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Abstract

Defects in mitochondrial electron transport chain (ETC) function have been implicated in a number of neurodegenerative
disorders, cancer, and aging. Mitochondrial complex I (NADH dehydrogenase) is the largest and most complicated enzyme
of the ETC with 45 subunits originating from two separate genomes. The biogenesis of complex I is an intricate process that
requires multiple steps, subassemblies, and assembly factors. Here, we report the generation and characterization of a
Drosophila model of complex I assembly factor deficiency. We show that CG7598 (dCIA30), the Drosophila homolog of
human complex I assembly factor Ndufaf1, is necessary for proper complex I assembly. Reduced expression of dCIA30 results
in the loss of the complex I holoenzyme band in blue-native polyacrylamide gel electrophoresis and loss of
NADH:ubiquinone oxidoreductase activity in isolated mitochondria. The complex I assembly defect, caused by mutation
or RNAi of dCIA30, has repercussions both during development and adulthood in Drosophila, including developmental
arrest at the pupal stage and reduced stress resistance during adulthood. Expression of the single-subunit yeast alternative
NADH dehydrogenase, Ndi1, can partially or wholly rescue phenotypes associated with the complex I assembly defect. Our
work shows that CG7598/dCIA30 is a functional homolog of Ndufaf1 and adds to the accumulating evidence that transgenic
NDI1 expression is a viable therapy for disorders arising from complex I deficiency.
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Introduction

Alterations in mitochondrial energy metabolism have been

implicated in aging and age-onset disease [1]. Mitochondrial

complex I (NADH:ubiquinone oxidoreductase/NADH dehydro-

genase), is one of the most complicated enzymes of the eukaryotic

cell, with more than 40 subunits originating from two separate

genomes [2] and a still growing list of accessory and assembly

factors [3]. Functioning as the major entry site of electrons from

NADH into the mitochondrial electron transport chain (ETC), the

fully assembled enzyme is thought to be L-shaped, embedded in

the mitochondrial inner membrane by a hydrophobic membrane

arm with a hydrophilic peripheral arm protruding perpendicularly

into the mitochondrial matrix [4]. A current model of biogenesis of

human complex I supports the assembly of the membrane arm in

a stepwise process with subsequent addition of a partially,

independently assembled peripheral arm and additional nuclear

encoded subunits to complete the holoenzyme [5], [6]. Moreover,

recent studies have shown that complex I subassemblies can act as

scaffolds for the assembly of respiratory supercomplexes consisting

of multiple ETC complexes [7].

Proper assembly of complex I is intimately associated with the

presence of a multitude of assembly factors and chaperones, and

their loss results in diseases that mimic complex I subunit defects

[3]. Complex I assembly factors were first isolated in studies of

Neurospora crassa mutants that accumulated complex I subassem-

blies, with associated assembly factors, due to a mutation in a

membrane arm subunit [8]. Of the two complex I intermediate

associated (CIA) proteins identified in this study, only the 30 kDa

protein (CIA30) has been shown to have a human homolog

(NDUFAF1) [9] that functions as an assembly factor, interacting

with mid-stage membrane arm subassemblies but not with a fully

assembled holoenzyme or a late-stage subunit. A patient with

mutations in Ndufaf1 has also been described who shows severely

reduced levels of complex I holoenzyme and suffers from

cardioencephalomyopathy [10]. Complete deletion of CIA30 in

N. crassa result in complete loss of complex I and respiration

exclusively via an alternative internal NADH:ubiquinone oxido-

reductase [8].

Unlike mitochondrial complex I, flavone-sensitive, rotenone-

insensitive, single-subunit, alternative internal NADH dehydroge-

nase (Ndi1) genes are restricted to plant and fungal mitochondria

where they function as NADH dehydrogenases without translo-

cating protons across the inner mitochondrial membrane [11–13].

In fungus, NDI1 activity has been shown to be sufficient to

complement complete loss of complex I holoenzyme [14], and
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some yeast, such as Saccharomyces cerevisiae lack a multi-subunit

mitochondrial complex I entirely [15]. Due to its much simpler

genetics and functionality in non-native systems [16], transgenic

NDI1 has shown to be highly effective as a therapeutic tool for

complex I associated diseases in non-fungal systems, including

nematodes [17], arthropods [18], and mammals [19–23]. More-

over, the contrasting sensitivity to inhibitors between NDI1

(flavone sensitive, rotenone insensitive) and endogenous complex

I (rotenone sensitive, flavone insensitive) allows for accurate

assessment of the contribution of NADH:ubiquinone oxidoreduc-

tase activity from the two sources.

