (M−1) ΔG° (kJ mol−1) ΔH° (kJ mol−1) −TΔS° (kJ mol−1)

unsubstituted β-CD 1 38100 ± 1150 −26.13 −22.38 ± 0.09 −3.78
2,6-di-O-methyl-β-CD 2 20400 ± 975 −24.58 −20.75 ± 0.22 −3.87
2,3,6-tri-O-methyl-β-CD 3 606 ± 43 −15.87 −19.94 ± 0.82 +4.04
6-O-methyl-β-CD 4 56400 ± 2400 −27.10 −19.11 ± 0.15 −8.02
2-O-methyl-β-CD 5 18700 ± 275 −24.37 −20.85 ± 0.05 −3.57
2,3-di-O-methyl-β-CD 6 586 ± 65 −15.79 −12.72 ± 0.70 −3.09
RAMEBa 7 15300 ± 341 −23.87 −15.48 ± 0.09 −8.41

arandomly methylated β-CDs.

which is known as one of the most suitable guests for the β-CD

cavity, was bound even more weakly by the 2,6-di-O-methyl

derivative 2 than by native β-CD 1. Again, all β-CD derivatives

methylated at the secondary positions showed much lower

affinities towards this guest than 1 did. Again, a positive value

of the entropy term −TΔS° was found for 2,3,5-tri-O-methyl-β-

CD. As shown in Figure 2, this entropy term further grew with

increasing temperature, compensating most of the strongly

negative binding enthalpy ΔH°. Taking into account these data

and previous results from literature, the observed reduction of

the binding potential by substitutions at the secondary positions

appeared to be a general feature of β-CD.

In addition, the differential heat capacity, ΔCp = −510 ±

30 J mol−1 K−1, was calculated from the slope of the tempera-

ture dependence of ΔH°. Negative ΔCp are generally inter-

preted as the liberation of “hot” water molecules during com-

plexation of the guest [33-35]. The liberation of water mole-

cules of high energy from a cavity is regarded as a major

driving force for the complexation of neutral guests by concave

hosts in water, because it can lead both to entropy gains and

enthalpic advantages [36]. The observed value for 2,3,5-tri-O-

methyl-β-CD is even higher than that for native β-CD, ΔCp =

−320 ± 20 J mol−1 K−1 [37]. This difference was attributed to

the larger internal hydrophobic surface of 2,3,5-tri-O-methyl-β-

Figure 2: Temperature dependence of −TΔS°, ΔH° and ΔG° for the
inclusion of 1-adamantane carboxylate in heptakis-2,3,6-tri-O-methyl-
β-CD (3) measured by ITC.
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CD compared to native β-CD leading to the liberation of more

bound water molecules during complexation. Nevertheless, the

effect of the negative heat capacity on binding adamantane

carboxylate by 2,3,5-tri-O-methyl-β-CD is overcompensated by

a strong increase of binding entropy leading in total to a reduc-

tion of the complex stability with increasing temperature.

Discussion
Only methylations at the primary positions lead to the antici-

pated increase of the binding potential of β-CD due to an

elongation of the hydrophobic cavity of β-CD. The negative

effect of methylations at the secondary positions was initially

surprising. The discussion of the entropy term −TΔS° appeared

most appropriate to us to understand this behavior.

The entropy term −TΔS° was negative (−3 to −9 kJ mol−1) for

those β-CD derivatives (1,2,4,5 and 7) equipped with free sec-

ondary hydroxy groups. This negative value is quite normal and

attributed to the liberation of bound water molecules from the

cavity, while the entropy of the host remains more or less

unchanged [5,6]. Neutron scattering studies revealed that native

β-CD is strongly rigidified by intermolecular hydrogen bonds

(flip-flop bonds) between the secondary hydroxy groups of

adjacent anhydroglucose units, as depicted in Figure 3 [38].

This finding was confirmed by MD calculations of CDs in the

crystalline state and in aqueous environment [39,40]. A stabi-

lization energy due to all O3H∙∙∙∙O2’ hydrogen bonds of 14 to

23 kJ mol−1 was calculated by using density functional theory

(basis set B3LYP) [41]. In addition, recent density-functional

calculations also took into account strong intermolecular

hydrogen bonds of these hydroxy groups with water molecules

in aqueous solution [42].

