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Abstract

Cyclooxygenase-2 (COX-2) expression has been detected in human hepatoma cell lines and in human hepatocellular
carcinoma (HCC); however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression
is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression
depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional
regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell
lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth
and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a) by
binding directly to the microRNA response element (MRE) in the COX-2 39-UTR promoting translational suppression of COX-
2 mRNA; b) by decreasing the levels of the RNA-binding protein Human Antigen R (HuR). Furthermore, ectopic expression of
miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in
nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of
COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional
regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2
expression.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common

cancer worldwide and has an increasing incidence in western

countries [1]. Although the risk factors for HCC are well

characterized, the molecular pathogenesis of this tumor type is

not well understood [2,3], and thus the identification of new

possible targets for the development of non-conventional treat-

ments is urgent and must be improved.

Cyclooxygenase-1 (COX-1) and -2 catalyze the first step in

prostanoid biosynthesis. COX-1 is constitutively expressed in

many tissues, whereas COX-2 is induced by a variety of stimuli

such as growth factors, pro-inflammatory stimuli, hormones and

other cellular stresses [4]. Adult hepatocytes fail to induce COX-2

expression regardless of the pro-inflammatory factors used [5,6].

However, our group and others demonstrated that partial

hepatectomy (PH) [7,8] induced COX-2 in hepatocytes and

contributed to the progression of cell cycle after PH. In addition to

liver regeneration after PH or hepatotoxic agents, expression of

COX-2 has been detected in animal models of cirrhosis [9], in

human hepatoma cell lines [10,11], in human HCC [12] and after

HBV and HCV infection [13,14].

COX-2 is widely regarded as a potential pharmacological target

for preventing and treating inflammatory and cancer diseases.

Therapeutic strategies have focused primarily on selective

inhibitors of COX-2 activity; however, considerable less attention

has been paid to identifying anticancer agents that suppress the

expression of COX-2 [15]. COX-2 overexpression is the result of

the activation of many intracellular pathways that regulate COX-2

both at transcriptional and post-transcriptional level. The 59-UTR

of the COX-2 gene contains binding sites for numerous regulatory

transcription factors including two NF-kB (nuclear factor kB)

motifs, two AP-1 (activator protein 1) sites and two CREs (cAMP-

response elements) among others [16]. However, the regulation of

the expression of COX-2 is more complex including modifications

of genomic DNA and chromatin and at the post-transcriptional

level via targeting its 39-UTR [17]. The 39-UTR of COX-2

contains multiple copies of AU-rich elements (AREs) and

microRNA response element (MRE) motifs which, when bound

by specific ARE-binding factors or miRNAs, influence COX-2

stability and translational efficiency [17].

MicroRNAs (miRNAs) are short single-stranded non-coding

RNAs that influence post-transcriptional gene regulation by

affecting mRNA stability and/or translational repression of their

target mRNAs [18]. Alterations of the expression pattern of
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miRNAs that regulate genes involved in cellular proliferation,

differentiation or apoptosis, have been found in different human

tumors including HCC [19,20], suggesting that they may

represent a novel class of oncogenes or tumor suppressor genes.

Moreover, recent reports of profound phenotypic abnormalities in

miRNA-knockout models further demonstrate their crucial roles

as regulators of gene expression [21]. Regarding COX-2, Dey’s

group [22,23] highlighted a miRNA-mediated regulation of COX-

2 by mmu-miR-101a and mmu-miR-199a* during embryo

implantation and in endometrial cancer cells. Recent works have

reported that miR-101 downregulation is involved in COX-2

overexpression in human colon cancer cells (CRC) [24], miRNA-

26b regulates the expression of COX-2 in desferrioxamine-treated

carcinoma of nasopharyngeal epithelial cells [25] and binding of

miR-16 to AREs of TNF-a, IL-6, IL-9 and COX-2 mRNA

transcripts could promote their degradation [20,26].

Besides miRNAs, various cytoplasmic proteins have been

reported to bind the COX-2 39UTR [20]. As an example, the

RNA-binding protein CUGBP2 interacts directly with specific

AREs within the first 60 nucleotides of the COX-2 39-UTR and

that binding stabilizes the COX-2 mRNA yet inhibits its

translation [27]; tristetrapolin binds to COX-2 39UTR and

decrease mRNA levels in colon cancer [28], whereas Human

Antigen R (HuR) is a translational enhancer of COX-2 in ovarian

carcinoma [29] and in colon carcinogenesis [20].

To our knowledge, no data is available concerning the post-

transcriptional regulation of COX-2 by miRNAs and RNA-

binding proteins in HCC. Our results show that miR-16 silences

COX-2 expression in hepatoma cells by two mechanisms: by

binding directly to the MRE motif in the COX-2 39-UTR and by

decreasing the levels of HuR. miRNA-16 is able to inhibit cell

proliferation, to promote cell apoptosis and to suppress the ability

of WRL68 hepatoma cell line to develop tumors in nude mice

partially through targeting COX-2 expression. Moreover a re-

duced miR-16 expression tends to correlate to high levels of COX-

2 protein in liver from patients affected by HCC. Our data suggest

an important role for miR-16 in HCC and implicate the potential

therapeutic application of miR-16 in those HCC with a high

COX-2 expression.

Materials and Methods

Chemicals
Antibodies were from Santa Cruz Laboratories (Santa Cruz,

CA, USA), Sigma Chemical Co. (St. Louis, MO, USA), Cell

Signaling (Boston, MA, USA), Abcam (Cambridge, UK) and

Cayman Chemical (Ann Arbor, MI, USA). Prostaglandin E2

(PGE2) was from Cayman Chemical. Reagents were from Roche

Diagnostics (Mannheim, Germany) or Sigma Chemical Co.

Reagents for electrophoresis were obtained from Bio-Rad

(Hercules, CA, USA). Tissue culture dishes were from Falcon

(Becton Dickinson Labware, Franklin Lakes, NJ, USA). Tissue

culture media were from Gibco (InvitrogenTM, Grand Island, NY,

USA).

Patients
Seven individual tumoral and paired non-tumoral HCC human

samples were obtained from de Spanish Tumor Bank Network of

the Centro Nacional de Investigaciones Oncológicas (CNIO).

Institutional review board approval (NuPI. CEI PI 20_2011) was

obtained for these studies from Comité de la Investigación y de

Bienestar Animal of CNIO and all participants provided written

informed consent. Tissues were evaluated by pathologists by

means of hematoxylin/eosin staining. Tissue was snap-frozen in

liquid nitrogen and total RNA and protein were isolated as

described below.

