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Abstract

Background: Domestication generally implies a loss of diversity in crop species relative to their wild ancestors
because of genetic drift through bottleneck effects. Compared to native Mediterranean fruit species like olive and
grape, the loss of genetic diversity is expected to be more substantial for fruit species introduced into
Mediterranean areas such as apricot (Prunus armeniaca L.), which was probably primarily domesticated in China. By
comparing genetic diversity among regional apricot gene pools in several Mediterranean areas, we investigated the
loss of genetic diversity associated with apricot selection and diffusion into the Mediterranean Basin.

Results: According to the geographic origin of apricots and using Bayesian clustering of genotypes, Mediterranean
apricot (207 genotypes) was structured into three main gene pools: ‘Irano-Caucasian’, ‘North Mediterranean Basin’
and ‘South Mediterranean Basin’. Among the 25 microsatellite markers used, only one displayed deviations from the
frequencies expected under neutrality. Similar genetic diversity parameters were obtained within each of the three
main clusters using both all SSR loci and only 24 SSR loci based on the assumption of neutrality. A significant loss
of genetic diversity, as assessed by the allelic richness and private allelic richness, was revealed from the
‘Irano-Caucasian’ gene pool, considered as a secondary centre of diversification, to the northern and southwestern
Mediterranean Basin. A substantial proportion of shared alleles was specifically detected when comparing
gene pools from the ‘North Mediterranean Basin’ and ‘South Mediterranean Basin’ to the secondary centre
of diversification.

Conclusions: A marked domestication bottleneck was detected with microsatellite markers in the Mediterranean
apricot material, depicting a global image of two diffusion routes from the ‘Irano-Caucasian’ gene pool: North
Mediterranean and Southwest Mediterranean. This study generated genetic insight that will be useful for
management of Mediterranean apricot germplasm as well as genetic selection programs related to adaptive traits.
Background
Domestication of plants is a complex evolutionary
process in which human selection favours phenotypic
transitions making them more useful for humans and
better adapted to landscape management. It is a crucial
step in the evolution of crop species since humans have
an important impact on their origins and changes.
Moreover, selection pressure and local diversification
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lead to an ongoing process [1]. Two major impacts on
plant diversity result from domestication. Firstly,
changes in traits selected for human use, called the “do-
mestication syndrome” [2], lead to selection signatures
at specific loci [3,4]. In fact, according to the intensity of
the selection process, the degree of change in popula-
tions can vary along a continuum from their wild ances-
tors to the domesticated populations, which cannot
reproduce or survive without human intervention. Sev-
eral highly domesticated plants such as maize, rice and
wheat express domestication traits and have lost their
ability to survive on their own in the wild [5]. Other
crops like trees and forage are generally considered to be
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.
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partially domesticated while conserving some ability to
survive in natural environments [6]. In seed-propagated
crops, domesticated types are characterized by a lack of
seed dispersal at maturity and a lack of seed dormancy
[7], while in clonally propagated crops, the reduction of
sexual fertility and adaptations facilitating vegetative
propagation have generally been reported [8].
The second major consequence of domestication is

the reduction of genetic diversity in crops relative to
their wild progenitors due to human selection and gen-
etic drift through bottleneck effects [9]. Contrary to se-
lection which only affects genetic diversity at target
genes [3,4], bottleneck processes reduce neutral genetic
diversity across the entire genome [10-12]. The strength
of genetic drift during the domestication bottleneck is
determined by its duration and the effective population
size [13]. Thus, according to their life-history traits and
evolutionary history, diversity loss differs considerably
among crop plants. The reduction of gene diversity in
crops compared to wild relatives has been observed in
soybean (34%), maize (38%) and wheat (70–90%) [10-12].
However, introgressive hybridization between domesti-
cated forms and their wild relatives has often expanded
genetic diversity, counteracting the effects of the initial
domestication bottleneck [14].
For perennial fruit species, domestication means chan-

ging the reproductive biology from sexual reproduction
(in the wild) to vegetative propagation (under cultiva-
tion) [15]. Few studies have reported the impact of the
domestication history and how bottleneck effects may
reduce the genetic diversity of crops relative to the wild
relatives. Miller and Schall [16] provided phylogeo-
graphic evidence of multiple domestication of a culti-
vated fruit tree, Spondias purpurea, within the
Mesoamerican centre of domestication. About 29% of
the total diversity was not recovered in wild populations,
suggesting that either new alleles have arisen during cul-
tivation or, alternatively, contemporary extinction of
tropical dry forests has occurred in Mesoamerican areas
leading to genetic erosion of the wild gene pool. In
Mediterranean zones, only a weak bottleneck effect on
diversity in olive and grapevine was observed when com-
paring the wild and cultivated forms [17,18]. For Prunus
species, Mariette et al. [19] reported that in the case of
sweet cherry a marked genetic bottleneck due to
plant breeding was detected at microsatellite loci (40%)
and at the S-locus coding for a gametophytic self-
incompatibility (GSI) system (30%). However, the
domestication bottleneck, as estimated by the loss of
genetic diversity between wild cherry and landraces,
was not detected by SSR markers but only observed at
the S-locus (20%).
Apricot, Prunus armeniaca L., is a stone-fruit species

that is grown commercially worldwide in all temperate
regions. The numerous cultivars are highly adapted to
restricted areas [20]. Apricot is clonally propagated
through grafting but it is also seed-propagated, mainly in
oasis agroecosystems. The Mediterranean area accounts
for over 50% of the worldwide production [21]. Apricot
was probably initially domesticated in China where wild
apricot is found [22]. Following several collection expe-
ditions through the major agricultural areas of the world
and based on morphological data, Vavilov [23] proposed
an explanation to determine the centre of origin of culti-
vated plants and described three regions as centres of
origin for apricot: a Chinese centre, a Central Asian
centre and a Near East centre. The latter centre included
apricot from the Irano-Caucasian area (Iran, Caucasia
and Turkey) and was considered as a secondary centre
of cultivar diversification because of its presumed inter-
mediate geographic position between the main area of
cultivation of the domesticate and the distribution of the
wild species [24]. On the basis of morphological charac-
ters and pomological descriptions, four major eco-
geographical apricot groups were defined [25]: (i) The
Central Asian group is the oldest and most diversified.
The cultivars are self-incompatible apricots and have
high-frost requirements; (ii) the Dzhungar-Zailij group
includes self-incompatible small-fruited cultivars; (iii)
the Irano-Caucasian group mostly encompasses self-
incompatible apricots with reduced chilling require-
ments; and (iv) the European group is the most recent
one, including self-compatible cultivars. According to
the morphological characters, the expansion of apricot
species into the Mediterranean Basin may have occurred
in two waves along two distinct major apricot diffusion
routes [24,26]: the first one being brought by the Arabs
through the Near East and North Africa, and the second
through Hungary and Central Europe. However, Kostina
[25] reported only one major route from the Irano-
Caucasian area to the Mediterranean Basin. Hence,
apricot domestication and its diffusion into the Mediter-
ranean Basin are still debated issues.
Recently, improvements in neutral molecular markers

have significantly increased the capacity of genetic
characterization and relationship studies in different
apricot cultivars, generating important information relat-
ing to the genetic variability, selection processes and
breeding history of this crop at a large spatial scale.
In this setting, using both microsatellite and AFLP
markers, apricot accessions collected from different
eco-geographical groups (Europe, North America, Irano-
Caucasia, Central Asia) have been grouped according to
their geographical origin and pedigree information sup-
porting the history of apricot diffusion from its centre of
origin [27-31]. However, these studies considered mater-
ial collections, including both traditional cultivars and
selected accessions derived from breeding programs, and