Previous work from our lab and others has shown that

expression of Ndi1 in the fruit fly, Drosophila melanogaster, can

increase metabolic activity and lifespan [24], [25]. Here, we have

expanded upon this paradigm by examining the impact of

exogenous Ndi1 expression in flies with a complex I assembly

defect. To do so, we first characterized the consequences of

reduced expression of the Drosophila homolog of the complex I

assembly factor Ndufaf1/CIA30, CG7598 (dCIA30). We demon-

strate that flies carrying a mutation in dCIA30 display a reduction

of complex I holoenzyme in blue native polyacrylamide gel

electrophoresis (BN-PAGE) to undetectable levels. Moreover,

mitochondria isolated from larvae with dCIA30 knock down show

drastic reductions in endogenous rotenone sensitive, flavone

insensitive NADH:ubiquinone oxidoreductase activity. In addi-

tion, RNAi knock down of dCIA30 allows for development into

adulthood and these flies show sensitivity to a range of extrinsic

stressors. We show that expression of Ndi1 partially rescues

developmental arrest in mutants, and complex I deficiency-

associated phenotypes in dCIA30 RNAi knock down flies. These

results support the idea that expression of Ndi1 may be an effective

therapeutic strategy to treat disorders resulting from defects in

complex I assembly. Furthermore, our dCIA30 knock down model

provides a powerful tool to better understand the pathophysio-

logical mechanisms of human disease arising from complex I

deficiency.

Materials and Methods

D. melanogaster Culture
Flies were maintained on standard agar-cornmeal-yeast-sugar

media [26] in humidified incubators at 25uC, on 12:12 hour

light:dark cycles. Flies were switched to new media every 2–3 days.

Fly lines CG7598EY09101 (stock #16925) [27] and UAS-Gfp-IR

(stock #9331) were obtained from the Bloomington Drosophila

Stock Center, and the UAS-CG7598-IR (stock #14859) fly line was

obtained from the Vienna Drosophila RNAi Center [28]. UAS-

Ndi1 flies were generated as previously described [24]. An

imprecise excision of the CG7598EY09101 P element line,

dCIA30ex80, was generated as previously described [29], and

verified by sequencing. A precise excision that restores the gene

was also generated, verified by sequencing, and used as controls in

all experiments. UAS-dCIA30 flies were generated by transforming

flies with pUAST plasmids containing dCIA30 cDNA using

standard procedures.

qRT-PCR
Total RNA was extracted using TRIzol reagent (Invitrogen,

USA) following manufacturer protocols from 5 L3 larvae or 5

adult flies. Amplicons of Actin5C were used as a reference to

normalize dCIA30 amplicons. cDNA synthesis and qRT-PCR

were performed in one step using Power SYBR Green RNA-to-

CT 1-Step kit (Applied Biosystems, USA), and DNA amount was

monitored during a 40-cycle PCR with an Applied Biosystems

7300 Thermal Cycler (Life Technologies, USA). Primer sequenc-

es: Act5C, TTGTCTGGGCAAGAGGATCAG and AC-

CACTCGCACTTGCACTTTC; dCIA30, TCACACCAAG-

GATGGCATTA and GCATGTTGTACTGCGTCCAG.

Mitochondrial Isolation
Mitochondria were purified from larvae or adult flies by

differential centrifugation as previously described [30]. Briefly,

larvae or adults were homogenized in chilled mitochondrial

isolation medium (MIM, 250 mM sucrose, 10 mM Tris (pH 7.4),

0.15 mM MgCl2) and debris was pelleted by centrifugation

(5006g, 5 min at 4uC). Mitochondria were pelleted from the

supernatant by centrifugation (5,0006g, 5 min at 4uC) and stored

at 280uC.

Blue-native Polyacrylamide Gel Electrophoresis (BN-
PAGE)

BN-PAGE was performed using a Novex Native PAGE Bis-Tris

Gel System (Invitrogen) following manufacturer protocols. Briefly,

mitochondria were purified from 20 L3 larvae or 20 adult flies,

resuspended in 25 ml of 16Native PAGE Sample buffer (Invitro-

gen) with 1% digitonin and protease inhibitors (Roche, USA), and

incubated on ice for 15 min. After centrifugation at 16,1006g for

30 min, 25 ml of the supernatant was resuspended with 1.25 ml of

5% G250 sample additive and 10 ml of 46Native PAGE Sample

Buffer (Invitrogen). Samples were loaded on 3–12% Bis-Tris

Native PAGE gels and electrophoresed using 16Native PAGE

Running buffer system (Invitrogen). The cathode buffer included

16Cathode Buffer Additive (Invitrogen). NativeMark Protein

standard (Invitrogen) was used as the molecular weight marker.

Protein concentrations of adult fly mitochondrial preps were

determined with a Micro BCA Protein Assay Kit (Thermo

Scientific, USA) following manufacturer instructions.

Eclosion
Twenty wandering L3 larvae were collected in vials and

maintained as described above. For approximately 10 days, the

number of flies that eclosed from each vial was recorded daily.