Cell Culture
The cell lines WRL68, HepG2 and Hep3B were purchased

from the American Type Culture Collection, ATCC (Manassas,

VA, US). All these cells lines were authenticated by ATCC and

were expanded twice, and stored in liquid N2. Expansions from

these clones were used up to 6 months in culture. PLC/PRF/5

[30] was kindly provided by Dr. C Perret (Institut Cochin, CNRS

UMR8104, University Paris-Descartes, Paris, France) and HuH-7

[31] by Dr. M. Kern (Department of General Pathology,

University Hospital Heidelberg, Heidelberg, Germany). WRL68

was derived from human liver embryo. HepG2, Hep3B and HuH-

7 are well differentiated hepatocellular carcinoma cell lines and

PLC/PRF/5 is a malignant liver cancer with HBsAg positive cell

line. Cells were grown on Falcon tissue culture dishes in EMEM or

DMEM supplemented with 10% FBS and antibiotics (50 mg each

of penicillin, streptomycin and gentamicin per ml) at 37uC in

a humidified air 5% CO2 atmosphere. Human hepatocytes were

from HPCH10 CryostaXTM, Single-freeze Cryopreserved Pooled

Human Hepatocytes (Xenotech, Lenexa, KA, USA).

RNA Extraction and Quantitative Real-time PCR Analysis
Total RNA from HCC cells or human biopsies was extracted by

using TRIzol reagent (Invitrogen, Grand Island, NY, USA). RNA

(1 mg) was reverse transcribed using a Transcriptor First Strand

cDNA Synthesis Kit following manufacturer’s indications (Roche

Applied Science). For quantification of mature miRNAs, total

RNA was extracted using the miRNeasy Mini Kit (Qiagen,

Valencia, CA, USA). RNA (500 ng) was polyadenylated and

reverse- transcribed to cDNA using the NCodeTM miRNA first-

strand cDNA synthesis kit (Invitrogen) in accordance with the

manufacturers instructions. The cDNA was used as template for

real-time PCR through Taqman probes. Primers for COX-2

(Hs00153133-m1) and 36b4 (Hs99999902-m1) were from Applied

Biosystems (Carlsbad, CA, USA). Real-time PCR was performed

using a MyiQ detection system (Bio-Rad) and thermocycling

parameters were 95uC for 10 min, 50 cycles of 95uC for 15 s

followed for 60uC for 1 min and finally 95uC for 1 min. Each

sample was run in triplicate and was normalized to 36b4 mRNA.

The replicates were then averaged, and fold induction was

determined in a DDCt based fold-change calculations.

Levels of miRNAs were quantified using the FastStart Universal

SYBR Green Master (Roche) with the universal reverse primer

provided in the kit and the following forward primers; hsa-miR-16:

59- TAGCAGCACGTAAATATTGGCG -39; hsa-miR-26b: 59-

CGCTTCAAGTAATTCAGGATAGGT -39; hsa-miR-199a: 59-

CCCAGTGTTCAGACTACCTGTTC -39; hsa-miR-101: 59-

CCGGTACAGTACTGTGATAACTGAA -39; hsa-miR-21: 59-

CGGTAGCTTATCAGACTGATGTTGA -39 and hsa-miR-

122: 59- TGGAGTGTGACAATGGTGTTT -39. Thermocycling

parameters were 95uC for 3 min and 40 cycles of 95uC for 15 s

followed by 60uC for 30 sec. The expression of miRNAs was

normalized against U6 snRNA levels (U6 primers: forward 59-

CTTCGGCAGCACATATACT -39; reverse 59- AAAATATG-

GAACGCTTCACG -39). Melting curve analysis was performed

to confirm the specificity of the PCR products.

The miRNAs (miR-16, miR-26b, miR-101, miR-199a, miR-

122 and miR-21) were selected by using miRWalk computational

analyses, that covers miRNA-targets interactions information

produced by 8 established miRNA prediction programs on 3’

UTRs of all known genes of Human, Mouse and Rat, i.e.,

RNA22, miRanda, miRDB, TargetScan, RNAhybrid, PITA,

MiR-16 Downregulates COX-2
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Figure 1. miR-16 and COX-2 correlate inversely in HCC cell lines. Cells were plated in 100-mm dishes and grown to 60–70% confluence in
culture medium supplemented with 10% FBS. (A) Total cellular extracts were prepared from HCC cells and protein (30–50 mg/lane) was analyzed by
Western blot. A representative Western blot showing COX-2 protein. The expression of target protein was normalized to that of a-tubulin.
Densitometric analysis of COX-2 expression (black bars) is referring to HH as 1 and expressed as relative expression (RE). Total RNA was prepared from
HCC cell lines and COX-2 mRNA was analyzed by real-time PCR. COX-2 mRNA amounts (white bars), normalized to the expression of 36b4 mRNA, and
miR-16 expression (grey bars), normalized against U6 RNA levels, were calculated. Values represent fold change relative to human hepatocytes (HH)
as 1. Data are reported as means6SD of three independent experiments. **p,0.01 and *p, 0.05 vs. the HH. (B) The inverse correlation between COX-
2 protein/mRNA ratio and miR-16 expression in HCC cells is graphically depicted. The coefficient of determination (R2) was calculated.
doi:10.1371/journal.pone.0050935.g001

Table 1. Expression of selected miRNAs is evaluated in HCC cell lines.

Cell Lines

miR-16 (R2 = 0.86) miR-26b (R2 = 0.43) miR-101 (R2 = 0.71)

p=0.016 p= 0.297 p= 0.018

HH 1 1 1

HepG2 0.00860.002 0.02360.004 0.14160.003

HuH-7 0.30960.150 0.11460.100 0.57360.250

PLC-PRF 0.60160.300 0.021.60.015 0.38360.800

WRL68 0,66160.234 0.01960.009 0.45160.315

Hep3B 1.57860.015 0.68260.261 1.95660.394

miR-199a (R2 = 0.49) miR-122 (R2 = 0.03) miR-21 (R2 = 0.02)

p=0.226 p= 0.241 p= 0.919

HH 1 1 1

HepG2 0.58360.056 0.00167.65E-05 1.50160.121

HuH-7 1.08460.430 0.02860.005 1.55860.313

PLC-PRF 0.70260.359 0.00461.91E-05 1.13060.600

WRL68 0.47960.171 0.00166.32E-05 0.99760.006

Hep3B 2.32160.380 0.01260.003 1.74160.154

The miRNAs (miR-16, miR-26b, miR-101, miR-199a, miR-122 and miR-21) were selected by using miRWalk computational analysis as described in Methods. The
expression profile was analyzed in HCC cell lines using real-time PCR, normalized against U6 RNA levels and refers to human hepatocytes (HH) as 1. COX-2 protein/
mRNA ratio was compared to miRNAs expression in HCC cells and the coefficient of determination (R2) was calculated.
doi:10.1371/journal.pone.0050935.t001
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PICTAR, and Diana-microT, and comparing the obtained results

with data collected from the literature.