Table 1 Genetic diversity scored at 25 mapped loci in the
207 apricot accessions

Locus LG NA NA,P PIC He Ho

AMPA109β 1 8 2 0.268 0.279 0.217

CPPCT034¤ 1 9 2 0.425 0.478 0.454

UDP96-018{ 1 6 1 0.099 0.102 0.087

AMPA116β 2 11 6 0.766 0.795 0.686

BPPCT001£ 2 5 2 0.365 0.465 0.468

BPPCT004£ 2 12 5 0.780 0.806 0.652

BPPCT030£ 2 8 5 0.745 0.783 0.705

AMPA101β 3 8 4 0.618 0.662 0.584

AMPA119β 3 8 2 0.316 0.340 0.280

BPPCT040£ 4 10 2 0.417 0.496 0.415

UDP97-402{ 4 10 3 0.511 0.567 0.458

AMPA105β 5 12 6 0.741 0.772 0.690

BPPCT017£ 5 10 3 0.514 0.569 0.560

BPPCT038£ 5 13 5 0.746 0.781 0.657

AMPA100β 6 9 5 0.700 0.733 0.686

BPPCT008£ 6 12 6 0.777 0.805 0.705

BPPCT025£ 6 9 3 0.569 0.621 0.550

CPPCT030¤ 6 16 6 0.739 0.764 0.710

Ma014a# 6 6 2 0.461 0.556 0.478

Ma040a# 6 11 3 0.573 0.622 0.487

UDP98-412} 6 11 4 0.643 0.681 0.555

CPPCT022¤ 7 15 4 0.777 0.806 0.715

CPPCT033¤ 7 9 4 0.443 0.464 0.396

CPPCT006¤ 8 11 6 0.795 0.820 0.700

UDP98-409{ 8 18 8 0.861 0.876 0.739

Mean 10.28 3.96 0.586 0.626 0.545

LG linkage group position; NA number of alleles per locus; NA,P number of
alleles with higher than 5% frequency; PIC polymorphic information content;
He expected heterozygosity; Ho observed heterozygosity.
Primers developed by: βHagen et al. [37]; £Dirlewanger et al. [38]; ¤Aranzana
et al. [39]; #Yamamoto et al. [40]; {Cipriani et al. [41]; }Testolin et al. [42].
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did not take the difference between vegetative and seed
propagation into account.
In Europe, clonal propagation through grafting and

cuttings was used for a long time. Nevertheless, much of
the remaining variability was from a mix between seed
and grafting propagated apricots (i.e. Vesuvian apricots,
Roussillon apricots, Peloponnese apricots) [32]. In North
Africa ( Algeria, Morocco, and Tunisia), apricot germ-
plasm contained accessions propagated by grafting, but
also by seeds specifically located in oasian regions. A
fine-scale genetic diversity study conducted using AFLP
markers at the within-population level, focusing on Tu-
nisian grafted apricot cultivars, supported the assump-
tion of few introduced genotypes that have been firstly
propagated by seeds [33]. Analysing a larger set of Tu-
nisian apricots, including both vegetatively propagated
cultivars and seed propagated accessions, Bourguiba
et al. [34] identified two main gene pools according to
their propagation mode and confirmed the assumption
that these two gene pools shared the same origin.
A gradient of decreasing genetic diversity from east to

west was proposed by Hagen et al. [35] among the four
identified apricot groups: ‘Diversification’, ‘Adaptive Di-
versity’, ‘Continental Europe’ and ‘Mediterranean Basin’,
which could be related to the apricot diffusion process.
However, this study was limited to a small sample (only
50 accessions) and based on a phenetic approach related
to the geographic origin and the phenotypic characters
of the cultivars.
We still have incomplete knowledge of apricot domes-

tication and diffusion into the Mediterranean Basin
based on the assumption of a genetic diversity decrease
[35] and balancing between one [25] or two major diffu-
sion routes [24,26]. This was the first study generating
insight into these evolutionary and historical processes
following a genetic structure analysis in apricot which
included a large sample size of local Mediterranean ma-
terial and involved microsatellite markers as well as a
model-based Bayesian clustering approach. Owing to
their transferability across Prunus species, simple se-
quence repeat (SSR) markers have been widely used in
variability studies and linkage map construction [36]. A
set of 25 microsatellite markers was selected according
to their polymorphism in apricot cultivars and their
mapping over the Prunus genome.
The goal of this study was to clarify the history of the

apricot domestication process in the Mediterranean area
through an analysis of genotypes originating from Al-
geria, France, Iran, Italy, Morocco, Spain, Tunisia and
Turkey. We specifically addressed the following ques-
tions: (i) What is the genetic structure of Mediterranean
apricots compared to Irano-Caucasian germplasm? (ii) Is
there a loss of genetic diversity from the Near-Eastern
secondary centre of diversification to the extreme south-
western Mediterranean area? and (iii) Can distinct apri-
cot diffusion routes be identified throughout the
Mediterranean Basin?

Results
SSR polymorphism
A total of 257 alleles was detected across the 25 SSR loci
used, ranging from 5 (BPPCT001) to 18 per locus
(UDP98-409; Table 1). The average number of alleles per
locus was 10.28 but dropped to 3.96 when rare alleles
were removed (i.e. with a frequency of less than 5%).
The number of alleles per locus with a frequency higher
than 5% ranged from 1 (UDP96-018) to 8 (UDP98-409).
The average PIC value for the 25 loci was 0.586 and the
most informative locus was UDP98-409 (0.861). Only
three among the 25 SSR loci displayed a significant
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heterozygosity deficit (P < 0.01; BPPCT004, Ma040a and
UDP97-402 loci; see Additional file 1: Table S1) in apri-
cot from the Irano-Caucasian area (Iran and Turkey),
which is considered as a secondary diversification zone
[24], indicating the lack of null alleles even though most
of SSR loci were not specifically developed in apricot
[37-42].
The Nei’s genetic diversity ranged from 0.102 (UDP96-

018) to 0.876 (UDP98-409), with an average of 0.626
(Table 1), suggesting that the examined Mediterranean
apricot germplasm enclosed higher polymorphism than
reported in previous studies [27-30]. Compared to peach,
apricot had higher polymorphism and was more diversi-
fied as confirmed by the number of alleles per locus and
the observed heterozygosity, which was significantly
higher on the 11 SSR loci that were used in both studies
[43] (Mann–Whitney U-test, P<0.05; the average number
of alleles per locus was 11.80 in apricot and 7.64 in peach).