NADH:ubiquinone Oxidoreductase Activity Assay
Mitochondria were purified from 5 male L3 larvae, resuspended

in 100 ml MIM, and 3 ml were added to 150 ml of a previously

prepared colorimetric complex I activity assay buffer (16 PBS,

3.5 g/l BSA, 0.2 mM NADH, 0.24 mM KCN, 60 mM DCIP,

70 mM decylubiquinone, 25 mM antimycin A). NADH:ubiqui-

none oxidoreductase activity was monitored as a drop in DCIP

absorbance at 600 nm using an Epoch microplate spectropho-

tometer (BioTek, USA). Flavone or rotenone insensitive activity

was measured as the difference in DCIP reduction in the presence

of flavone (0.4 mM) or rotenone (2 mM) in the assay buffer, and

baseline activity in an assay buffer that contained both inhibitors.

All reported activities are normalized to citrate synthase activity.

Citrate Synthase Activity Assay
Mitochondrial preps used in the NADH:ubiquinone oxidore-

ductase assay were diluted 10 fold in MIM, and 3 ml were added to

150 ml of a previously prepared colorimetric citrate synthase

activity assay buffer (50 mM Tris (pH 8.0), 0.1 mM 5,59-dithiobis-

(2-nitrobenzoic acid) (DTNB), 0.3 mM acetyl-CoA, 1 mM

oxaloacetic acid). Citrate synthase activity was measured as an

increase in DTNB absorbance at 412 nm using a microplate

spectrophotometer.

Fly Model of Complex I Assembly Factor Deficiency
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Electron Micrographs (EM)
EMs were acquired as previously described [29] from male flies

2 or 10 days post eclosion. Briefly, dorsal indirect flight muscle was

dissected from decapitated adult flies at 4uC in 2% paraformal-

dehyde with 1% glutaraldehyde and fixed in the same solution

overnight. After postfixation in 1% osmium tetroxide at room

temperature, samples were dehydrated in an ethanol series and

embedded in Epon 812. Ultrathin sections (80 nm) were examined

with a Philips 420 electron microscope (Philips, Netherlands) at

100 kV at a magnification of 4900X.

Weight
Flies were anesthetized under light N2 gas and weighed in

groups of 5 in pre-weighed microcentrifuge tubes using an

analytical scale (Torbal, USA).

Stress Resistance
All stress assays were performed with male flies 6–8 days post

eclosion in groups of 25–30 flies. For hypoxia resistance, flies were

exposed to anoxic conditions in a 100% N2 chamber. Flies were

maintained in the chamber for one hour, moved back into

normoxia, and monitored for recovery (ability to stand) every 3

minutes for approximately 2 hours. For hyperoxia resistance, flies

were maintained in a humidified chamber maintained at 85% O2

and survival was assayed at least once per day. For wet starvation,

flies were maintained on water only medium (1% agar in ddH2O)

and maintained in a 25uC incubator with 12 hour light:dark

cycles. Survival was scored multiple times per day. For

hyperthermia resistance, flies were maintained at 37uC and

survival was scored every 2 hours.

Statistical Analysis
Unless indicated otherwise, significance was determined with a

two-tailed, unpaired t test from at least three independent

experiments and expressed as p values. All error bars reflect

standard error of the mean.

Results

CG7598 (dCIA30), the Drosophila Homolog of Human
Complex I Assembly Factor, Ndufaf1, is Necessary for
Complex I Assembly

A Drosophila melanogaster homolog of the Neurospora crassa CIA30

protein, CG7598 (dCIA30), was previously identified in a

homology search of amino acid sequences [31]. The dCIA30

protein shares high homology with human NDUFAF1 (69%

similarity, 44% identity) in a ClustalW amino acid sequence

alignment [32], in particular, in the C-terminal half where a

conserved domain search turns up a conserved CIA30 domain

(Figure S1A). As part of the Drosophila Gene Disruption Project

[27], an insertion mutation of dCIA30 (insertion EY09101,

dCIA30EY09101) that contains an approximately 11 kb transposable

P element (P{EPgy2}), in the 59UTR is available and was acquired

through the Bloomington stock center (stock #16925). In order to

proceed with a line that disrupts the gene without the possible

confounding presence of additional promoters, enhancers, and

other genes, we generated additional lines in which the P{EPgy2}

element was precisely and imprecisely excised by crossing

dCIA30EY09101 to flies harboring a transposase. One imprecise

excision resulted in removal of the bulk of the P{EPgy2} element,

leaving only a 517 bp fragment that does not carry any identifiable

genetic elements, but does contain start and stop codons in all

three forward frames (dCIA30ex80). In addition, a precise excision

line was generated and used as a control throughout this study

(Figure S1B).