Western Blot Analysis
Extracts from cells (2–36106) or from liver tissue were obtained

as previously described [32]. For Western blot analysis, whole-cell

extracts were boiled for 5 minutes in Laemmli sample buffer, and

equal amounts of protein (20–30 mg) were separated by 10–15%

SDS-polyacrylamide electrophoresis gel (SDS-PAGE). The rela-

tive amounts of each protein were determined with the following

polyclonal or monoclonal antibodies: COX-2 (Cayman 160107

and Santa Cruz sc-1747), a-tubulin (Sigma T9026), HuR (Santa

Cruz sc-5261), Ago2 (Abcam AB57113) and Caspase-3 (Cell

Signaling 9662). After incubation with the corresponding anti-

rabbit or anti-mouse horseradish peroxidase conjugated secondary

antibody, blots were developed by the ECL protocol (GE

Healthcare, Chalfont St Giles, UK). Target protein band densities

were normalized with a-tubulin. The blots were revealed, and

different exposition times were performed for each blot with

a charged coupling device camera in a luminescent image analyzer

(Gel-Doc, Bio-Rad) to ensure the linearity of the band intensities.

Densitometric analysis was expressed in arbitrary units.

Determination of Metabolites
PGE2 was determined in culture media by specific immunoas-

say (Arbor Assays, Ann Arbor, MI, USA). Protein levels were

determined with Bradford reagent (Bio-Rad).

Transfection, Constructs and Luciferase Reporter Assay
The miR-16 precursor (PM10339), which was a double-

stranded RNA mimicking the endogenous mature miRNA, the

miR-16 inhibitor (In-miR-16, AM10339) which was a single

stranded nucleic acid designed to specifically bind to and inhibit

endogenous microRNA molecule, their negative controls (miR-

NC, AM17110; In-miR-NC, AM17010) and anti-COX-2 siRNA

(siCOX-2) (positive control, forward 59- GGGCUGUCC-

CUUUACUUCAtt -39and reverse 59- UGAAGUAAAGGGA-

CAGCCCtt-39) were purchased from Ambion (Austin, TX, USA).

pPyCAGIP-hCOX-2 was prepared as described previously [33].

Briefly, human COX-2 ORF was amplified by PCR from human

full-length COX-2 cDNA cloned into pcDNA1/Amp, and then,

was subcloned into XhoI-NotI restriction site of pPyCAGIP vector.

WRL68 and Hep3B cells were seeded in a 6-well plate

(36105cells/well) at 70% confluence. After 24 h, cells were

transfected with 50 nM of miR products or 30 nM siCOX-2

using lipofectamine 2000 (Invitrogen, USA) according to the

manufacturers instructions. After 6 h of incubation at 37uC,

transfection medium was replaced with 2 ml of complete medium

containing 10% FBS. For the analysis of COX-2 mRNA or

protein decay, 5 mg/ml actinomycin-D or 10 mg/ml cyclohexi-

mide (Sigma, USA) were added after transfection. Cells were

lysated after 48 h for Western blot and RT-PCR analyses.

To determine whether COX-2 mRNA was located in

processing bodies, p-bodies (PB), as a consequence of translational

repression, digitonine permeabilization and cellular fractionation

of Hep3B cell lines were performed since PB are enriched in the

pellet fraction [34]. Hep3B cell lines were transfected with miR-16

or In-miR16 48 hours prior to harvesting at a final concentration

of 50 nM. Cells were harvested by trypsinization, washed with

cold phosphate buffered saline (PBS) and resuspended in Buffer C

[250 mM sucrose, 10 mM Tris-HCl pH 7.5, 25 mM KCl, 5 mM

MgCl2, 2 mM DTT, 30 U/ml RNasin, and 0.1% v/v phospha-

tase-protease inhibitor cocktail (Sigma) containing 50 mg/ml

digitonin (Sigma)]. After incubation on ice for 15 min, samples

were centrifuged at 1,000 g for 5 min at 4uC. The supernatant was

recentrifuged at 14,000 g at 4uC for 5 min and saved as a soluble

fraction. The pellet from 1,000 g centrifugation was washed with

Buffer C without digitonin and saved as a cell debris pellet. RNA

was isolated from each fraction with Trizol reagent and was used

for RT-PCR. 59-39 exonucleasa (Xrn1) primers; F:GAGAAGC-

GATTATTGGAAGCCA and R:GCACATTAGGCACTCAC-

TATGTT were used as PB marker.

Using several programs (RNAhybrid, PITA, and RNA22), miR-

16 was predicted to associate with the 39UTR region of COX-2 to

different MRE motifs (Table S1). In the present report, miR-16

target site prediction for COX-2 was performed using RNAhybrid

[35] and we found one predicted MRE for miR-16 at positions

1195–1217 taking as position 1 the beginning of the 39 UTR

region. The 39-UTR sequences of COX-2 were retrieved using

Ensembl Data base (available: http://www.ensembl.org). Human

miRNA sequences were downloaded from the miRBase website

(available: http://www.mirbase.org). A fragment of 39UTR COX-

2 mRNA (region 1195–1217, from NM_000963) which include

the MRE binding site for miR-16, and a mutant variant were

cloned into pGL3-Promoter vector (pGL3-empty, Promega, USA)

downstream firefly luciferase gene (SacI, HindIII sites) to obtain the

luciferase reporter constructs (pGL3-seed and pGL3-mut, re-

spectively). Sequences cloned: 59-ctttatctcagtcttgaagccaattcag-

taggtgcattggaatcaagcctga-39 (seed); 59-ctttatctcagtcttgaataaccttcag-

gagggtaattggaatcaagcctga-39 (mut).

A DNA fragment containing 2.5 kb corresponding to the full

length 39UTR region of the human COX-2 gene was amplified by

PCR and cloned into the pGEM-T easy vector (Promega) to

construct pGEMCOX-2/39UTR. The fragment was obtained by

XbaI/BamHI digestion and subcloned in the pGL3-Promoter

vector (pGL3-empty, Promega) to construct the pGL3-UTR

vector. Mutagenesis was performed by means of the QuickChange

Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA. USA)

using pGEMCOX-2/39UTR as a template. All the constructions

were confirmed by nucleotide sequencing.

Cells (36104 cells/well) were seeded in 24-wells plate and

transfected for 6–12 h with pGL3-empty (750 ng), pGL3-seed

(750 ng), pGL3-mut (750 ng), pGL3-UTR (750 ng), pGL3-UTR

mut (750 ng), pRL-SV40 vector (50 ng, Promega, USA), miR-16

(50 nM), In-miR-16 (50 nM) or miR-NC (50 nM) or a different

combinations of them using lipofectamine 2000 reagent protocol.