Genetic structure and diversity within apricot
geographic groups
According to the geographic origin of the studied apricot
accessions, we defined eleven groups (Figure 1; see
Additional file 2: Table S2). They displayed substantial gen-
etic differentiation since the average FST value was 0.111,
ranging from 0.024 for pairwise comparisons between the
Iran and Turkey groups to 0.195 between the Murcia and
Oases of Tunisia groups (see Additional file 3: Table S3).
All pairwise FST values were significant at P < 10–6, except
for the one observed between South Italy and Murcia,
which was significant at P < 10–4.
Genetic relationships among the defined apricot

groups were assessed based on Nei’s [44] genetic dis-
tances and the Neighbor-joining algorithm (Figure 2).
Figure 1 Origin of the 207 apricot accessions classified into 11 aprico
their spatial and genetic proximity. Algerian, Moroccan and Tunisian ap
an ex situ collection (see Additional file 2: Table S2). Region A= Iran and Tu
Italy; Region C=Murcia, northern Tunisia, Moulouya Valley, Messaad, Oases
defined by STRUCTURE analysis with cluster 1 in blue, cluster 2 in green, clu
According to the bootstrap values, the 11 apricot groups
were classified into three regions (A, B and C; Figures 1
and 2). Region A, including Iran and Turkey groups
(Iran-Caucasian region), was clearly distinguished from
the remaining groups by a high bootstrap support of
99.94% (Figure 2). Region B, including Continental
Europe, South France and South Italy groups, was
defined by a bootstrap value of 69.61%. The third region
(region C) included the five apricot groups from North
Africa area as well as Murcia group, supported by a
weak bootstrap value (35.81%; Figure 2). Based on the
AMOVA analysis, the genetic variance was about 7%
among these three defined regions and 14% among apri-
cot groups per region (Table 2).
The mean number of accessions per group was 18.81,

ranging from 11 for the Murcia group to 32 for the
Turkey group (Table 3). The levels of the genetic diver-
sity estimators measured within these geographic groups
differed: Iran and Turkey groups (region A), had the
highest expected heterozygosity values, with 0.655 and
0.630, respectively; while the Oases of Tunisia and Draa
Valley groups (region C) had the lowest ones, with 0.487
and 0.474, respectively. The observed heterozygosity was
highest for South Italy (0.633) and lowest for Draa Valley
(0.379). For the following groups: Turkey, Murcia,
Moulouya Valley and Draa Valley, the FIS values showed
a significant heterozygosity deficit (Table 3).
As the number of alleles observed in a group is highly

dependent on the sample size, the allelic richness and pri-
vate allelic richness were computed for each group and re-
gion (Table 3). The highest allelic richness was detected
for the Iran and Turkey groups (region A), with 5.03 and
4.88, respectively, while the lowest value was noted in the
Draa Valley (3.38), Messaad (3.36) and Oases of Tunisia
t groups and three regions: A, B and C as defined according to
ricots were sampled in situ. The remaining accessions originated from
rkey; Region B=Continental Europe, southern France and southern
of Tunisia and Draa Valley. Colours correspond to genetic clusters
ster 3 in yellow and cluster 4 in red.



Figure 2 Neighbor-joining clustering of geographic groups based on pairwise Nei’s genetic distance values, as well as the distribution
of the genetic clusters within each of them. Colours correspond to genetic clusters defined by the STRUCTURE analysis, as reported in
Figure 3, with cluster 1 in blue, cluster 2 in green, cluster 3 in yellow and cluster 4 in red. Numbers next to nodes indicate bootstrap support
percentages in 10000 pseudoreplicates.
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(3.34) groups belonging to region C. Similar results were
obtained when computing the private allelic richness.
Thus, region A had a significant upper level of genetic di-
versity in terms of allelic richness, private allelic richness
and expected heterozygosity (Table 3), reflecting a de-
crease in genetic diversity from the eastern (region A) to
the south-western (region C) Mediterranean Basin.

Model-based Bayesian clustering analysis
Using the model-based Bayesian clustering approach
implemented in STRUCTURE [45], the genetic structure
Table 2 Partitioning of variance within and among
apricot groups and regions (average over 25 loci)

Source of
variation

df Sum of
squares

Variance
components

Percentage of
variation

Among regions 2 311.75 1.353 7*

Among groups/regions 8 488.82 2.606 14*

Within groups 196 2840.47 14.492 79*

Total 206 3641.04 18.451

The group level considered the eleven apricot geographic groups and the
region level encompassed the three main geographic regions: A (Iran and
Turkey), B (Continental Europe, southern France and southern Italy), and C
(Murcia, northern Tunisia, Moulouya Valley, Messaad, Oases of Tunisia and
Draa Valley).
df degrees of freedom.
* P< 0.001 based on 999 permutations.
of Mediterranean apricot was examined according to the
model with 2 clusters (K= 2) to 6 clusters (K= 6). The
ad hoc quantity based on the second order rate of
change of the likelihood function (ΔK) [46] revealed a
first level of clustering at K= 2 for the investigated
Mediterranean apricots (ΔK= 61.81; Figure 3; see
Additional file 4: Figure S1) and a sub-clustering at K= 4
(ΔK= 3.6). Based on the permuted average Q-matrix
generated by CLUMPP for the 10 STRUCTURE runs,
the highest similarity coefficient (H’) was observed for
K= 2 (H’= 0.997) and K= 4 (H’= 0.979), indicating the
stability of the results for these two models (Figure 3).
At K= 2, apricot accessions from Iran and Turkey and

a few accessions from Italy and France were separated
from the other ones (Figure 3). At K= 3, accessions from
Continental Europe, South Italy, South France and
Murcia were separated from those located in the
Maghreb. At K= 4, a fourth cluster, including some
accessions from Continental Europe, South Italy and
South France, was identified as originating from the ‘Adap-
tive Diversity’ group previously defined by Hagen et al. [35].
At K=5 and K=6, the genetic structure of Mediterranean
apricot within three main gene pools was not modified
since the accessions of the fifth and sixth clusters were not
consistently assigned and hence no distinctive additional
cluster was noted (Figure 3).