We checked the effects of the insertion mutation on dCIA30

gene activity by quantifying dCIA30 transcript levels during the

third-instar larval stage of development (L3). Measurement of

relative dCIA30 mRNA levels by quantitative reverse transcriptase

Figure 1. dCIA30 mutation results in loss of complex I holoenzyme. (A) dCIA30 transcript levels were measured by qRT-PCR in male third
instar (L3) larvae (n = 5 male L3 larvae, 3 replicates). The dCIA30EY09101 and dCIA30ex80 insertion mutants show a ca. 55–75% loss of transcript relative to
a precise excision control (* p,0.05). (B) The dCIA30EY09101 and dCIA30ex80 mutations result in a specific loss of the band that corresponds to complex I
holoenzyme in blue native polyacrylamide gel electrophoresis (BN-PAGE) of L3 larvae. Precise excision controls (+) and larvae with expression of a
dCIA30 cDNA construct (UAS-dCIA30/+; da-GAL4, dCIA30ex80/dCIA30ex80, ‘‘cDNA rescue’’) show the presence of the complex I holoenzyme band.
(M = molecular size marker, CV2 = complex V dimer, CI = complex I, CV1 = complex V monomer, CIII = complex III, CIV = complex IV, CII = complex II,
mitochondria from 2.5, 5, and 10 larvae equivalents in successive lanes for each genotype).
doi:10.1371/journal.pone.0050644.g001
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Figure 2. dCIA30 mutation results in developmental arrest and defects in mitochondrial function and ultrastructure. (A) Homozygous
dCIA30EY09101 or dCIA30ex80 mutants fail to develop past the pupal stage (***p,0.001). Expression of a cDNA rescue construct (cDNA rescue) is
sufficient to rescue eclosion frequencies back to those of controls (+). (n = 20 L3 larvae, 8 replicates). (B) Isolated mitochondria from homozygous
dCIA30EY09101 or dCIA30ex80 mutant male L3 larvae show negligible endogenous (rotenone sensitive, flavone insensitive) NADH:ubiquinone
oxidoreductase activity relative to controls (+, * p,0.05). Expression of dCIA30 cDNA restores endogenous NADH:ubiquinone oxidoreductase activity
back to control levels. (n = 5 male L3 larvae, 5 replicates). (C) Homozygous dCIA30EY09101 or dCIA30ex80 pupae are structurally similar but visibly smaller
relative to precise excision controls. Expression of dCIA30 cDNA is sufficient to rescue the size deficit. Tick marks = 1 mm. (D) Electron micrographs
(EMs) of flight muscle tissues show degeneration of myofibrils and interspersed mitochondria in homozygous dCIA30ex80 male flies 2 days post
eclosion. Expression of a dCIA30 cDNA construct restores mitochondrial and myofibril integrity and organization. Scale bar = 1 mm.
doi:10.1371/journal.pone.0050644.g002
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polymerase chain reaction (qRT-PCR) showed that both the

dCIA30EY09101 and dCIA30ex80 homozygotes have a severe reduc-

tion of dCIA30 mRNA levels relative to the control line (Figure 1A).

We checked the effect of the reduced dCIA30 mRNA levels on

complex I assembly by BN-PAGE of mitochondria isolated from

L3 larvae (Figure 1B). As expected, mitochondria from control

larvae clearly show the presence of a band corresponding to

complex I holoenzyme, identified by molecular mass. In contrast,

the diminished levels of dCIA30 in both the dCIA30EY09101 and

dCIA30ex80 homozygotes are insufficient to support assembly and

accumulation of complex I to detectable levels. Importantly,

disruption of dCIA30 did not noticeably affect the assembly or

relative abundance of the other ETC complexes. To confirm that

the complex I defect was due to loss of dCIA30, we expressed a

wild-type dCIA30 cDNA [33] via a ubiquitous daughterless promotor

(da-GAL4), in a dCIA30ex80 homozygous mutant background (UAS-

dCIA30/+; da-GAL4, dCIA30ex80/dCIA30ex80). These ‘cDNA rescue’

flies clearly showed the presence of a complex I holoenzyme band

(Figure 1B), demonstrating that the presence of exogenous

dCIA30 is sufficient to rescue complex I assembly.

Loss of dCIA30 Confers Developmental Arrest and
Defects in Mitochondrial Function and Ultrastructure

