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Molecular dating of species divergences has become an important
means to add a temporal dimension to the Tree of Life. Increasingly
larger datasets encompassing greater taxonomic diversity are be-
coming available to generate molecular timetrees by using sophis-
ticatedmethods that model rate variation among lineages. However,
the practical application of these methods is challenging because of
the exorbitant calculation times required by current methods for
contemporary data sizes, the difficulty in correctly modeling the
rate heterogeneity in highly diverse taxonomic groups, and the lack
of reliable clock calibrations and their uncertainty distributions for
most groups of species. Here, we present a method that estimates
relative times of divergences for all branching points (nodes) in very
large phylogenetic trees without assuming a specific model for
lineage rate variation or specifying any clock calibrations. Themethod
(RelTime) performed better than existing methods when applied to
very large computer simulated datasets where evolutionary rates
were varied extensively among lineages by following autocorre-
lated and uncorrelated models. On average, RelTime completed cal-
culations 1,000 times faster than the fastest Bayesian method, with
even greater speed difference for larger number of sequences. This
speed and accuracy will enable molecular dating analysis of very
large datasets. Relative time estimates will be useful for determin-
ing the relative ordering and spacing of speciation events, identify-
ing lineages with significantly slower or faster evolutionary rates,
diagnosing the effect of selected calibrations on absolute diver-
gence times, and estimating absolute times of divergence when
highly reliable calibration points are available.
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Thousands of research studies have reported the use of mo-
lecular dating techniques in establishing the timing of species

divergences (e.g., refs. 1–5). With the availability of fast and
cheap genome sequencing, molecular dating is being applied to
increasingly larger datasets that span a much greater diversity of
species and harbor extensive heterogeneity of evolutionary rates
among lineages. This complexity poses many challenges that
limit modern scientific investigations from truly leveraging the
genome revolution. First, the application of the fastest molecular
dating tools available already requires a very large amount of
computational time for datasets containing only a few hundred
sequences, which are modest for today’s standards (6, 7). Second,
current approaches require a priori selection of statistical dis-
tributions to model the heterogeneity of rates among branches in
the evolutionary tree (e.g., autocorrelated versus uncorrelated
rates, 8–12). Use of an incorrect statistical distribution is known to
introduce significant bias in such analyses (10, 13–15). With in-
creasingly larger datasets, it is unlikely that the same rate model
will fit evolutionarily distant groups in the same large phylogeny,
which exacerbates the problem. Third, the current molecular
dating approaches also require reliable knowledge of some a priori
divergence times, their minimum-maximum boundaries, and un-
certainty distributions, all of which are seldom available or uni-
versally agreed on (17–19). These constraints, referred to as clock
calibrations, are the root cause of many controversies, because the

final time estimates naturally depend strongly on the clock cali-
brations selected (20, 21). Some now argue that clock calibrations
used in many studies may be flawed (19, 22–27). For these reasons,
molecular-based time estimates for many important divergences in
the evolutionary history show notable differences not only with the
estimates from the nonmolecular data (e.g., fossil record), but also
from each other (e.g., refs. 3, 4, and 19–21).
We have developed a method that is designed to avoid many of

these problems and produces a relative time of divergence for
every branching point in the phylogenetic tree. In our approach,
branch-specific relative rates are estimated without using a specific
distribution of lineage rate heterogeneity and by applying the fact
that the elapsed time of two sister lineages from their most recent
common ancestor is equal, which is tantamount to using calibra-
tions points with time equal to 0 for each contemporary sequence
in the tree. In the following, we first describe the maximum like-
lihood (ML) version of our approach by using data from a simple
example. This description is followed by an evaluation of its ac-
curacy and comparative superiority over a Bayesian approach in
computer simulated alignments by using a model timetree, which
is an order of magnitude larger than those used in computer
simulations in previous molecular clock studies. Furthermore,
we present an analysis of a recently published empirical mam-
malian sequence dataset and show that RelTime estimates are
close to those obtained by using a very large number of cali-
bration points and a sophisticated Bayesian method.