Cells were harvested 48 h after transfection and cell lysates were

used for Dual-LuciferaseH Reporter Assay System analysis,

according to the manufacturer’s instructions (Promega, USA).

HuR expression vector, pcDNA3-HuR-GFP, was kindly provided

by Dr.M. Gorospe (Laboratory of Molecular Biology and

Figure 2. miR-16 regulates COX-2 expression in HCC cell lines. WRL68 and Hep3B cells were transfected with: 30 nM siRNA anti-COX2 (siCOX-
2) or 50 nM of miR-16, miR-16 inhibitor (In-miR-16), miR negative control (miR-NC) or miR negative control inhibitor (In-miR-NC). (A–B) COX-2 protein
was analyzed by Western blot 48 h after transfection and normalized against a-tubulin protein. COX-2 mRNA and miR-16 expression were analyzed
by real-time PCR. COX-2 mRNA and miR-16 expression were normalized against 36b4 mRNA and U6 RNA levels, respectively. Relative expression of
each sample refers to control as 1 (cells transfected only with lipofectamine). (C–D) PGE2 concentration was determined by enzyme immunoassay in
the supernatant of the cells. Data are reported as means6SD of four independent experiments. *p, 0.05 vs. the control condition and # p, 0.05 vs.
the miR-16 transfection condition.
doi:10.1371/journal.pone.0050935.g002
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Figure 3. miR-16 binds COX-2 mRNA and inhibits its translation. (A) WRL68 cell extracts (500 mg per lane) were immunoprecipitated with
Ago-2 or IgG antibodies. Bound RNA was harvested with TRIzol reagent, reverse transcriptased, and PCR amplified with COX-2 primers. PCR products
were visualized by electrophoresis in SYBR Safe DNA gel stain agarose gels. The presence of COX-2 mRNA in WRL68 cell transfected with miR-16 or
Lipofectamine after Ago2 immunoprecipitation was assessed, and fold differences were plotted. Input, total mRNA in cell extract; and control, bound
mRNA after immunoprecipitation with IgG antiboby. (B) Scheme of pGL3-empty, pGL3-seed and pGL3-mut reporter vectors. In pGL3-seed, the
putative binding site of miR-16 on COX-2 mRNA 39-UTR region (as detected by RNAhybrid software) was introduced downstream luciferase gene. In
pGL3-mut this region was mutated in order to avoid the binding between miR-16 and Luc mRNA. (C–D) A luciferase assay was carried out on HuH-7
and HepG2 cell lines using pGL3-seed and pGL3-mut reporter vectors. Firefly luciferase activity was evaluated 48 h after co-transfection with pGL3-

MiR-16 Downregulates COX-2
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Immunology, NIA-IRP, NIH, Baltimore, USA). When trans-

fection was performed with pcDNA3-HuR-GFP (4 mg) and

pPyCAGIP-hCOX-2 or control vector (4 mg) cells were seeded

in 6-wells plate.

Immunoprecipitation and PCR Analysis
The binding of miR-16 to COX-2 mRNA, HuR to COX-2

mRNA and the binding of HuR to miR-16 were analyzed by

immunoprecipitation and PCR analysis. The immunoprecipita-

tion was carried out in the lysis buffer (10 mM Tris/HCl, pH 8,

150 mM NaCl, 1% NP40, 0.1% azide, and protease inhibitor

cocktail). Total crude extracts (500 mg) from WRL68 and Hep3B

cells were immunoprecipitated with 10 mg Ago2, HuR, or IgG

antibody and mixed 2 hours at 4uC. An equal volume of protein

A/G sepharose was added per immunoprecipitation and mixed

overnight at 4uC. The protein/G sepharose was pelleted at

1500 rpm for 2 minutes at 4uC. For the elution of bound RNA,

beads were resuspended in the lysis buffer described above,

supplemented with 10 mg tRNA from Escherichia coli and 80 mg of

proteinase K. The mixture was incubated at 50uC for 45 minutes.

The RNA was purified using TRIzol reagent (Invitrogen,

Carlsbad, CA), reverse transcriptased and PCR amplified with

COX-2, miR-16, U6 or actin primers. The PCR reaction was

performed at 95uC for 5 min, followed by 30 cycles of 95uC for

30 s, 52uC for 30 s, and 72uC for 1 min, with the following

primers; hCOX-2 forward 59- ATCTACCCTCCT-

CAAGTCCC-39and reverse 59- TACCAGAAGGGCAGGATA-

CAG-39, actin forward 59- GCTCACGGAGGCACCCCTGAA -

39and reverse 59- CTGATAGGACATTGTTAGCAT -39, miR-

16 forward 59- TAGCAGCACGTAAATATTGGCG -39and the

universal reverse primer provided in the NCodeTM miRNA first-

strand cDNA synthesis kit (Invitrogen), U6 snRNA forward 59-

CTTCGGCAGCACATATACT -39and reverse 59- AAAA-

TATGGAACGCTTCACG -39. PCR products were visualized

by electrophoresis in SYBR Safe DNA gel stain (Invitrogen)

agarose gels.

Analysis of Cell Proliferation
Cell proliferation was determined by the MTT (3-[(4, 5-

dimethylthiazol-2-yl)-2, 59diphenyltetrazolium bromide]) assay

(Sigma). Cells (86103) were seeded on 96-well plates in DMEM

supplemented with 10% FBS. After transfection with different

conditions, cells were treated with 20 ml of MTT solution (2 mg/

ml) for 4 h at 37uC. The medium was removed and DMSO was

added to dissolve the blue formazan residue. The optical density

was measured at 570 nm.

Evaluation of Apoptosis
Apoptosis was detected by flow cytometry using Annexin V-

FITC Apoptosis Detection Kit (BD Pharmingen, San Diego,

CA, USA). Briefly, cells were collected and washed in cold PBS.

After centrifugation at 4uC for 5 min at 1000 rpm, cells were

double stained with Annexin V-FITC and PI for 15 min at

room temperature in the dark. Early apoptosis is defined by

Annexin V+/PI- staining and late apoptosis is defined by

Annexin-V+/PI+ staining as determined in a Cytomics FC500.

Analysis of Tumorigenicity in Nude Mice
Female athymic nu/nu mice (6 weeks old) were obtained from

Charles River Laboratories (Wilmington, MA). All the experi-

ments were performed in accordance with the animal care

guidelines of the European Union (2010/63/EU), and approved

by the Bioethical Committee from Consejo Superior de

Investigaciones Cientı́ficas (reference project SAF2010/16037).