Table 3 Genetic diversity within apricot geographic groups and regions

Groups Accessions number Ho He FIS NA Ar Apr

Iran 14 0.623 0.655 0.051 145 5.03a 0.47a

Turkey 32 0.585 0.630 0.073* 174 4.88a 0.43a

Region A 46 0.596 0.645 0.076** 199 7.43b 1.86b

Continental Europe 21 0.617 0.619 0.004 138 4.43a 0.35a

South France 12 0.623 0.609 −0.024 110 4.16a 0.09a

South Italy 18 0.633 0.579 −0.098 101 3.61a 0.07a

Region B 51 0.624 0.623 −0.003 156 5.77b 0.79b

Murcia 11 0.487 0.567 0.146*** 95 3.73a 0.05a

North Tunisia 19 0.570 0.551 −0.036 100 3.48a 0.08a

Moulouya Valley 13 0.428 0.535 0.207* 96 3.52a 0.03a

Messaad 23 0.553 0.500 −0.108 97 3.36a 0.01a

Oases of Tunisia 23 0.489 0.487 −0.004 97 3.34a 0.02a

Draa Valley 21 0.379 0.474 0.204*** 100 3.38a 0.01a

Region C 110 0.488 0.569 0.143*** 175 5.57b 0.80b

P (Region A vs. B) 0.817 0.513 0.020$ 0.017$ 4.8 10-5$$$

P (Region A vs. C) 0.062 0.189 0.147 0.006$$ 2.8 10-5$$$

P (Region B vs. C) 0.009$$ 0.489 0.476 0.701 0.550

Ho observed heterozygosity; He expected heterozygosity; FIS fixation index values; Exact test significant at * P< 0.001, ** P< 0.0001, and *** P< 10-5.
NA total number of alleles per group; Ar allelic richness; Apr private allelic richness.
Probability of independency between two regions using the two-tailed Mann-Whitney’s U test. $ P< 0.05; $$ P <0.01; $$$ P< 0.001.
a standardized at maximum value G= 19 individuals per group; b standardized at maximum value G= 70 individuals per region.
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The K= 4 model was chosen to obtain an in-depth
overview of apricot genetic structure in the Mediterranean
area. Four genetic clusters were thus defined and most of
the apricot accessions (167 genotypes among the 207
studied, 80.7%) were assigned to a cluster with a
probability superior to 80%: cluster 1 (blue) containing
Figure 3 Genetic structure assessed by STRUCTURE analysis. Bar plot,
probability among assumed clusters in the Mediterranean apricot germplas
into colored segments representing the proportion of the individual’s geno
black line.
39 accessions originating from the ‘Irano-Caucasian’
area, cluster 2 (green) including 7 accessions referred to
the ‘Adaptive Diversity’ group [35], cluster 3 (yellow)
composed of 58 accessions from the ‘North Mediterranean
Basin’ area and a few from the South Mediterranean
and cluster 4 (red) with 63 accessions originating
generated by DISTRUCT, depicts classifications with the highest
m. Each individual is represented by a vertical bar, partitioned
me in the K clusters. Apricot geographic groups were separated by
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from the ‘South Mediterranean Basin’ region
(Figures 1 and 3). The remaining 40 accessions
(19.3%) of the sample were assumed to have an
admixed ancestry (see Additional file 2: Table S2).
The admixture was clearly observed in apricots from the
North Tunisia (68.4%) and Moulouya Valley (30.7%) groups
(see Additional file 5: Table S4). The four genetic clusters
were significantly differentiated, as reflected by the high
global FST value (FST=0.122). The genetic differentiation
among the three main clusters 1, 3 and 4 ranged from
0.102 to 0.118, with an average value of 0.109 (see
Additional file 6: Table S5).

A significant reduction of genetic diversity between
apricot gene pools
A significant reduction of allelic richness and private al-
lelic richness was observed when regions B and C were
compared to region A (Table 4). These observations
confirmed the presence of a substantial gradient of de-
creasing genetic diversity of apricot germplasm from the
east (Iran-Caucasian area, region A) to the southwest
(Maghreb area, region C), depicting apricot domestica-
tion and its diffusion history towards the Mediterranean
area [35].
To properly assess the reduction of genetic diversity

due to the domestication bottleneck, a neutral sub-
sample of loci was determined by removing those pre-
sumed to be under selection within populations. Thus,
we analysed clusters as defined by a model-based Bayesian
clustering since they were significantly differentiated with-
out genetic structure at the intra-cluster level in order to
detect true positive outlier loci, as proposed by Excoffier
et al. [47]. An analysis using Fdist2 software was conducted
on three comparisons of these three main clusters: (i) clus-
ters 1 (‘Irano-Caucasian’) and 3 (‘North Mediterranean
Basin’), (ii) clusters 1 and 4 (‘South Mediterranean Basin’),
and (iii) clusters 3 and 4 (Figure 4). The FST calcu-
lated by Fdist2 between clusters 1 and 3 was 0.105.
Based on the first analysis, only one outlier locus
was detected at the 95% level: CPPCT022 locus
Table 4 Relative reduction of diversity among geographic reg

Ho He

Region A vs. B −0.047 0.034

Region A vs. C 0.182 0.118

Region B vs. C 0.218** 0.087

Cluster 1 vs. 3 0.0601 / 0.0512 0.1301 / 0.1332

Cluster 1 vs. 4 0.2381* / 0.2362* 0.2221* / 0.2202*

Cluster 3 vs. 4 0.1901 / 0.1952 0.1061 / 0.1002

Ho observed heterozygosity; He expected heterozygosity; Apr private allelic richness.
For each estimator, the relative reduction of diversity was determined by calculatin
original gene pool and DIV2 is the estimator of diversity in the supposed original g
Bold values represent significant reduction of diversity at * P < 0.05, ** P < 0.01, and
1 computed based on all SSR loci used in this study (25 loci); 2 computed based on
(Figure 4a). This outlier was removed for a second
analysis. No outlier was detected and the FST value was
0.110. A similar analysis was carried out on clusters 1 and
4. The FST was 0.100 and no outlier was detected at the
95% level (Figure 4b). Finally, using the same procedure,
the FST between clusters 3 and 4 was 0.118. No outlier was
detected at the 95% level (Figure 4c).
When looking for the genetic diversity parameters

within the three main clusters, similar results were
obtained based on both all SSR loci and only on 24 SSR
loci following the assumption of neutrality (i.e. after re-
moving the CPPCT022 locus; Table 5). Significant differ-
ences were noted for the allelic richness and private
allelic richness when comparing clusters 1 and 3 as well
as clusters 1 and 4. Further, the observed and expected
heterozygosity values were significantly different when
comparing clusters 1 and 4 (Table 5). Hence, a signifi-
cant reduction of allelic richness and private allelic rich-
ness was observed using both all SSR loci, and only SSR
loci based on the neutrality assumption, when both clus-
ters 3 and 4 were compared to cluster 1 (Table 4). Such
a reduction of allelic richness (from 41 to 47%), private
allelic richness (from 83 to 93%), and observed and
expected heterozygosity (from 22 to 24%) confirmed the
decrease in genetic diversity among genetic clusters from
the eastern (cluster 1) to the south-western (cluster 4)
Mediterranean Basin (Table 4).