RelTime Method for Estimating Relative Divergence Times
We explain the RelTime approach by using a simple example,
where sequence evolution shows large rate differences within and
between groups (X and Y; Fig. 1A). As expected, a likelihood ratio
test (LRT) rejects the molecular clock hypothesis overwhelmingly
(ΔlnL = 208; P << 0.01), so a global clock cannot be assumed for
estimating divergence times Tx and Ty. Instead, RelTime com-
putes branch-specific relative rates (r1 . . . r6) and starts with nodes
that have only two descendants. For the two descendants of node
X, the relative rates are r1 = 0.40 and r2 = 1.60. They are obtained
by dividing the branch lengths (per 100 base pairs) by the average
height of the node X (4.61). Here, r1 and r2 capture deviation from
equal rates, where a value of less than 1 indicates a relative
slowdown and a value of greater than 1 indicates a speed-up. Node
X is given a rate equal to 1 (rX = 1), which is the average of the two
descendant nodes. Similarly, we compute r3 = 0.24 and r4 = 1.76
for the two descendant branches from node Y, with rY = 1. Note
that the relative rates are not comparable across lineages because
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they are estimated based on their local context only, i.e., r1 and
r2 cannot be compared with r3 and r4 at this stage. For this rea-
son, node and branch rates in groups X and Y are initial assign-
ments, and they need to be adjusted based on their higher level
relationships.
We next compute relative rates for the two lineages descending

from the node XY. These estimates are 0.51 for the lineage
leading to group X and 1.49 for the lineage leading to group Y;
they are obtained by dividing the total lineage length to group
X and to group Y by the average height (10.78) of node XY
(Fig. 1B). Therefore, r5 = 0.51 and r6 = 1.49. Therefore, rX and rY
rates need to be in the ratio 0.51:1.49, which is achieved by scaling
the descendant branch rates by the respective ancestral relative
rates, e.g., new r1 = 0.40 × 0.51 = 0.20 (Fig. 1C). After the appli-
cation of this procedure, all of the branch rates (r1 . . . r6) become
directly comparable, with the ingroup ancestral node XY auto-
matically assigned an average rate of 1.0.
In the next step, all of these rate estimates are refined by

statistically testing the significance of the difference between the

Fig. 1. RelTime approach for estimating relative rates and times. The phy-
logeny is obtained from a sequence alignment of 2,322 base pairs with HKY+Γ
model by using ML (lnL = −7,295.91). (A) The ML branch lengths in the units of
number of substitutions per 100 base pairs. (B) Estimates of relative evolu-
tionary rates within clade X and within clade Y. (C) Estimates of relative rates
in all descendent branches and nodes of the most recent common ancestor of
clades X and Y. (D) Updated relative rates after setting r6 = rY, because they
were found to be not statistically significantly different. The log likelihood of
the resulting tree (lnL = −7,295.96) is only marginally different from that of the
original tree (see above). (E) The final timetree showing relative node times
(NTs) normalized such that the maximum relative NT is 1. The evolutionary tree
in A is from five sequences, two each from human and mouse and one from
chicken (GenBank accession no. gi296010876; gi113205066; gi223890138;
gi156938288; and gi363728820). They were aligned by ClustalW at the amino
acid level. This alignment was used for a ML tree under the HKY+ Γ nucleotide
substitution model after removing all sites containing gaps (28–30).

Fig. 2. The model timetree for computer simulations. (A) A timetree of 446
taxa. (B) Distribution of divergence times on nodes (solid curve) and times
elapsed on branches (dashed curve).
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descendent branch and ancestral node pairs individually, such
that the smallest number of rate parameters is estimated to avoid
statistical overfitting and higher variances. This test can be done
by using the SEs obtained by the curvature method applied to the
trend of ML optimization (28) or by estimating variances of
relative rates by the bootstrap procedure. Any descendant
branches with rates not statistically significantly different from
the ancestral node rate are assigned the ancestral node rate. This
process showed that r6 = rXY (Fig. 1D). ML branch length op-
timization with that constraint produced a tree in which the log
likelihood value is reduced marginally (2ΔlnL = 0.1), which is
not statistically significant (LRT, χ2 with 1 degree of freedom).
Using the final estimates of rates, we obtain node times (Tx

and Ty) and time elapsed on individual branches (Fig. 1E). Be-
cause all of the evolutionary rates are relative, the resulting time
estimates are also relative. Finally, it is useful to note that Tx and
Ty correspond to the human-mouse species divergence in two
duplicated genes (Zfx and Zfy) that are found on the X and Y
chromosomes, respectively (29–31). The ratio of TX:TY is 0.9,
which is close to the expected value of 1.0.