Fly development proceeds through four distinct, easily identi-

fiable stages, embryo, larva, pupa, and adult. Larvae homozygous

for dCIA30EY09101 or dCIA30ex80 were viable and survived to late

Figure 3. RNAi knock down of dCIA30 confers loss of complex I holoenzyme. (A) Expression of an RNAi mediated knockdown construct
specific for dCIA30 (da-GAL4/UAS-dCIA30-IR) reduces dCIA30 transcript levels (dCIA30-RNAi, **p,0.01) in L3 larvae relative to controls (da-GAL4/+). Co-
expression of a UAS-Ndi1 transgene (da-GAL4/UAS-dCIA30-IR, UAS-Ndi1, ‘‘Ndi1 rescue’’) with the same driver has little effect on the dCIA30 knock down.
(n = 5 L3 larvae, 3 replicates). (B) RNAi knock down of dCIA30 results in a dramatic reduction of the band that corresponds to complex I holoenzyme in
BN-PAGE of L3 larvae. In comparison, driver only controls (da-GAL4/+) and RNAi controls (UAS-Gfp-IR/+; da-GAL4/+) show the presence of a distinct
complex I holoenzyme band. Co-expression of a UAS-Ndi1 transgene in the Ndi1 rescue line does not affect the reduction of the complex I
holoenzyme band. (M = molecular size marker, CV2 = complex V dimer, CI = complex I, CV1 = complex V monomer, CIII = complex III, CIV = complex IV,
CII = complex II, mitochondria from 2.5, 5, and 10 larvae equivalents in successive lanes for each genotype). (C) dCIA30 transcript levels are reduced in
male dCIA30-RNAi flies, 6 days post eclosion. Expression of the UAS-dCIA30-IR knockdown construct reduces dCIA30 transcript levels (***p,0.001) to
approximately 6% relative to control. Co-expression of UAS-Ndi1 (Ndi1 rescue) has no major effect on dCIA30 transcript levels. (n = 5 male flies, 3
replicates). (D) RNAi knock down of dCIA30 results in reduction of the band that corresponds to complex I holoenzyme to undetectable levels in BN-
PAGE of male flies 2 days post eclosion. In comparison, RNAi controls show the presence of a distinct complex I holoenzyme band. Co-expression of a
UAS-Ndi1 transgene does not affect the loss of the complex I holoenzyme band. (10, 25, 50 mg of total mitochondrial protein in successive lanes for
each genotype).
doi:10.1371/journal.pone.0050644.g003
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Figure 4. dCIA30 knockdown flies display developmental and physiological phenotypes that are rescued by NDI1. (A) RNAi knock
down of dCIA30 (dCIA30-RNAi) results in a significant drop in the frequency of pupae that eclose to adult flies relative to controls (da-GAL4/+,
***p,0.001). Co-expression of NDI1 in dCIA30-RNAi flies (Ndi1 rescue) restores eclosion back to levels found in control pupae. The expression of NDI1
from double copies of both UAS-Ndi1 and da-GAL4 in dCIA30ex80 insertion mutants (UAS-Ndi1;da-GAL4,dCIA30ex80) restores eclosion to approximately
70% of pupae (***p,0.001). (n = 20 L3 larvae, 8 replicates). (B) Mitochondria isolated from male L3 larvae with RNAi knock down of dCIA30 (dCIA30-
RNAi) show negligible endogenous (rotenone sensitive, flavone insensitive) NADH:ubiquinone oxidoreductase activity relative to controls (da-GAL4/
+), regardless of UAS-Ndi1 co-expression (Ndi1 rescue, **p,0.01). Expression of UAS-Ndi1 causes a dramatic increase in flavone sensitive, rotenone
insensitive NADH:ubiquinone oxidoreductase activity in a dCIA30 knock down (Ndi1 rescue) or mutant background (UAS-Ndi1;da-GAL4,dCIA30ex80,
***p,0.001). (n = 5 male L3 larvae, 5 replicates). (C) RNAi knock down of dCIA30 produces pupae that are smaller relative to controls. The expression

Fly Model of Complex I Assembly Factor Deficiency
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pupa stages. During late pupa/early adult stages, however, where

approximately 100% of control pupae eclose to produce adults, a

negligible fraction of pupae homozygous for dCIA30EY09101 or

dCIA30ex80 developed into adult flies (Figure 2A). This develop-

mental arrest was overcome by the transgenic expression of

dCIA30 in the cDNA rescue line. Both developmental arrest of

mutant larvae and loss of complex I holoenzyme band correlated

with loss of endogenous, rotenone sensitive, flavone insensitive

NADH:ubiquinone oxidoreductase activity in isolated mitochon-

dria from L3 larvae (Figure 2B). Pupae formed by the homozygous

dCIA30 mutants were visibly smaller than those formed by control

and cDNA rescue larvae, but were structurally similar (Figure 2C).

In rare instances, adult dCIA30ex80 homozygotes could be

recovered by carefully assisting eclosing flies by manually peeling

back the pupa case. Such escaper adults also showed an absence of

a detectable complex I band in BN-PAGE analyses (Figure S2). In

order to determine what effects dCIA30 mutation and loss of

complex I holoenzyme had on mitochondrial ultastructure, we

examined electron micrographs (EMs) of thoracic sections of

precise excision control flies, homozygous dCIA30ex80 escaper flies,

and cDNA rescue flies (Figure 2D). The thoracic flight muscle

tissue of adult flies is highly organized and consists of myofibrils

interspersed with densely packed mitochondria. Flight muscle

tissue from control flies showed highly ordered and intact

myofibrils and mitochondria, whereas homozygous dCIA30ex80

escaper flies showed severe degeneration of both myofibrils and

mitochondria. Both mitochondrial and myofibril phenotypes were

rescued in the cDNA rescue flies.