Specific alleles within pairs of geographic regions and
genetic clusters
The number of shared alleles specifically detected be-
tween pairs from each geographic region as well as be-
tween each cluster pair at all microsatellites was
computed. Nineteen alleles observed at 14 SSR loci
among the total of 257 alleles detected at the 25 loci
(7.4%) and 26 alleles observed at 16 SSR loci (9.7%) were
specifically detected within regions A vs. B and A vs. C,
respectively, while only 4 alleles observed at 3 SSR loci
were detected within regions B vs. C (Table 6). A total of
161 alleles were shared by at least two of the three
ions and genetic clusters

Ar Apr

0.223* 0.573***

0.250** 0.568***

0.034 −0.012

0.3031*** / 0.4752*** 0.8291*** / 0.9312***

0.3031*** / 0.4092*** 0.7261*** / 0.8322***

0.0001 / -0.1252 −0.6001 / -1.4482

g 1-(DIV1/DIV2), where DIV1 is the estimator of diversity in the supposed
ene pool.
*** P < 0.001.

ly on 24 SSR loci under the assumption of neutrality.
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geographic regions. Among them, 11.8% and 16.1% were
specific to regions A vs. B and A vs. C, respectively, while
only 2.4% were specific to regions B vs. C (Table 6). The
frequency of these alleles ranged from 0.005, corre-
sponding to one allele detected once in each of the two
a

b

c
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Figure 4 Simulated FST values as a function of the expected heterozy
1 and 4 (FST=10%; b), and 3 and 4 (FST=11.8%; c). Curves delimiting th
as described by Beaumont and Nichols [66]. Curves with broken lines, trian
and median values, respectively. Black and white circles represent the obse
regions, to 0.162, with an average of 0.027 (Table 6). The
frequency of these alleles varied according to the locus
was higher in region A than B and C when taking all
observed shared alleles into account (see Additional file 7:
Figure S2).
0.5 0.6 0.7 0.8 0.9 1.0

H e
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0.5 0.6 0.7 0.8 0.9 1
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CPPCT022 

gosity (He) using the FST between clusters 1 and 3 (FST=10.5%; a),
e neutral expectations with the infinite allele model were computed
gles and squares represent the 0.5 (1 – 0.95), 0.5 (1 + 0.95) quantiles
rvations non-significant and significant at 5%, respectively.



Table 5 Genetic diversity within the three main clusters identified by the STRUCTURE analysis at K=4a

Cluster size Ho
1/ Ho

2 He
1 / He

2 Ar
1,c / Ar

2,c Apr
1,c / Apr

2,c

Cluster 1 39 0.583 / 0.572 0.653 / 0.645 7.747 / 7.625 2.954 / 2.961

Cluster 3 58 0.548 / 0.543 0.568 / 0.559 4.164 / 4.004 0.198 / 0.203

Cluster 4 63 0.444 / 0.437 0.508 / 0.503 4.527 / 4.505 0.504 / 0.497

P (Cluster 1 vs. 3) 0.621 / 0.757 0.069 / 0.073 10-6$$$ / 8.3 10-7$$$ 4 10-9$$$ / 4.7 10-9$$$

P (Cluster 1 vs. 4) 0.037$ / 0.048$ 0.018$ / 0.027$ 7 10-6$$$ / 1.6 10-5$$$ 9 10-9$$$ / 9 10-9$$$

P (Cluster 3 vs. 4) 0.055 / 0.059 0.388 / 0.458 0.409 / 0.332 0.008$$ / 0.008$$

a Cluster 2 was not taken into account in the genetic diversity analysis because of its limited size (seven individuals; Figure 2).
Ho observed heterozygosity; He expected heterozygosity; Ar allelic richness; Apr private allelic richness.
1 computed based on all SSR loci used in this study (25 loci); 2 computed based only on 24 SSR loci under the assumption of neutrality.
c standardized at maximum value G= 53 individuals per cluster.
Probability of independency between two clusters using the two-tailed Mann-Whitney’s U test. $ P< 0.05; $$ P <0.01; $$$ P< 0.001.
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Similar results were obtained when comparing clusters
3 and 4 to cluster 1. Twenty-three alleles observed at 11
SSR loci among the total of 239 alleles detected at the
25 loci (9.6%) and 32 alleles observed at 18 SSR loci
(13.3%) were specifically detected within clusters 1 vs. 3
and 1 vs. 4, respectively; while only one allele observed
at locus UDP98-409 was detected within clusters 3 vs. 4
(see Additional file 8: Table S6). A total of 141 alleles
was shared by at least two of the three genetic clusters.
Among them, 16.3% and 22.6% were specific to clusters
1 vs. 3 and 1 vs. 4, respectively, while only 0.07% were
specific to clusters 3 vs. 4 (see Additional file 8: Table S6).
These results suggest that in the Mediterranean Basin
apricot originated from the ‘Irano-Caucasian’ area (re-
gion A/cluster 1) and diffused via two different
routes, i.e. northern (region B/cluster 3) and southern
(region C/cluster 4) routes within the Mediterranean
Basin.

Discussion
Three main gene pools in the Mediterranean
apricot germplasm
Apricot has been mainly cultivated in the Mediterranean
area since its earliest introduction [24], while displaying
high genetic diversity, as previously reported [27-30]. In
this study, analysis of the genetic structure of a large
representative sample of apricots located throughout the
Mediterranean countries generated new insight into the
history of domestication and diffusion of this species
within the Mediterranean Basin. Our apricot sample
included 207 accessions from Algeria, France, Iran, Italy,
Morocco, Spain, Tunisia and Turkey. Apart from apri-
cots from Algeria, Morocco and Tunisia that were
sampled in situ, all the remaining accessions originated
from several ex situ collections. Unlike a study on sweet
cherry [19] where the authors compared landraces to
modern varieties in order to assess the breeding bottle-
neck, we decided to exclude accessions derived from
breeding programs and with unknown passport data in
order to obtain clear knowledge about the geographic
origin of the studied material and hence to retain only
presumed selected local apricots from seed-propagated
populations for this study. Despite their ex-situ status,
these accessions can be considered as “in-situ sampled”
since they were originally from specific geographical
areas where local apricots have been diversified through
selection from seed-propagated populations, as previ-
ously mentioned [24]. Using model-based Bayesian clus-
tering without prior information about the geographic
origin of the accessions, we obtained a genetic structure
pattern similar to those defined with the geographic ori-
gin of the accessions. In fact, the distinction of three
main genetic clusters [i.e. cluster 1 (‘Irano-Caucasian’
area; in blue), cluster 3 (‘North Mediterranean Basin’
area; in yellow) and cluster 4 (‘South Mediterranean
Basin’ area; in red)] by STRUCTURE analysis (Figures 1
and 3) was in concordance with the three regions (A, B
and C) defined according to the geographic origin of the
accessions, reflecting a long process of apricot domesti-
cation and diffusion in the Mediterranean area.
Loss of genetic diversity supporting the apricot
domestication bottleneck
For most crop species, domestication processes cause a
loss of genetic diversity due to the bottleneck effect and
genetic drift [10-12]. In our study, this loss could be
assessed by comparison of levels of diversity between
geographic groups or the genetic clusters defined by
STRUCTURE analysis (clusters 1 vs. 3, clusters 1 vs. 4
and clusters 3 vs. 4). However, estimation of genetic di-
versity reduction due to bottleneck domestication could
be biased by human selection [9] and the genetic struc-
ture within populations [47]. Therefore, we assessed
genetic diversity within clusters defined by STRUCTURE
using all SSR markers as well as the 24 presumed neutral
loci after removing the CPPCT022 outlier locus. This
locus was located on linkage group 7 of the Prunus gen-
ome and not linked to the self-incompatibility locus
[48].