The conformational stabilization of β-CD by these hydrogen

bonds between the secondary hydroxy groups is lost upon

methylation. Furthermore, methylated β-CDs are less hydrated

than the native ones [44]. The lack of stabilizing hydrogen

bonds leads to much higher ring flexibilities for derivatives 3

and 6, which explains the low or even positive entropy contri-

butions −TΔS° to the binding free enthalpy ΔG°. Especially for

a guest such as adamantane-1-carboxylate, which fits well into

the CD cavity, its inclusion will significantly reduce the con-

formational degrees of freedom of a flexible host, such as 3 or

6, leading to an unfavorable decrease in entropy.

In contrast, primary hydroxy groups in β-CD are too far apart

from each other to allow intramolecular hydrogen-bond forma-

tion. Hydrogen bonds between primary hydroxy groups were

only found for α-CD, leading to a conical host conformation,

which is unfavorable for the accommodation of a guest [45].

Therefore, methylation at the primary positions should not

Figure 3: Structural drawing of β-CD [43], according to structural data
(CSD-ID BUVSEQ03) from Zabel et al. [38], generated by VMD 1.8.4
showing the intramolecular hydrogen bonds between OH-3 and O-2.

significantly diminish the rigidity of the CD torus. This explains

why methylation at the primary position leads to the expected

improvement of the binding potential. Also the substitution of

the primary hydroxy groups with other hydrophobic groups,

such as thioether moieties, is known to furnish host molecules

with much higher binding potentials than native β-CD [46,47].

Conclusion
The binding potential of β-CD can be improved significantly if

hydrophobic substituents are exclusively attached at the prima-

ry positions. Intramolecular hydrogen bonds between second-

ary hydroxy groups of β-CD are crucial for achieving high

binding constants. This result provides an example of a host,

where intramolecular hydrogen bonds control the binding

potential [48]. It will help to better understand binding mecha-

nisms in supramolecular systems [48] and in the future help to

design improved hosts based on β-CD for specific applications

such as drug delivery [49], removal of pollutants [50-53],

catalysis [54] or smart materials [55].

Experimental
4-tert-Butylbenzoic acid and adamantane-1-carboxylic acid and

β-CD derivative 3 were purchased from Aldrich, β-CD 1 and

RAMEB 7 from Wacker Chemie, β-CD derivative 2 from

Cyclolab. β-CD derivatives 4–6 were synthesized from β-CD 1

following published procedures (Table 3) [30].

Binding data were measured with isothermal microcalorimetric

titration at a temperature of 25.0 °C with an AutoITC

isothermal titration calorimeter (MicroCal Inc., Northampton,
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Table 3: List of the methylated β-CD derivatives used in this contribu-
tion.

Host No. CAS Registry
No.

Reference

unsubstituted β-CD 1 7585-39-9
2,6-di-O-methyl-β-CD 2 51166-71-3 [11]
2,3,5-tri-O-methyl-β-CD 3 55216-11-0 [11]
6-O-methyl-β-CD 4 84337-62-2 [30]
2-O-methyl-β-CD 5 60786-23-4 [30]
2,3-di-O-methyl-β-CD 6 123155-05-5 [30]
RAMEBa 7 343249-39-8 [15]

arandomly methylated β-CDs.

USA) by using 1.4144 mL sample and reference cells. The

reference cell was filled with distilled water. The sample cell

was filled with a 2 mM solution of the respective host in 50 mM

phosphate buffer pH 6.8, and the contents were constantly

stirred at 450 rpm. A 26 mM solution of the guest was prepared

in the same buffer and adjusted by the addition of small quan-

tities of HCl or NaOH to pH 6.8. This solution was automati-

cally added by a syringe in 20 separate injections of 12.5 µL.

The resulting 20 heat signals were integrated to yield the mixing

heats, which were corrected by the corresponding dilution

enthalpies of β-CD in the same buffer. The titration curve was

fitted by nonlinear regression using the program Origin 7.0 for

ITC. Thereby, a 1:1 stoichiometry of the guest and the host

molecule was found to be most appropriate. The binding

constant K and the molar binding enthalpy ∆H° were obtained

as fitting parameters, from which the binding free energy ∆G°

and binding entropy ∆S° were derived. For those titrations with

high binding constants, i.e., K > 5000 M−1, titrations were

repeated with [host] = 10/K in the cell and [guest] = 13[host] in

the syringe to ensure optimal accuracy of the nonlinear-regres-

sion fitting procedure.
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