The animals were kept under pathogen-free conditions and

were given an autoclaved standard diet and water ad libitum and

treated according to the Institutional Care Instructions (Bio-

ethical Commission from Consejo Superior de Investigaciones

Cientı́ficas, CSIC, Spain). WRL68 cells were transfected in vitro

with 50 nM miR-NC or miR-16 and pPyCAGIP-hCOX-2

ORF (hCOX-2 expression vector lacking COX-2 39 UTR) by

using lipofectamine 2000. At 24 h after transfection, 56106

viable cells suspended in PBS were injected subcutaneously into

both flanks of the nu/nu mice (5 mice per group). Tumor

growth was measured every 2 or 3 days. At 21 days after

injection, mice were killed and tumors were weighed after

necropsy. Tumor volume (V) was monitored by measuring the

length (L) and width (W) with calipers and calculated with the

formula (L6W2)60.5.

Data Analysis
Data are expressed as mean 6 S.D. (n ranged from three to five

independent experiments). Statistical significance was estimated

with the Student’s two-tailed t test for unpaired observations,

Spearman r test for nonparametric correlations and the Mann-

Whitney U test was used for ordinal variables using the statistical

software GraphPad Prism 5. A p value , 0.05 was considered

significant.

Results

miR-16 and COX-2 Correlate Inversely in Hepatoma Cell
Lines

To examine whether COX-2 expression is under the control of

miRNAs, we determined the expression pattern of COX-2 and

selected miRNAs in four hepatoma (HCC) cell lines (HepG2,

PLC/PRF/5, HuH-7, Hep3B) and in a cell line derived from

human liver embryo (WRL68), using human hepatocytes (HH) as

control (Fig. 1A). We found that each cell line expresses different

levels of COX-2 protein and mRNA. WRL68 exhibited the

highest COX-2 mRNA levels whereas HepG2 and PLC/PRF/5,

two differentiated liver carcinomas, showed low levels of COX-2

mRNA and protein (Fig. 1A). The expression profile of six

miRNAs (miR-16, miR-26b, miR-101, miR-199a, miR-122 and

miR-21) was analyzed in HCC cell lines (Table 1). In almost all

HCC lines analyzed, miR-16 expression was lower than in control

hepatocytes (HH), whereas COX-2 protein levels were higher

(Fig. 1A). We decided to compare the COX-2 protein/mRNA

ratio (as an index of translational inhibition) of the cell lines with

the selected miRNAs levels. Among the six miRNAs analyzed, the

expression of miR-16 showed the highest inverse correlation with

the COX-2 protein/mRNA ratio (R2 = 0.858, p = 0.016) (Fig. 1B),

suggesting that miR-16 is involved in COX-2 regulation in

hepatoma cell lines.

empty/seed/mut (750 ng), miR-16 (50 nM), In-miR-16 (50 nM) and miR-NC (50 nM) as indicated. Data were normalized against renilla luciferase
activity (all samples were co-transfected with 50 ng pRL vector and refer to the positive control, pGL3 empty vector). Data are reported as means6SD
of three independent experiments. *p, 0.05 vs. the pGL3-empty condition and # p, 0.05 vs. the miR-16 transfection condition.
doi:10.1371/journal.pone.0050935.g003

MiR-16 Downregulates COX-2

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e50935



MiR-16 Downregulates COX-2

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e50935



miR-16 Regulates COX-2 Expression in HCC Cell Lines
Major approaches to validate miRNA targets use in vitro gain-

of-function and loss-of-function analyses. We overexpressed

miR-16 in HCC cell lines and examined whether it decreases

endogenous COX-2 levels. The effect of miR-16 transfection on

COX-2 protein expression was evaluated in WRL68 and

Hep3B cells and it was compared to one positive control, cells

transfected with siCOX-2, and with two different negative

controls, cells treated only with lipofectamine and cells

transfected with miR-NC. As a further control, the effect of

both miR-16 and miR-NC inhibitors were analyzed. WRL68

and Hep3B cells were chosen since they express higher levels of

COX-2 protein. miR-16 caused a decrease in COX-2 protein

levels within 48 h of transfection in both cell lines (Fig. 2A–B).

Moreover, the transfection of In-miR-16 induced an increase of

COX-2 protein mainly in Hep3B cells. COX-2 mRNA levels

were also evaluated and no significant changes was observed

following the different treatments with the exception of siCOX-

2 transfection (Fig. 2A–B). These results provide further

evidence that COX-2 mRNA is post-transcriptionally controlled

by miR-16. Released PGE2 levels are in good agreement with

COX-2 protein changes (Fig. 2C–D).

miR-16 Binds COX-2 mRNA and Inhibits its Translation
To establish whether the effect of miR-16 on COX-2

expression was mediated through a direct miRNA:mRNA

interaction, we performed a RNA immunoprecipitation (RNA-

IP) assay in WRL68 cells transfected with miR-16. Immuno-

precipitation of total lysates was carried out with an antibody

against Argonaute 2 (Ago2), a major component of the

microRNA associated to multiprotein RNA-induced-silencing

complex (RISC) [36]. As shown in Fig. 3A, COX-2 mRNA was

present in the Argo2 immunoprecitation samples where miR-16

was expressed whereas capture of the negative control actin

mRNA was unchanged. Using several programs (RNAhybrid,

PITA, and RNA22), miR-16 was predicted to associate with the

39UTR region of COX-2 to different MRE motifs (Table S1)

and we found one predicted MRE for miR-16 at positions

1195–1217 taking as position 1 the beginning of the 39 UTR

region. To ensure that miR-16 can bind to this predicted region

and cause translational repression, we performed a luciferase

reporter gene assay in HuH-7 and HepG2 cells with low levels

of miR-16. We cloned the 39UTR region of COX-2 containing

the miR-16 putative binding site (seed region) and a mutant

variant downstream the Luc gene in pGL3-vector (pGL3-seed

and pGL3-mut, respectively) (Fig. 3B). The luciferase activity

significantly decreased after cotransfection with both pGL3-seed

and miR-16, when compared to positive control (cells

transfected only with pGL3-seed). The transfection of In-miR-

16 increased the luciferase activity while the transfection of

miR-NC had no effects. Moreover, we did not observe

variations of the luciferase activity in cells cotransfected with

pGL3-mut and miR-16, in comparison to cells transfected only

with pGL3-mut (Fig. 3C–D). The results suggest that miR-16

could specifically bind to the 39UTR region of COX-2 and

represses COX-2 translation reinforcing the hypothesis that

COX-2 mRNA is a direct target for miR-16. The effect was

similar using 39 UTR full length region of COX-2 (Figure S1).