Table 6 Specific alleles at each microsatellite locus within geographic region pairs

Total
alleles1

Shared
alleles2

Region A vs. B Region A vs. C Region B vs. C

Total allelesa Specific allelesb Total allelesa Specific allelesb Total allelesa Specific
allelesb

AMPA109 8 4 7 209 (0.022)c 6 7

CPPCT034 9 7 8 9 193 (0.005)c,
207 (0.022)c

8

UDP96-018 6 2 5 263 (0.039)c 5 4

AMPA116 11 7 10 127 (0.162)c 11 8

BPPCT001 5 2 4 5 3

BPPCT004 12 10 12 176 (0.022)c 12 209 (0.022)c 10 201 (0.012)c

BPPCT030 8 6 7 142 (0.056)c 7 150 (0.012)c 8

AMPA101 8 5 7 206 (0.031)c 6 7

AMPA119 8 5 8 114 (0.007)c 8 104 (0.014)c 5

BPPCT040 10 4 8 138 (0.019)c,
142 (0.014)c

9 7

UDP97-402 10 7 10 8 118 (0.007)c,
124 (0.007)c,
144 (0.005)c

9

AMPA105 12 6 10 198 (0.072)c 10 10

BPPCT017 10 5 9 9 199 (0.010)c,
207 (0.014)c

7

BPPCT038 13 9 11 12 12 135 (0.005)c

AMPA100 9 7 9 8 210 (0.029)c 8

BPPCT008 12 9 10 113 (0.014)c,
119 (0.012)c

11 125 (0.060)c,
129 (0.005)c

12

BPPCT025 9 5 8 8 7

CPPCT030 16 9 12 165 (0.005)c 16 169 (0.022)c,
173 (0.012)c

13

Ma014a 6 3 5 6 136 (0.007)c 4

Ma040a 11 5 7 10 213 (0.029)c 10

UDP98-412 11 8 10 107 (0.005)c,
113 (0.007)c

11 93 (0.019)c 9

CPPCT022 15 11 14 234 (0.010)c,
246 (0.022)c,
262 (0.012)c

14 232 (0.007)c,
254 (0.022)c

13

CPPCT033 9 5 8 139 (0.056)c 8 141 (0.019)c,
161 (0.036)c

7

CPPCT006 11 7 10 10 197 (0.155)c 9

UDP98-409 18 13 15 17 122 (0.056)c,
130 (0.005)c,
150 (0.007)c

17 154 (0.089)c,
158 (0.005)c

Total 257 161 215 19 (0.074)d 241 26 (0.097)d 196 4 (0.015)d

1 total allele observed at each locus.
2 alleles shared at least by two of the three geographic regions.
a alleles observed in each region pairwise (regions A vs. B, A vs. C and B vs. C).
b specific alleles observed in each region pairwise (regions A vs. B, A vs. C and B vs. C).
c frequency of alleles based on the total number of alleles observed at the 25 SSR loci in the 207 apricot accessions studied.
d frequency of specific alleles based on the total number of alleles detected at the 25 loci.
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The results obtained using the two sets of markers (all
SSRs and 24 SSRs under the assumption of neutrality)
were congruent for all diversity estimators. A substantial
decrease in genetic diversity was observed from the
eastern (cluster 1 = ‘Iran-Caucasian’) to the western
Mediterranean Basin (cluster 3 = ‘North Mediterranean
Basin’ and cluster 4 = ‘South Mediterranean Basin’). Such
a loss of genetic diversity was significant when
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comparing clusters 1 (‘Iran-Caucasian’) and 3 (‘North
Mediterranean Basin’) and clusters 1 and 4 (‘South
Mediterranean Basin’). Nevertheless, it was not signifi-
cant when cluster 3 was compared to cluster 4, despite
the different modes of apricot propagation: vegetative in
North Mediterranean vs. sexual reproduction in South
Mediterranean, especially in the oasis agroecosystems in
the Maghreb area [33,34].
We thus noted a substantial loss of genetic diversity

that was independent of the selection impact due to the
domestication bottleneck. Such a loss of genetic diversity
is closely in line with the apricot diffusion routes, and
contrasting with patterns in other native Mediterranean
fruit species such as olive and grape for which a weak
loss of genetic diversity between varieties and wild rela-
tives has been observed [17,18]. The magnitude of the
bottleneck depends on the number of individuals
involved and the duration of these pressures [13]. In
sweet cherry, several successive domestication events
have probably occurred and a significant bottleneck
associated with modern breeding was revealed, while no
reduction in diversity has been shown between landraces
and wild relatives [19].

Two routes of apricot diffusion into the
Mediterranean Basin
The Irano-Caucasian area is considered as a secondary
diversification zone [24] for at least two reasons. First,
based on ethno-botanical data, northern Iran was identi-
fied as an evolutionary centre for a large number of fruit
trees, including Prunus species [49]. Second, Irano-
Caucasian apricots occupy an intermediate position
between domesticated varieties and wild species, as previ-
ously described [24]. Similar findings were also obtained
for Iranian apples [50]. Although we lacked genetic data
from the presumed primary gene pool of the centre of
apricot origin in China [22,23], our findings suggest that
Mediterranean apricots have been selected from the
‘Irano-Caucasian’ gene pool. Indeed, 62% of alleles com-
mon to the three regions A, B and C and revealed in the
northern and southern Mediterranean Basin were found
to be shared with the ‘Irano-Caucasian’ gene pool. This
leads to the following question: did these two gene pools
diffuse into the Mediterranean Basin through only one
route, as proposed by Kostina [25], or two main routes, i.e.
via the northern and southern Mediterranean, as
hypothesised by Faust et al. [24] and Mehlenbacher
et al. [26]?
The distinction of ‘South-Mediterranean’ apricots

from the ‘Irano-Caucasian’ cluster confirmed the find-
ings of a previous study [22] based on morphological
characters. Moreover, according to our analyses, most
accessions from the Murcia group (Spain) were assigned
to region C, but it seems that this group is genetically
intermediate between regions B (Continental Europe,
South France and South Italy groups) and C (South
Mediterranean). Spanish and North African accessions
were also pooled in another AFLP-based study [35]. In
fact, the introduction of apricots into North Africa and
Spain was attributed to the Arabs during the regime of
Umayyad, who conquered Spain between 711 and 719
[24]. Furthermore, region C pooled apricots propagated
by grafting (from Murcia and North Tunisia) and by
seeds (from the oasis agroecosystems: Moulouya Valley,
Messaad, Oases of Tunisia and Draa Valley). These two
apricot groups, also distinct according to their mode of
propagation, were recently proved to share a common
genetic basis in Tunisia [34]. In addition, some accessions
encountered in North Tunisia, Messaad and Moulouya
Valley represented a clear admixture between clusters 3
and 4, indicating that gene exchanges have occurred be-
tween northern and southern Mediterranean countries.
These events could be related to both ancient
human movements (e.g. Romans, Arabs, Andalusians)
and/or to recent material transfers associated with
the French colonisation period in the early 20th cen-
tury [24,26].
By comparing cluster pairs 1 vs. 3 and 1 vs. 4, we