Results
We assessed the absolute and comparative accuracy and calculation
speed of RelTime by means of computer-simulated alignments.
We generated hundreds of sequence alignments by applying
substitution parameters sampled from a natural set on a large
phylogeny containing 446 taxa (Fig. 2A;Methods). The simulated
datasets encompassed a wide distribution of node divergences
and times elapsed on individual branches (Fig. 2B). Four types of
evolutionary rate variations were applied to this tree while gener-
ating the sequence data. The simplest was the constant rate (CR)
scenario, where the actual number of substitutions on a branch was
determined according to a Poisson process with the mean equal to

the expected number of substitutions (determined by average rate
and sequence length). In this case, the rate variation among line-
ages is only due to the stochastic nature of the evolutionary process.
Then, we generated sequence alignments where the rate variation
among lineages was autocorrelated (AR), such that the rate of a
descendant branch was drawn from a lognormal distribution
around the mean rate of the ancestral branch (see details in refs. 6
and 15). Finally, we conducted simulations by using two cases in
which the (expected) evolutionary rates varied randomly on each
branch by±50% or±100% of the overall rate.We refer to them as
random rate simulations (RR50 and RR100, respectively).
RelTime estimates showed a linear relationship with the true

times. This trend was clearly evident from a direct comparison of
the true and estimated times (Fig. 3). In this comparison, we
normalized the RelTime and true time estimates to vary on the
same scale (0–1; Methods) such that the expected slope is 1.0.
Indeed, the slope of the linear regression through the origin is
close to 1 for CR, AR, RR50, and RR100 datasets for node times
(NTs; Fig. 3 A–D). NTs in a timetree are correlated because of
sharing of evolutionary lineages, so we examined the relationship
of the estimated and true times elapsed (TEs) on branches. Again,
the slopes of the linear regressions were close to 1 for estimated
and true TEs in every case (Fig. 3 E–H), which confirms the result
obtained for NTs. As expected, the variance becomes higher when
the evolutionary rate variation is large (Fig. 3).
We also compared the performance of RelTime with that of

a Bayesian approach. We selected MCMCTree (MC2T) from
among the widely used software packages (11, 12), because MC2T
is much more computationally efficient and performs as well as
other more computationally expensive methods (6, 7). Even
though MC2T is fast, it still required 1,000 times larger calcula-
tion time than our approach, with many MC2T calculations tak-
ing multiple days (Fig. 4A). Our projections show that for datasets

Fig. 3. Accuracy of RelTime estimates. (A–D) Estimated versus true node times (NTs) for simulated datasets under CR, AR, and RRs (RR50, R100). (E–H) Es-
timated versus true TEs on branches. Each data point represents the average of normalized times from 100 simulations (±1 SD). Each graph contains the linear
regression slope through the origin.
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containing thousands of sequences, MC2T will be extremely time
expensive, whereas RelTime will produce results within a few
hours (Fig. 4B). We did not use BEAST (11) in our simulation
analysis because it is expected to take 1,000 fold longer than even
MC2T (6), making it impractical for simulation analysis of large
phylogenies. However, results with smaller datasets in the past
have shown that MC2T and BEAST perform similarly (6).
Compared with RelTime, we found that the differences between

the estimated and true TEs displayed a large dispersion when
MC2T is used (Fig. 5, gray curves). MC2T shows a high propensity
to overestimate elapsed times when the rates are autocorrelated
(Fig. 5A) and when the rate variation is large (RR100; Fig. 5C).
Similar trends are observed for node time estimates (Fig. S1). In
all of these analyses, we used the correct model of rate variation in
MC2T, which rules out model violation as a reason for the ob-
served performance of MC2T. Furthermore, MC2T was used
with a perfect calibration with tight boundaries around the true

time (±1 million year; My), which prevented interactions between
uncertainties in rate estimations and statistical distributions of
multiple calibrations.
We also evaluated the performance of RelTime when there

were clade-specific rate changes, because many molecular phy-
logenies show clades with concerted speed-ups and slow-downs
(e.g., ref. 32). To investigate the effect of such a scenario on the
performance of RelTime, we imposed an additional 50% rate
acceleration on random clades in the RR50 simulation (RR50+
50; Methods). Neither autocorrelated nor random rate variation
models perfectly fit the distribution of lineage rates for RR50+50
datasets, which enabled an assessment of the robustness of the
RelTime and MC2T approaches for such data.
RelTime produced times that show an excellent correspon-