RNAi of dCIA30 Leads to Complex I Holoenzyme Loss
The developmental arrest of dCIA30 mutants was a confounding

factor in characterizing complex I loss in adult flies. RNAi knock

down of dCIA30 (da-GAL4/UAS-dCIA30-IR, referred to as

‘‘dCIA30-RNAi’’ in this report) provided a means to phenocopy

a less severe dCIA30 mutation. A UAS-hairpin RNAi knockdown

construct targeted to the first exon (Figure S1B) that has been

reported to have no off-target effects was acquired from the

Vienna Drosophila RNAi Center (stock #14859) [28]. Expression

of the knockdown construct using da-GAL4 resulted in a significant

reduction of dCIA30 mRNA levels during the L3 stage of

development (Figure 3A). Accordingly, there was a dramatic

reduction in the band corresponding to complex I holoenzyme in

BN-PAGE analyses in dCIA30 RNAi knockdown larvae

(Figure 3B). Unlike the dCIA30 mutant larvae, however, these

larvae still had a faint but detectable complex I holoenzyme band.

A Gfp-RNAi line did not impact complex I levels, indicating that

the loss of complex I was not due to non-specific effects of RNAi.

Adult flies also had reduced expression of dCIA30 (Figure 3C) and

no detectable complex I holoenzyme (Figure 3D).

Unlike homozygous mutation of dCIA30, which caused an

essentially complete arrest of development at pupation, RNAi

knockdown of dCIA30 retained some complex I holoenzyme

during larval stages. One physiological consequence of the milder

knockdown was the eclosion of adult flies in reduced, but

significant numbers (Figure 4A). As was the case for dCIA30

mutants, RNAi knock down of dCIA30 resulted in small pupae

(Figure 4C).

Yeast Ndi1 can Partially or Wholly Rescue Phenotypes
Associated with dCIA30 Deficiency

Next, we set out to determine whether the alternative NADH

dehydrogenase, Ndi1, could complement the loss of dCIA30.

Expression of NDI1 (da-GAL4/UAS-dCIA30-IR,UAS-Ndi1, referred

to as ‘‘Ndi1 rescue’’ in this report) in flies with RNAi knock down

of dCIA30 completely reverted the developmental arrest phenotype

to control levels (Figure 4A) and expression of NDI1 from two

copies each of UAS-Ndi1 and da-GAL4 transgenes (UAS-Ndi1;da-

GAL4,dCIA30ex80) resulted in a significant rescue of the mutant

phenotypes (Figure 4A–C). Adult males that eclosed from these

pupae were able to fertilize wild type females whereas adult

females failed to produce offspring in crosses with wild type male

flies.

This rescue was not a result of a cryptic increase in complex I

assembly by NDI1 or by dilution of the UAS-GAL4 system.

NADH:ubiquinone oxidoreductase activity of isolated mitochon-

dria from L3 larvae showed negligible endogenous rotenone

sensitive, flavone insensitive activity in the knock down lines,

relative to controls, even in the presence of UAS-Ndi1 transgenes

(Figure 4B). Instead, expression from UAS-Ndi1 transgenes resulted

in large increases in flavone sensitive, rotenone insensitive activity

that corresponds to NDI1 activity (Figure 4B). Moreover, the

expression of two copies of UAS-Ndi1 construct in a homozygous

dCIA30ex80 background (UAS-Ndi1;da-GAL4,dCIA30ex80), did not

show any effect on the missing complex I band (Figure S3).

Similarly, the co-expression of a UAS-Ndi1 transgene in dCIA30

RNAi knockdown lines using the same UAS-GAL4 system had little

effect on dCIA30 mRNA knockdown (Figure 3A and 3C) or in the

resulting defect in complex I holoenzyme assembly (Figure 3B and

3D).

RNAi knockdown of dCIA30 led to an approximately 30%

reduction in body weight relative to driver only controls (da-GAL4/

+). Co-expression of NDI1 largely restored the adult body weight

of flies with dCIA30 knockdown (Figure 4D). RNAi of dCIA30 also

resulted in detrimental effects on mitochondrial and myofibril

structure in adult flies. EM analysis of thoracic muscle revealed

severe degeneration of mitochondria and myofibrils, similar to

those seen in dCIA30 mutant flies (Figure 4E). Co-expression of

NDI1 was sufficient to fully rescue the myofibril defect and

partially rescue the mitochondrial ultrastructure defect.