observed a significant loss of genetic diversity. Con-
versely, we noted no significant loss of genetic diversity
between clusters 3 vs. 4, while they were more differen-
tiated than cluster pairs 1 vs. 3 and 1 vs. 4 (see Additional
file 6: Table S5). Otherwise, a substantial proportion of
specific alleles was observed along the northern Mediter-
ranean apricot diffusion route (clusters 1 vs. 3 and geo-
graphic group A vs. B) and the southern route (clusters 1
vs. 4 geographic group A vs. C). These results strongly in-
dicate that apricot was diffused through two main routes:
the first one through countries north of the Mediterra-
nean Sea (cluster 3/region B) and the second one probably
brought by the Arabs through North African countries
(cluster 4/region C), as previously proposed [51,52]. Our
findings are in agreement with earlier studies [24,26], but
not with the hypothesis proposed by Kostina [25], who
reported only one major route from the Irano-Caucasian
area to the Mediterranean Basin.

Conclusions
Based on the three main identified gene pools, we
observed a significant and substantial loss of apricot
genetic diversity, ranging from about 37 to 49% from
the secondary apricot diversification zone (‘Irano-
Caucasian’) to the southwestern Mediterranean Basin,
depicting a genetic signature of apricot domestication
and diffusion into the Mediterranean Basin. Unlike
Kostina’s assumptions [25], we propose an evolutionary
scenario in favour of two diffusion routes in southern
Europe and North Africa as revealed by a substantial
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proportion of shared alleles that were specifically
detected along each of the two diffusion routes. Our
study generated genetic insight to: (i) improve manage-
ment and conservation strategies for Mediterranean
apricot germplasm, and (ii) propose a genetic basis for
apricot breeding programs.

Methods
Plant material
A total of 207 apricot accessions were sampled through-
out different countries from the eastern to the south-
western Mediterranean Basin: Algeria (23), France (49),
Italy (19), Morocco (34), Spain (8), Tunisia (42) and Tur-
key (32; Figure 1; see Additional file 2: Table S2). The
strategy was to select accessions reflecting the local vari-
ability in each country, excluding accessions derived
from breeding programs. According to the surveyed
country, apricot material was collected either from
germplasm collections, including the French collection
maintained at the Institut National de la Recherche
Agronomique (INRA Avignon, France), the Italian collec-
tion of the Department of Fruit Science and Plant Pro-
tection of Woody Species (University of Pisa, Italy), the
Spanish collection of CEBAS-CSIC (Murcia, Spain), and
the Turkish collection of the Inonu University (Malatya,
Turkey), or from different collection surveys as was the
case for the Algerian, Moroccan and Tunisian acces-
sions. The French material studied contained native cul-
tivars as well as a few introduced accessions initially
acquired from other collections around the world (Italy,
Iran, Spain), which were also considered in the sample
set in order to span a broad eco-geographical apricot
distribution range (Figure 1; see Additional file 2:
Table S2). Apricots are vegetatively propagated, how-
ever traditional local cultivars propagated by grafting
and accessions propagated by seeds grown in oasis
agroecosystems were both present in North African
countries.
The studied accessions were subdivided into eleven

groups based on their geographic origin (Figure 1; see
Additional file 2: Table S2). Group 1 (Iran) consisted of
14 Iranian varieties present in the French collection,
group 2 (Turkey) was composed of 32 accessions from
Turkey, group 3 (Continental Europe) was composed of
21 accessions from both northern Italy and northern
France, since these two populations are known to be
related to a Central Europe gene pool, which is less
adapted to the Mediterranean region [24], group 4
(South France) comprised 12 accessions originating from
the southern regions of France, group 5 (South Italy)
included 18 accessions from the southern Italy and spe-
cifically the Napoli area, group 6 (Murcia) consisted of
11 accessions from Murcia in Spain, group 7 (North
Tunisia) consisted of 19 grafted propagated cultivars
collected from Testour and Ras Jbel regions in northern
Tunisia, group 8 (Moulouya Valley) encompassed 13
accessions from the Moulouya Valley in central eastern
Morocco, group 9 (Messaad) was composed of 23 acces-
sions from Messaad region in Algeria, group 10 (Oases
of Tunisia) consisted of 23 seed-propagated apricot
accessions collected from five different oases in Tunisia
(i.e. Tameghza, Nefta, Tozeur, Midess and Degache), and
finally group 11 (Draa Valley) included 21 accessions
from the Draa Valley in south-eastern Morocco.

DNA extraction and microsatellite analysis
Except for the Turkish accessions, all the remaining ma-
terial shipped to the INRA Montpellier laboratory for
DNA extraction were in the form of fresh young leaves
collected in each country of origin during the apricot
flowering period (between March and May 2008). For
these latter, total genomic DNA extraction was con-
ducted from 150 mg of fresh young leaves, using the
DNeasy Plant Mini Kit (QIAGEN, Germany) according
to the manufacturer's instructions, with minor modifica-
tions: addition of 1% w/v of PVP-40 to the AP1 buffer
solution. For the Turkish accessions, total genomic DNA
was extracted at the Apricot Research Center of the
Inonu University of Malatya according to the same
protocol. Then DNA aliquots were purified in the INRA
Montpellier laboratory according to the protocol
described above.
Twenty-five microsatellite markers were selected on

the basis of the ease of amplification in apricot and their
location on the Prunus reference genetic map: ‘Texas’ x
‘Earlygold’ [53,54] as they are evenly distributed
throughout the eight linkage groups of the Prunus gen-
ome (Table 1). These SSR loci were successfully used in
the study on Tunisian apricot [34] and Mnejja et al. [36]
have demonstrated the successful transferability of most
of them among Prunus species. PCR was carried out in a
20 μl reaction mixture, containing 20 ng of template
DNA, 2 mM MgCl2, 4 pmol of reverse primer and 1
pmol of forward primer, 0.2 mM of each dNTP, and 1 U
of Taq polymerase (Sigma, USA). The forward primer
was 5’-labeled with one of the three fluorochromes
(6FAM, NED or HEX). The PCR conditions were as fol-
lows: 35 cycles at 94°C for 30 s, T° annealing (depending
on the locus) for 60 s, and 72°C for 60 s, with a final ex-
tension step at 72°C for 10 min. Amplified products
were resolved using an ABI prism 3130 XL automatic
DNA sequencer (Applied Biosystems, USA). Allele
sizes were determined with GeneMapper 3.7 software
(Applied Biosystems, USA).