To further support the hypothesis that miR-16 is involved in the

down-regulation of COX-2 translation, we tested the expression of

COX-2 in Hep3B cells after transfection with siCOX-2 or miR-

16, in the presence of the transcription inhibitor actinomycin-D.

We found a decrease of COX-2 protein in both cases (Fig. 4A–B).

However, siCOX-2 induced a rapid decay of COX-2 mRNA (t1/

2 = 3 h) while the transfection of miR-16 did not show significant

mRNA decay when compared to negative controls (cells treated

only with lipofectamine and cells transfected with miR-NC; t1/

2 = 7 to 9 h) (Fig. 4C). We performed a similar experiment in the

presence of the protein synthesis inhibitor, cycloheximide (CHX)

and the results obtained reveal that both miR-16 and CHX

induced a rapid decay of COX-2 protein with a synergistic effect

(Fig. 4D–E). Furthermore, when Hep3B cells were treated with

digitonin and fractionated after transfection with miR-16 in order

to localize COX-2 mRNA in soluble or P-bodies (PB) fractions

[34], the amount of COX-2 mRNA present in PB was more than

90%, suggesting inhibition of translation. Instead, in Hep3B cells

transfected with lipofectamine, COX-2 mRNA is present in the

soluble fraction, where polysomes are located. A similar distribu-

tion of COX-2 mRNA was observed upon transfection of Hep3B

cells with In-miR-16 (Fig. 4F–G). The results demonstrate that

miR-16 interacts with COX-2 mRNA and promotes COX-2

protein decrease mostly through a translational repression

mechanism.

HuR Antagonizes miR-16 Activity in Regulating COX-2
Expression in Hepatoma Cell Lines

It is well known that HuR and other RNA-binding proteins

bind to and regulate COX-2 expression and determine the fate of

COX-2 translation [37,38]. However, a recent work [39] has

demonstrated that miR-16 inversely correlates with HuR protein

levels in human breast carcinoma. RNA immunoprecipitation

(RNA-IP) was performed to determine whether HuR would

associate with COX-2 and whether there is a direct interaction

between HuR and miR-16 in WRL68 cell line. As shown in

Fig. 5A, COX-2 mRNA was present in the HuR immunopreci-

pitates, whereas capture of the negative control actin mRNA was

unchanged. Moreover, when RNA-IP was performed, miR-16 was

also present in the HuR immunoprecipitates (Fig. 5B). To study

the relationship between miR-16 and HuR in HCC cell lines, we

determined whether HuR levels were altered by miR-16 trans-

fection. As shown in Fig. 5C–D, overexpression of miR-16 in

WRL68 and Hep3B cell lines led to a substantial decrease in HuR

Figure 4. Effect of miR-16 on COX-2 mRNA and protein stability. Hep3B cells were transfected with 50 nM miR-16 or miR-NC, or 30 nM
siCOX-2. 5 mg/ml actinomycin-D (Act D) or 10 mg/ml cycloheximide (CHX) were added after transfection. (A–B) COX-2 protein was analyzed by
Western blot at different time after actinomycin-D treatment. Corresponding densitometry analysis is shown and the relative expression of each
sample is related to sample at 0 h as 1. (C) mRNA COX-2 levels were analyzed by real time PCR. COX-2 mRNA amounts were calculated as relative
expression and normalized to the expression of 36b4 mRNA. Values represent fold change relative to sample at 0 h. (D–E) COX-2 protein levels were
analyzed by Western blot in the presence or absence of cycloheximide. Corresponding densitometric analysis is shown and the relative expression of
each sample is related to the value at 0 h as 1. F) Hep3B cells were transfected with 50 nM miR-16, miR-16 inhibitor (In-miR-16) or lipofectamine and
permeabilized with digitonine to obtain soluble and pellet fractions enriched in PB as described in Methods. RNA was isolated from each fraction with
Trizol reagent, reverse transcriptased, and PCR amplified with COX-2, Xrn1 and actin primers. Input, RNA extracted from cells prior to fractionation.
PCR products were visualized by electrophoresis in SYBR Safe DNA gel stain agarose gels. G) The presence of COX-2 mRNA in soluble and PB fractions
was assessed and fold differences were plotted. Data are reported as means6SD of three independent experiments. **p,0.01 and *p,0.05 vs. the
value of sample at 0 h.
doi:10.1371/journal.pone.0050935.g004
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protein levels. To determine whether miR-16-mediated COX-2

protein loss was due in part to a decrease in HuR expression,

Hep3B and WRL68 cell lines were cotransfected with miR-16 and

HuR expression vectors. As shown in Fig. 5E–F, miR-16 inhibited

the COX-2 and HuR protein levels in both cellular types;

however, in the presence of HuR, the ability of miR-16 to

downregulate COX-2 protein levels was partially abolished.

miR-16 Down Regulation of COX-2 Sensitizes HCC Cells
to Apoptosis

To further establish a functional relationship between miR-16

and COX-2, we tested whether COX-2 expression was required

to miR-16-dependent induction of apoptosis. Overexpression of

miR-16 promoted apoptosis in Hep3B hepatoma cells. However,

the effect of miR-16 on apoptosis was partially attenuated by

treatment of cells with PGE2 (Fig. 6A). Western blot analysis of

active caspase-3 showed an increase in the pro-apoptotic protein

by the effect of miR-16 and this effect was also reverted in the

presence of PGE2 (Fig. 6B). These results suggest that miR-16 may

exert its pro-apoptotic function partially through decreasing

COX-2 expression.

mir-16 Suppresses the Growth of Hepatoma Cells in vitro
and in vivo

We sought to determine whether miR-16 affects the growth of

hepatoma cell lines assessed by the MTT reduction assay. As

indicate in Fig. 7A, the growth of Hep3B cells transfected with

miR-16 was significantly decreased relative to control cells.

Transfection of the cells with miR-16 decreased cell growth up

to 40%, being restored to 70% in the presence of PGE2. To

further analyze the effect of miR-16 on hepatoma cell growth

in vivo, the WRL68 cells were transiently transfected with miR-16,

miR-NC or miR-16 together with a human COX-2 expression

vector that lacks the 39 UTR and, therefore, it cannot be regulated

by miR-16. Then the transfected cells were subcutaneously

injected into athymic nu/nu mice. The mice were followed by

the observation of xenograft growth for 3 weeks. We found that

miR-16 led to a significant reduction in the volume and weight of

the tumor comparing with the mice injected with miR-NC. COX-

2-dependent production of PGE2 increased the volume and the

weight of tumors comparing with miR-16 (Fig. 7B–C). The

expression of intratumoral miR-16, measured by real-time PCR,

increased in tumors injected with cells transfected with miR-16

compared with miR-NC without being modified by COX-2

overexpression (Fig. 7D). Moreover, human COX-2 expression

was detected in the tumors 21 days after the injection (Fig. 7E).