To quantify the physiological effects of complex I loss, we tested

the ability of dCIA30 knockdown flies to cope with various forms of

extrinsic stress. To explore the role of complex I/NDI1 in the

ability to withstand oxidative stress, we examined recovery from

hypoxia and survivorship under hyperoxia. RNAi knock down of

dCIA30 conferred a drastically reduced ability to recover from

exposure to hypoxia, which was completely rescued by NDI1

expression (Figure 5A). Flies with reduced expression of dCIA30

also showed increased sensitivity to hyperoxia, which was also

rescued by NDI1 expression (Figure 5B). Loss of complex I is

expected to have drastic effects on metabolism, and accordingly,

flies without detectable complex I were much more susceptible to

of UAS-Ndi1 does not result in rescue of the pupal phenotype in RNAi knock down flies. However, expression of NDI1 with double copies of both
transgene and driver (UAS-Ndi1;da-GAL4,dCIA30ex80) increases pupal size in dCIA30ex80 mutants (See figure 2C for comparison). Tick marks = 1 mm. (D)
Adult male dCIA30 knock down flies, 6 days post eclosion have significantly lower body weights compared to controls (***p,0.001). Co-expression of
NDI1 in these knock down flies partially restores body weight (***p,0.001). (n = 5 male flies, 6 replicates). (E) EMs of thoracic flight muscles from male
dCIA30 knock down flies show degeneration of mitochondria and myofibrils at 10 days post eclosion. Co-expression of NDI1 largely restores
mitochondrial and myofibril integrity and organization. Scale bar = 1 mm.
doi:10.1371/journal.pone.0050644.g004
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wet starvation (Figure 5C). Providing an alternative source of

mitochondrial NADH dehydrogenase activity by expressing NDI1

partially restored survival under starvation conditions. Similarly,

loss of complex I drastically reduced resistance to elevated

temperature that was largely restored by NDI1 expression

(Figure 5D).

Discussion

In the current report, we have demonstrated the role of

CG7598/dCIA30, the Drosophila homolog of human Ndufaf1, as a

vital factor in the assembly of mitochondrial complex I. We show

that loss of dCIA30 is sufficient to reduce complex I holoenzyme to

levels that are undetectable in BN-PAGE. Reduction of complex I

holoenzyme levels can be reverted by precise excision of the

inserted element in the dCIA30 mutants or by expression of a wild

type dCIA30 cDNA construct. These findings confirm that dCIA30

is a necessary factor for complex I assembly in Drosophila. dCIA30

mutation almost completely abrogated development during the

pupa stage, and reduced complex I holoenzyme levels in dCIA30

RNAi knockdown flies caused an approximately 70% drop in

eclosion frequency. In flies that did reach adulthood, dCIA30

knock down further reduced complex I holoenzyme to undetect-

able levels in BN-PAGE. In addition to being smaller, these flies

showed dramatically increased sensitivity to a variety of extrinsic

stressors including hypoxia, hyperoxia, hyperthermia, and starva-

tion. Interestingly, while sensitivity to hypoxia, hyperoxia and high

temperature (conferred by loss of complex I) can be completely or

almost completely rescued by Ndi1, sensitivity to starvation

conditions was only partially rescued by Ndi1. Therefore,

transkingdom gene therapy using Ndi1 may have limitations with

respect to complementing defects of energy metabolism.

Among other detriments, loss of complex I may result in

reduced ETC function, increased oxidative stress, skewing of the

NAD:NADH ratio, and reduced ability to form supercomplexes

[7]. Of these, loss of ETC activity, increased oxidative stress, and

skewing of the NAD:NADH ratio may be improved by

supplementation with NDI1 [18], [24], [34]. In some fungi, such

as S. cerevisiae, NDI1 functions as the sole matrix facing

NADH:ubiquinone oxidoreductase [15], coupling NADH oxida-

tion to ubiquinone reduction like mitochondrial complex I, but

without translocating protons across the inner mitochondrial

membrane. As Ndi1 in the present study was cloned from S.

cerevisiae [24], it is unlikely that it could act as a scaffold for

supercomplex formation or otherwise participate specifically and

directly in other endogenous pathways when expressed in

Drosophila, which does not have an endogenous Ndi1 homolog.

The near complete rescue of sensitivity to hypoxia, hyperoxia, and

hyperthermia in complex I deficient flies by NDI1 supplementa-

tion suggests that sensitivity to hypoxia, hyperoxia, and hyper-

thermia may be linked to loss of ETC activity, increased oxidative

stress, and/or skewing of the NAD:NADH ratio. Conversely, the

major detriment in wet starvation may be a result of a complex I

function that is not supplemented or insufficiently supplemented

Figure 5. Loss of dCIA30 results in multiple stress sensitivity
phenotypes that are ameliorated by NDI1. (A) Knock-down of
dCIA30 (dCIA30-RNAi) in adult flies increased recovery time after
exposure to hypoxia (1 hr). Loss of dCIA30 more than doubled mean
recovery time compared to controls (da-GAL4/+). Co-expression of NDI1
(Ndi1 rescue) restored recovery time to control levels. (n = 120 male
flies). (B) Knock down of dCIA30 in adult flies decreased survival under
hyperoxia (84% O2). On average, dCIA30-RNAi flies lived approximately
half as long as controls. Co-expression of NDI1 restored mean survival

duration to approximately 95% of controls. (n = 120 male flies). (C)
Knock down of dCIA30 in adult flies decreased survival duration under
starvation with water. On average, flies with dCIA30 knock down
survived less than half as long as control flies. Co-expression of NDI1
increased survival times to approximately 70% of controls. (n.120 male
flies). (D) Knock down of dCIA30 in adult flies decreased survival
duration under high temperature (37uC). Mean survival times of flies
with reduced dCIA30 were approximately half those of control flies. Co-
expression of NDI1 increased mean survival time to approximately 90%
of controls. (n.135 male flies).
doi:10.1371/journal.pone.0050644.g005
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by NDI1 function. Although beyond the scope of this work, a

further analysis of the contribution of the different harmful effects

of complex I deficiency to various stresses may yield further

insights into the etiology of complex I deficiencies.