Genetic structure analysis
The model-based clustering approach, as implemented
in the STRUCTURE 2.2 software program [45], was used
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to infer the population structure of Mediterranean apri-
cot accessions. This program assumes Hardy–Weinberg
equilibrium and linkage equilibrium within clusters. No
prior information about the geographic origin of the
accessions was considered in the analysis. The STRUC-
TURE algorithm was run using a model with admixture
and correlated allele frequencies, with 10 independent
replicate runs for each K value (number of genetic clus-
ters), for K ranging from 1 to 6. Each run involved a
burning period of 100000 iterations, and a post-burning
simulation length of 1000000. The run with the max-
imum likelihood was used to assign the most probable
number of clusters, which was validated with an ad hoc
statistic based on the second order rate of change in the
log probability of data between successive K values [46].
To find optimal alignments of independent runs, the
CLUMPP version 1.1 software program [55] was used
with greedy algorithms, 10,000 random input orders and
10,000 repeats, to calculate the average pairwise similar-
ity (H’) of runs. The output obtained was used directly
as input by the cluster DISTRUCT version 1.1
visualization program [56].
Genetic diversity and differentiation assessment
GENETIX 4.05 [57] was used to calculate the following
parameters: total number of alleles (NA), number of
alleles with frequency higher than 5% (NA,P), and
observed (Ho) and expected (He) heterozygosities.
PowerMarker 3.25 [58] was used to estimate the poly-
morphic information content (PIC) at each locus, origin-
ally defined as the probability of a given marker being
informative in a random mating [59]. The inbreeding co-
efficient (FIS) and the genetic differentiation (FST) were
computed according to the formula of Weir and Cocker-
ham [60] using GENEPOP 4.0 [61] and Fisher’s method
[62] was applied to test the significance of pairwise
FST values. The generalized rarefaction approach
ADZE [63] with standardized values was used to esti-
mate the allelic richness (Ar) and the private allelic
richness (Apr).
Pairwise standard genetic distances of Nei [44]

were calculated and used to conduct cluster analysis with
the Neighbor-joining algorithm and to construct an
unrooted tree with 10,000 bootstraps over microsatellite
loci, as implemented in PHYLIP 3.69 [64]. The analysis
of molecular variance (AMOVA) implemented in GEN-
ALEX [65] was conducted to estimate the hierarchical
differentiation at two levels: (i) a group level identifying
the eleven apricot geographic groups; and (ii) a region
level distinguishing the three geographic regions A (Iran
and Turkey), B (Continental Europe, South France and
South Italy), and C (Murcia, North Tunisia, Moulouya
Valley, Messaad, Oases of Tunisia and Draa Valley).
Sub-samples of neutral markers definition
The observed variation of genetic diversity among clus-
ters might be due to two evolutionary factors: selection
and bottleneck effects. Selection force could affect the
estimation of bottleneck impact on the apricot diffusion
history. A sub-sample of neutral markers was thus
defined and used for the genetic diversity analysis. For
this purpose, the method developed by Beaumont and
Nichols [66] was used, involving the detection of un-
usually high or low FST levels by plotting FST against het-
erozygosity on the set of markers. The Fdist2 analysis
was conducted on three comparisons of the three main
genetic clusters. We compared (i) clusters 1 (‘Irano-
Caucasian’) and 3 (‘North Mediterranean Basin’), (ii)
clusters 1 and 4 (‘South Mediterranean Basin’), and (iii)
clusters 3 and 4. For each comparison, 50000 simula-
tions were run using the infinite allele model for mar-
kers. A first analysis revealed a first set of outliers. Then
they were removed and a new FST was calculated, which
was used to make a new analysis and reveal a new set of
outliers. Analyses were iterated until no further locus fell
outside of the expected distribution. The last FST value
was used as the neutral value to detect outliers on the
whole set of data.

Determination of the relative reduction of diversity
The relative reduction of diversity was estimated with
five diversity estimators: the total number of alleles, al-
lelic richness, private allelic richness, observed heterozy-
gosity and the expected heterozygosity, as described by
Vigouroux et al. [67]. The probability of independency
between regions/clusters was determined for each of
these diversity estimators by the two-tailed Mann-Whit-
ney’s U test using the R version R 2.11.0 software pack-
age [68]. For each estimator, the relative reduction of
diversity was determined by calculating 1-(DIV1/DIV2),
where DIV1 is the estimator of diversity in the supposed
derivating genetic pool and DIV2 is the estimator of di-
versity in the supposed originating genetic pool. The
relative reduction of diversity was estimated using all
SSR markers for the comparison among regional groups,
and based on all 25 SSR markers and also only on neu-
tral SSR markers when comparing the three main gen-
etic clusters.

Additional files

Additional file 1: Table S1. Genetic diversity at each of the 25 SSR loci
used in the three geographic regions. FIS fixation index values; bold
values represented exact test significant at P< 0.01.

Additional file 2: Table S2. Apricot germplasm accessions, code, origin
as well as geographic group and genetic cluster to which each accession
was assigned.* in situ sampling. a The clusters were assigned based on
STRUCTURE analysis with cluster 1 = ‘Irano-Caucasian’ (blue), cluster
2 = ‘Adaptive Diversity’ (green), cluster 3 = ‘North Mediterranean Basin’

http://www.biomedcentral.com/content/supplementary/1471-2229-12-49-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2229-12-49-S2.xls
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(yellow) and cluster 4 = ‘South Mediterranean Basin’ (red). Some accessions
were assigned as mixed clusters because they were assumed to have
admixed ancestry (Figure 2).

Additional file 3: Table S3. Geographic group pairwise comparisons.
Nei’s [44] genetic distances (above diagonal) and FST (below diagonal);
Global FST= 0.111 * P < 10-4; ** P < 10-6.

Additional file 4: Figure S1. Description of the four steps for the
graphical method allowing determination of optimal K according to
Evanno’s parameters.

Additional file 5: Table S4. Information on the number of assigned
accessions per geographic group and region.

Additional file 6: Table S5. Pairwise FST among the four genetic
clusters defined by the STRUCTURE analysis. All FST values were significant
at P < 10-6; Global FST= 0.122; Global FST among the 3 main
clusters = 0.109 significant at P< 10-4.

Additional file 7: Figure S2. Histogram illustrating the frequency
distributions of alleles for each microsatellite among geographic regions.
Arrows indicate specific alleles detected in each geographic region
pairwise with A vs. B, A vs. C and B vs. C.

Additional file 8: Table S6. Specific alleles at each microsatellite locus
within genetic cluster pairs.1 total allele observed at each locus.
2 alleles shared by at least two of the three clusters. a alleles observed in
each cluster pairwise (clusters 1 vs. 3, 1 vs. 4 and 3 vs. 4). b specific alleles
observed in each cluster pairwise (clusters 1 vs. 3, 1 vs. 4 and 3 vs. 4).
c frequency of alleles based on the total number of alleles observed at
the 25 SSR loci in the 207 apricot accessions studied. d frequency of
specific alleles based on the total number of alleles detected at the
25 loci.
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