These results agree with the in vitro data (Fig. 7A) and suggest that

miR-16 inhibits the proliferation of hepatoma cells, among other

mechanisms, through downregulation of COX-2.

Inverse Correlation between miR-16 and COX-2
Expression is Observed in HCC Human Biopsies

Since miR-16 regulates COX-2 expression by binding to the

MRE in the 39-UTR COX-2 and by inhibition of HuR in HCC

cell lines, we evaluated the relationship between miR-16, HuR

and COX-2 mRNA/protein expression in individual tumoral (T)

and paired non-tumoral (NT) HCC human samples. COX-2

mRNA and protein were higher in NT tissue compared to T

counterparts, like HuR protein and mRNA (Figure S2A-C)

whereas miR-16 levels in HCC tissues tended to be higher in T

than in NT tissue (Figure S2D) and inversely correlated with

COX-2 protein levels (Figure S2E).

Discussion

In this study we have analyzed whether COX-2 could be

regulated by miRNAs or RNA-binding proteins in human

hepatoma cell lines and human HCC specimens and whether

COX-2 levels in human HCC correlate with an altered expression

of these miRNAs. Our results show that miR-16 directly silences

COX-2 expression in hepatoma cells and indirectly through the

downregulation of HuR. Moreover, a reduced miR-16 expression

correlates with high levels of COX-2 in liver from HCC patients.

From a functional point of view, COX-2 down-regulation by miR-

16 increased apoptosis and decreased cell proliferation in human

hepatoma cell lines.

Several lines of evidence suggest that COX-2 signaling is

implicated in hepatocarcinogenesis and that COX-2 inhibitors

prevent HCC cell growth in vitro and in animal models [40].

Increased COX-2 expression has been found in human HCC;

however, although COX-2 expression is elevated in the early

stages of HCC, many questions remain unsolved regarding the

sufficiency of COX-2 to induce/contribute to tumorigenesis. The

mechanisms regulating the expression of COX-2 at specific stages

of HCC development remain unknown. Moreover, recent data

and our present results indicate that COX-2 mRNA levels are

significantly higher in the adjacent liver than in the HCC and

lower in HCC than in nonalcoholic steatohepatitis [12]. Our

previous work demonstrated that COX-2 expression is not

sufficient to enhance malignant transformation induced by

dyethylnitrosamine in a model of transgenic mice expressing

COX-2 in hepatocytes [33]. These results suggest that COX-2

could be related to the inflammatory response occurring in the

early phases of chronic liver disease and eventually contribute to

the induction of hepatocarcinogenesis.

Several reports describe COX-2 overexpression as a critical step

contributing to various facets of colon cancer and growing

evidence indicates that this overexpression is facilitated through

loss of ARE-mediated mRNA decay [41]. In CRC cells, a variant

of COX-2 mRNA lacking the distal region of the 39UTR was

stabilized upon cell growth to confluence [28]. These findings

suggest that COX-2 mRNA can escape rapid decay through the

use of alternative polyadenylation sites, resulting in deletion of

potential 39UTR regulatory elements. This phenomenon appears

Figure 5. HuR antagonizes the downregulation of COX-2 expression caused by miR-16 in hepatoma cell lines. WRL68 cell extracts
(500 mg per lane) were immunoprecipitated with HuR or IgG antibodies. Bound RNA was harvested with TRIzol reagent, reverse transcriptased, and
PCR amplified with COX-2 (A) or miR-16 primers (B). PCR products were visualized by electrophoresis in SYBR Safe DNA gel stain agarose gels. The
abundance of the transcripts present in WRL68 cells after HuR immunoprecipitation was assessed, and fold differences were plotted. Input, total
mRNA in cell extract; unbound, unbound mRNA after immunoprecipitation with HuR antibody; bound, bound mRNA after immunoprecipitation with
HuR antibody; and control, bound mRNA after immunoprecipitation with IgG antiboby. (C–D) WRL68 and Hep3B cell lines were transfected with miR-
16 or In-miR-16 (50 nM). COX-2 and HuR protein levels were analyzed by Western Blot. (E–F) WRL68 and Hep3B cell lines were cotransfected with
miR-16 (50 nM) and pcDNA3-HuR-GFP expression vector (4 mg). COX-2 and HuR protein levels were analyzed by Western Blot. Data are reported as
means6SD of three independent experiments. *p, 0.05 vs. the control condition and # p, 0.05 vs. the miR-16 transfection condition.
doi:10.1371/journal.pone.0050935.g005
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to be common in colon cancer cells [42]. Moreover, it has been

described a common polymorphism in the 39UTR of COX-2 and

this variant is associated with lung cancer risk [43]. Nevertheless,

no data are available concerning the loss of ARE-mediated post-

transcriptional regulation of COX-2 or even polymorphisms in the

ARE elements in HCC.

There are several miRNAs abundantly expressed in adult liver

tissue [44,45] and the liver displays a differential miRNA

expression profile in HCC. Microarray analysis showed altered

expression of some miRNAs in hepatomas such as let-7a, miR-21,

miR-23, miR-130, whereas the hepato-specific miR-122a and

others were found downregulated in 70% of HCCs and in HCC-

derived cell lines [20,46,47], as reported in our data (Table 1).

Murakami et al. [48] showed a correlation between miR-222,

miR-106a, miR-92, miR-17-5p, miR-20 and miR-18 and the

degree of differentiation suggesting an involvement of specific

miRNAs in the progression of the disease. However, the molecular

mechanisms underlying transcriptional regulation of miRNA

genes in the liver remain poorly established and different

transcription factors, such as hepatocyte nuclear factor 1a, c-

myc, STAT-3 and NF-kB have been implicated [25,49]. Un-

derstanding the contribution of desregulated miRNAs to HCC

requires the identification of gene targets and in this sense, cyclin

G1 and the PTEN tumor suppressor gene have been found to be

regulated by miR-122a and miR-21, respectively [50,51].

The 39-UTR of COX-2 is complex and contains multiple copies

of AREs and MREs which, when bound to specific ARE-binding

factors or miRNAs, influence COX-2 stability and translational

efficiency [17]. Work investigating the role of COX-2 during

embryo implantation identified the miRNAs, miR-101a and miR-

199a as regulators of COX-2 [22,23]. miR-101a also controls

mammary gland development by regulating COX-2 expression

[52]. In the context of colon cancer cell lines and colon tumors,

miR-101 inhibited COX-2 translation [24]. Young et al. [36]

demonstrated that miR-16 binds the COX-2 39UTR and inhibits

COX-2 expression by promoting mRNA decay in colon cancer.