dence with the true NTs and TEs for all nodes in the speed-up
clade (Fig. 5D and E). However, the accuracy of MC2T was worse
for nodes in the speed-up clade (Fig. 5E, gray curve). Because
MC2T performed generally well for RR50 data (Fig. 3 C and G),
the observed difference in performance between RelTime and
MC2T is likely because RelTime does not impose a prespecified
rate variation model, unlike MC2T. This result prompted us to
examine the performance of r8s, which uses a semiparametric rate
smoothing approach (penalized likelihood method) to model
a variety of conditions in a tree that range from clock-like to non–
clock-like (33). However, r8s performed worse than RelTime for
RR100 and RR50+50 datasets analyzed (Fig. 5F).

Discussion
We have described an approach for building timetrees that decou-
ples the estimation of relative lineage-specific rates from the
inference of absolute times of divergence. This method enables
the estimation of relative divergence times without requiring the
prespecification of statistical distribution of lineage rates and clock
calibrations. These properties also make the RelTime method
orders of magnitude faster than the fastest Bayesian method
available. At the same time, our computer simulation results have
shown that our method performs as well as or better than the
other approaches that are practical for large datasets.
As an example application, we used RelTime to reanalyze a

recent dataset of mammalian species in which divergence times
were obtained with MC2T (4). Their analysis used 82 calibrations
(64 constraining nodes within the placental mammals). We com-
pared RelTime estimates to those obtained by using MC2T for
divergences among 138 placentals (with 24 marsupial sequences
used as outgroups; 162 total sequences) using the same substitution
model and the original alignment and phylogeny.We found a linear
relationship between the two estimates for each of the three major
clades identified (Fig. 6), although RelTime did not require any
calibration information or a prespecified lineage rate distribution.
A similar result was observed when analyzing third codon positions
(Fig. S2A), all codon positions (Fig. S2B), or only retaining amino
acid positions containing fewer than 10% gaps (Fig. S2C).
RelTime also yielded a distribution of amino acid substitution

rates among lineages, which we found to fit a lognormal distribu-
tion better than a normal distribution (Fig. 6, Inset). We also found
that we could convert relative times into absolute time estimates
that were close to those reported in ref. 4 by deriving an average
evolutionary rate from just three (instead of 64) placental cali-
brations that showed smallest relative difference between the
minimum and maximum boundaries, i.e., most tightly constrained
(Table S1).
We anticipate that the relative times and branch rates pro-

duced by RelTime will be useful in many different ways. First,
the relative times are directly useable for determining the rela-
tive ordering and spacing of divergence events on a phylogeny.
Second, the branch (relative) rates produced by RelTime directly
reveal the statistical properties of the distribution of evolutionary
rates in a phylogeny, which exposes clades and lineages with

Fig. 4. Computational time required by RelTime and MC2T for 500 simu-
lated datasets. (A) Absolute computational times for RelTime (black bars)
and MC2T (gray bars). (B) Projected computational times for a large number
of sequences. These times were estimated by using an alignment of 4,493
sites on a single core computer. For this dataset, the best fit exponential
equation was 0.06 × n2.28 and 0.06 × n1.56 for MC2T and RelTime, re-
spectively, where n is the number of sequences.
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significantly slower or faster evolutionary rates. This approach can
be used not only for different groups of species, but also for du-
plicated genes. Third, the relative times obtained from molecular

data can be directly compared with available times from non-
molecular data (e.g., fossil record) without the problem of cir-
cularity. This comparison will enable a better assessment of
concordance between times suggested by different types of data.
Fourth, the relative times will be useful in diagnosing the effect of
selected calibrations on absolute divergence times by looking for
the discordance of relative times from RelTime and estimated
times assuming different clock calibrations in Bayesian and other
methods. Fifth, relative times can be translated into absolute
times by using the most tightly constrained calibration times (i.e.,
the upper and lower bounds are close to each other), a practice
that has been advocated by many (17, 34). Therefore, the RelTime
approach appears to be accurate and fast, with a promise to be
useful for testing evolutionary hypotheses quickly in the fields of
molecular phylogenetics and the evolution of multigene families,
both of which are important to understanding the evolution of new
functions and adaptations (35–37).