NDI1 has previously been shown to be effective as a therapeutic

for complex I disorders, including fly [18], mouse [19], and rat

[20] models of Parkinson’s disease, and in the fungus Podospora

anserina, overexpression of endogenous Ndi1 was shown to be able

to rescue complex I holoenzyme deficiency [14]. To our

knowledge, however, this is the first demonstration that exogenous

NDI1 is able to restore development to a metazoan that has no

detectable complex I holoenzyme in BN-PAGE or NADH:ubi-

quinone oxidoreductase activity in a colorimetric assay. Moreover,

the generation and characterization of a fly model of complex I

assembly factor deficiency will facilitate future work into the

underlying pathophysiology of neurodegeneration and aging.

Supporting Information

Figure S1 CG7598 is the D. melanogaster homolog of Ndufaf1/

CIA30. (A) The D. melanogaster homolog of human Ndufaf1,

CG7598 (dCIA30) was identified by homology. Amino acid

sequence alignment shows 69% similarity (44% identity), concen-

trated near the C-terminal half, which contains the CIA30

domain. (B) CG7598 (dCIA30) maps to chromosome 3R at 99B9

and spans approximately 1.1 kb. The coding sequence consists of

two exons separated by a 58 bp intron. A fly line with an insertion

of an approximately 11 kb long P-element (P{EPgy2}) into the

59UTR, 96 bp downstream from the transcriptional start site

(dCIA30EY09101) was used for initial mutant studies. A line that

contains a smaller insertion of approximately 500 bp was

generated by imprecise excision of the transposable element

(dCIA30ex80). A hairpin RNAi construct targeting the 325 bp of the

first exon with no reported off target knock downs (UAS-dCIA30-

IR) was used for RNAi knock down studies.

(TIF)

Figure S2 Complex I loss due to dCIA30 mutation persists in

adult flies. The dCIA30ex80 mutation results in specific loss of

complex I holoenzyme band in BN-PAGE of adult male flies, 2

days post eclosion. In contrast, controls (+) and cDNA rescue flies

show the presence of the complex I holoenzyme band.

(M = molecular size marker, CV2 = complex V dimer, CI = com-

plex I, CV1 = complex V monomer, CIII = complex III, CIV = -

complex IV, CII = complex II, 10, 25, 50 mg of total mitochon-

drial protein in successive lanes for each genotype).

(TIF)

Figure S3 Expression of NDI1 does not affect complex I

assembly. Expression of a UAS-Ndi1 construct does not affect the

absence of the complex I holoenzyme band in a dCIA30ex80 mutant

background. (M = molecular size marker, CV2 = complex V

dimer, CI = complex I, CV1 = complex V monomer, CIII = com-

plex III, CIV = complex IV, CII = complex II, mitochondria from

2.5, 5, and 10 larvae equivalents in successive lanes).

(TIF)
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4. Clason T, Ruiz T, Schägger H, Peng G, Zickermann V, et al. (2010) The

structure of eukaryotic and prokaryotic complex I. J Struct Biol 169(1): 81–88.

5. Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012)
Understanding mitochondrial complex I assembly in health and disease.

Biochim Biophys Acta 1817(6): 851–862.

6. McKenzie M, Ryan MT (2010) Assembly factors of human mitochondrial
complex I and their defects in disease. IUBMB Life 62(7): 497–502.

7. Moreno-Lastres D, Fontanesi F, Garcı́a-Consuegra I, Martı́n MA, Arenas J, et

al. (2012) Mitochondrial complex I plays an essential role in human respirasome
assembly. Cell Metab 15(3): 324–335.
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29. Walker DW, Hájek P, Muffat J, Knoepfle D, Cornelison S, et al. (2006)

Hypersensitivity to oxygen and shortened lifespan in a Drosophila mitochondrial
complex II mutant. Proc Natl Acad Sci U S A 103(44): 16382–16387.

30. Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, et al. (2011)

Modulation of longevity and tissue homeostasis by the Drosophila PGC-1

homolog. Cell Metab 14(5): 623–634.

31. Schulte U (2001) Biogenesis of respiratory complex I. J Bioenerg Biomembr

33(3): 205–212.

32. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007)

Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 2947–2948.

33. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering

cell fates and generating dominant phenotypes. Development 118(2): 401–415.

34. Yang Y, Yamashita T, Nakamaru-Ogiso E, Hashimoto T, Murai M, et al.

(2011) Reaction mechanism of single subunit NADH-ubiquinone oxidoreductase

(Ndi1) from Saccharomyces cerevisiae: evidence for a ternary complex mechanism.

J Biol Chem 286(11): 9287–9297.

Fly Model of Complex I Assembly Factor Deficiency

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e50644