However, the functional consequences of miR-16 associated with

HCC progression have not been established. The present results

demonstrate that miR-16 regulates COX-2 expression in HCC

cells by binding directly to the MRE response element in the

COX-2 39UTR and this binding inhibits mainly COX-2 trans-

lation without affecting significantly mRNA decay. It has been

described by Huang et al. that miR-16 decreased the association

of its target mRNA with polysomes in 293T and HeLa cells by

mediating the association of mRNA with processing bodies (P-

bodies), since localization of mRNAs to these structures is

a consequence of translational repression [34]. A similar assay

has been used previously to support the PB-to-cytosol relocaliza-

tion of mRNAs relieved from miRNA repression by treatment

with antisense oligonucleotides [53]. Our results clearly show that

COX-2 mRNA was located in P-bodies (.90%) after transfection

with miR-16, inhibiting its translation.

Next, we investigated the effect of COX-2-mediated inhibition

by miR-16 in hepatocarcinogenesis. Our data show that the

ectopic expression of miR-16 repressed cell proliferation of

hepatoma cells in vitro and tumor growth in vivo, and these effects

were partially reverted by treatment with PGE2. Furthermore,

COX-2 inhibition mediated by miR-16 promoted apoptosis in

HCC cells by increasing apoptotic proteins such as caspase-3.

Various cytoplasmic proteins have been observed to bind to the

COX-2 ARE. To date, 16 different RNA-binding proteins bind

the COX-2 39UTR promoting mRNA decay, mRNA stabilization

or translational silencing [41]. The HuR protein is a ubiquitously

expressed member of the ELAV (Embryonic-Lethal Abnormal

Vision in Drosophila) family of RNA-binding proteins. HuR

contains three RNA recognition motifs with a high affinity and

specificity for AREs and its overexpression stabilizes transcripts

and promotes their translation [54]. HuR is localized pre-

dominantly in the nucleus and the ability of HuR to promote

mRNA stabilization requires its translocation to the cytoplasm.

Figure 6. Downregulation of COX-2 by miR-16 increases
apoptosis in HCC cells. Hep3B cells were transfected with 50 nM
miR-16 or In-miR-16 in the presence or absence of 5 mM PGE2 (A)
Apoptosis was measured with Annexin V-FITC Apoptosis Detection Kit
(B) Western blot analysis of caspase-3. Results are the means 6 SD of
three different experiments. *p, 0.05 vs. the corresponding control
cells # p, 0.05 vs. miR-16 condition.
doi:10.1371/journal.pone.0050935.g006
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Different cellular signals known to activate MAPK pathways, the

PI-3 kinase pathway and the Wnt signaling pathway have been

shown to trigger cytoplasmic HuR localization [55]. HuR has

been identified as a trans-acting factor that promotes COX-

expression and it is known that cytoplasmic HuR expression

correlates with poor clinical outcome and with COX-2 expression

in ovarian carcinoma [29], human keratinocytes after UVB

irradiation [56] and in colon carcinogenesis [37,57]. It is known

that HuR is overexpressed in CRC cells and tumors, where

elevated HuR levels can impede ARE-mediated decay [37].

However, the expression of HuR in HCC is not reported. HuR

binds to COX-2 and increases/maintains COX-2 expression in

HCC cells. Moreover, miR-16 is also present in the HuR

immunoprecipitated and the analysis of miR-16 predicted target

genes determined by using the algorithms miRWalk showed that

among miR-16 target genes one is HuR. miR-16 interacts with

HuR mRNA in the 39UTR and represses HuR translation in

human breast cancer cells [39]. Indeed, Dixon et al. [37] reported

a direct interaction between HuR and miR-16 promoting the

downregulation of miR-16 and targeting COX-2 in colon cancer

cells. Our data are in agreement with the proposed interaction

between miR-16 and HuR mRNA in HCC cells and suggest two

different mechanisms for miR-16 to inhibit COX-2: by binding

directly to the MRE response element in the COX-2 39-UTR and

by decreasing the levels of HuR through a direct interaction. Our

results show HuR expression, protein and mRNA, in both NT and

T tissue from HCC biopsies, paralleling COX-2 expression.

Moreover a reduced miR-16 expression tends to correlate to high

levels of COX-2 protein in liver from patients affected by HCC.

Therefore, the reduced expression of miR-16 in those HCC with

a high COX-2 expression may contribute to the promotion of cell

proliferation and the inhibition of apoptosis and consequently

facilitate the development of these types of tumors. Our data

suggest an important role for miR-16 in HCC and implicate the

potential therapeutic application of miR-16 in those HCC with

a high COX-2 expression.

Supporting Information

Figure S1 miR-16 downregulates COX-2 by binding its

39UTR. A luciferase assay was carried out on HuH-7 cell line

using pGL3-UTR reporter vectors. Firefly luciferase activity was

evaluated 48 h after co-transfection with pGL3-empty, pGL3-

UTR or pGL3-UTR mut (750 ng) and miR-16 (50 mM). Data

were normalized against renilla luciferase activity (all samples were

co-transfected with 50 ng pRL vector and refer to the positive

control, pGL3 empty vector). Data are reported as means 6 SD of

three independent experiments. *p,0.05 vs. the pGL3-UTR

condition and #p,0.05 vs. the miR-16 transfection condition.

(TIFF)

Figure S2 COX-2 correlates inversely with miR-16 and directly

with HuR in HCC human biopsies. (A) COX-2 and HuR protein

expression were analyzed in both tumor (T) and their paired non

tumor (NT) tissues by Western Blot in a total of 7 pairs of matched

tissue specimens. Corresponding densitometry analysis is shown

and the relative expression of each sample is refer to that in one

non tumor tissue sample NT. (B–D) The expression of COX-2

mRNA, HuR mRNA and miR-16 were analyzed using real-time

PCR in NT and T tissue. *p, 0.05 vs. NT samples (E) COX-2

protein levels were compared to miR-16 expression in T samples.

Data were normalized against a-tubulin and U6 RNA levels,

respectively.

(TIFF)

Table S1 Several binding sites for miR-16 wihtin COX-2

39UTR, predicted by diferent algorithms. Using several programs

(RHAhybrid, RNA22, PITA, targeScan, microRNA.org), miR-16

was predicted to associate with the 39UTR region of COX-2 to

different MRE motifs. The number of binding sites, the positions

and the folding energy are indicated for each program. The

39UTR sequence of human COX-2 was retrieved using Ensembl

Data base, and miR-16 sequence for Homo Sapiens was

downloaded from mirBase website.

(DOC)
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