Methods
Computer Simulation. We conducted computer simulations to generate nu-
cleotide sequence alignments for which the gene lengths and other evolu-
tionary parameters were drawn from the distribution of the number of sites
(range 445–4,439 sites), evolutionary rates (range 1.35–2.60 substitutions per
site per billion years, GC contents (range 39–82%), and transition/transversion
ratio (range 1.9–6.0) presented in ref. 38. Five independent sets of simulations,
with 100 replicates each, were carried out by using CR, AR, and varying RR
among lineages by following the procedures in ref. 15. For AR, we used au-
tocorrelation parameter ν = 1 (39). The RR cases were simulated under two
scenarios. In thefirst scenario (RR50), the branch-specific evolutionary ratewas
drawn from a uniform distribution over the open interval ranging from 0.5r to
1.5r, where r is the nominal rate for the entire gene. In the second scenario
(RR100), this interval was increased to range from 0 to 2r. For the clade-specific
speed-ups, we used RR50 as the baseline system and applied a specified
amount of rate increase, to a randomly selected group of branches containing
at least 50 nodes (termed the speed-up clade). We used SeqGen (40) under the
Hasegawa–Kishino–Yano (HKY) model (41) to generate alignments by using
the master phylogeny of 446 taxa, which was derived from the bony-
vertebrate clade in the Timetree of Life (42); all polytomies were pruned.

Molecular Dating Analyses. In all analyses, we used the correct model of
nucleotide substitution, the correct phylogeny, and the correct model of rate

Fig. 5. Distributions of the normalized differences between estimated and true TEs on branches. (A–C) Comparisons of RelTime (black curve) and MC2T (gray
curve) performances for datasets simulated with AR and RRs (RR50, RR100). Relative performances of MC2T and RelTime for estimating times outside (D) and
inside (E) the speed-up clades. (F) Comparison of the accuracy of RelTime (black solid) and r8s (gray dotted) for RR100 and RR50+50 datasets. The corre-
sponding panels for relative node times (NTs) are shown in Fig. S1.

Fig. 6. Comparisons of node times in RelTime (y axis) and MC2T (x axis) for
the tree of 138 placental mammals, where marsupials were used to root the
tree. Node times are relative estimates in RelTime and absolute values in
MC2T (millions of years; My). Nodes in major clades are color coded by fol-
lowing Meredith et al. (4). Inset shows the distribution of relative evolu-
tionary rates produced by RelTime, where the negative values indicate
slower and positive values indicate faster rate than the ancestral average
rate of 1. The skewness and kurtosis for the distribution of logarithmically
transformed data (0.54 and 0.32, respectively) were much smaller than those
for the raw data (1.73 and 3.51), indicating that the lognormal distribution is
a better fit. The dataset analyzed consisted of an alignment of 11,010 amino
acid positions (4). A JTT+Γ model was used in RelTime, as in ref. 4.
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variation among lineages (MC2T). RelTime estimates were obtained by using
its own program (which will be released upon the publication of this work),
and MC2T (PAML version 4.5; ref. 12) was used. For MC2T, the time esti-
mation process was completed after 50,000 chains and a burn-in of 10%. For
each of the 500 alignments, the time estimation process was run twice to
ensure convergence had been reached. Other parameters were as follows:
birth-death values (2 2 0); kappa_gamma (1 dataset-specific); and sigma2_
gamma (1 dataset-specific). For MC2T, we used a single calibration node of
depth 324.5 My centered around its true time (323.5–325.5 My) to fulfill the
program requirements. Note that MC2T only completed the analysis of 38
(of 100) alignments for RR100 (maximum calculation time limit = 60 h), so
the results presented are from completed analyses only. For r8s (33), we used
the semiparametric penalized likelihood model (TN algorithm, five random
starting points) for four simulated datasets. Branch lengths were obtained
via ML (HKY, uniform rates) by using MEGA version 5.0 (43). The cross-vali-
dation procedure to infer the appropriate smoothing rate factor failed to
complete for most values tested for our large dataset; range of the log

(smooth) = 0.0–3.9. However, large rate variations like the ones simulated
here can be modeled by small smoothing factors. Therefore, we tested three
smoothing parameters (0.1, 1, and 10), which yielded similar results.

Measurements of Accuracies. All comparisons of estimated and true times for
computer simulated data involved normalized values, which were obtained
by dividing the given time by the maximum time in the tree. This nor-
malization was applied for both the node times (NTs) and the times elapsed
(TEs). The percent difference in time elapsed (ΔTE) is the difference be-
tween the true and the estimated TE divided by the true TE and multiplied
by 100.
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