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Abstract

RNA interference (RNAi)-based sequence-specific gene silencing is applied to identify gene function and also possesses
great potential for inhibiting virus replication both in animals and plants. Small interfering RNA (siRNA) molecules are the
inducers of gene silencing in the RNAi pathway but may also display immunostimulatory activities and promote apoptosis.
Canonical siRNAs are 21 nucleotides (nt) in length and are loaded to the RNA Induced Silencing Complex when introduced
into the cells, while longer siRNA molecules are first processed by endogenous Dicer and thus termed Dicer-substrate siRNA
(DsiRNA). We have applied RNA polymerases from bacteriophages T7 and phi6 to make high-quality double-stranded RNA
molecules that are specific for the UL29 gene of herpes simplex virus (HSV). The 653 nt long double-stranded RNA
molecules were converted to siRNA and DsiRNA pools using Dicer enzymes originating from human or Giardia intestinalis,
producing siRNAs of approximately 21 and 27 nt in length, respectively. Chemically synthesised 21 and 27 nt single-site
siRNA targeting the UL29 were used as references. The impact of these siRNAs on cell viability, inflammatory responses,
gene silencing, and anti-HSV activity were assayed in cells derived from human nervous system and skin. Both pools and the
canonical single-site siRNAs displayed substantial antiviral activity resulting in four orders of magnitude reduction in virus
titer. Notably, the pool of DsiRNAs caused lower immunostimulation than the pool of canonical siRNAs, whereas the
immunostimulation effect was in relation to the length with the single-site siRNAs. Our results also propose differences in
the processivity of the two Dicers.
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Introduction

RNA interference (RNAi) is an ancient mechanism of gene

silencing for diverse eukaryotes [1]. The key components of the

RNAi machinery are Dicer and Argonaute endonucleases. Dicer

initiates endogenous RNAi by cleaving long double-stranded RNA

(dsRNA) molecules into small fragments, referred to as small

interfering RNAs (siRNAs) [2]. The siRNAs enter into the RNA

Induced Silencing Complex (RISC) with subsequent association of

one of the two strands (guide strand) with Argonaute protein,

a core component of the RISC. This leads to Argonaute-mediated

sequence-specific cleavage of messenger RNA (mRNA) sequence

complementary to the bound guide strand [3].

The discovery that exogenous siRNA molecules can trigger the

RNAi pathway [4] provided a possibility to generate new

therapeutic approaches for the treatment of a wide spectrum of

diseases, including genetic disorders, cancer and viral infections

[5]. Currently, there are two techniques to generate siRNA

molecules for RNAi applications: chemical synthesis [6] and

enzymatic production from target-specific DNA templates using

RNA polymerases [7–10]. In the course of the enzymatic reaction

it is possible to synthesize both siRNA [8,11] and long dsRNA

molecules [7,9]. The latter can be subsequently cleaved in vitro by

Dicer enzyme generating a pool of target-specific siRNAs

representing sequences along the entire region of interest

[7,9,12,13]. Although chemical synthesis of single-site siRNAs is

the main approach in current RNAi applications, the pools may

better maintain their silencing potency in long term usage, in

particular when applied to combat viral infections, by reducing the

probability of functional escape mutants [14–16]. As the
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concentration of each siRNA species in the pool is low, the pools

may also be less potent in inducing off-target effects than the single

siRNAs [17].

Depending on the origin, Dicer produces siRNA molecules of

slightly different lengths. Human Dicer (HD) generates siRNAs of

approximately 21 to 23 nt [9,18,19]. These, or equal sized

chemically synthesized siRNA molecules, have been widely used

for a variety of applications and usually referred to as conventional

or canonical siRNA molecules. Dicer from the protozoan parasite

Giardia intestinalis (GD) cuts dsRNA molecules into longer

fragments producing siRNAs of 25 to 27 nt [12,20]. Although

numerous studies indicate that both size classes of siRNA

molecules can induce RNAi in mammalian cells [12,21–24] there

is still an ongoing debate on the possibility to utilize siRNA

molecules longer than canonical siRNAs for therapeutic purposes

[12,23–25].

It has been demonstrated [25] that chemically synthesized 27-nt

siRNA is a substrate for Dicer enzyme both in vitro and in vivo.

Later it was proved that enzymatically generated 27-nt siRNAs

can also be processed by recombinant HD [12]. Therefore, upon

introduction into mammalian cells 27-nt RNA duplexes can be

recognized and processed by endogenous Dicer potentially

advancing siRNA loading into the RISC complex [25]. Accord-

ingly, siRNAs of 27 nt in length, designated as Dicer-substrate

siRNAs (DsiRNAs), have been shown to be more efficient in

inducing RNAi than the canonical 21-nt siRNAs, especially at

subnanomolar concentrations [25]. However, other studies have

indicated equal silencing potency for both 21-nt and 27-nt siRNA

molecules [12,21–24]. Furthermore, it has been proposed that

longer siRNAs are more immunostimulatory than canonical

siRNAs in both cell cultures and animals [23,24]. Longer siRNAs

were also shown to induce a substantial decrease in viability of

some cell lines [24].

Herpes simplex virus type 1 (HSV-1) is a medically important

virus, causing a variety of significant infections, such as oral and

skin infections, an increasing proportion of genital herpes, ocular

infections, and the rare but severe HSV encephalitis. Single-site

siRNAs have been applied to suppress HSV-1 infections in

cultured cells using selected target-sequences from the HSV genes

encoding VP16 protein and the DNA polymerase [26], glycopro-

tein E [27], and infected cell protein (ICP) 4 [11,28]. Furthermore,

RNAi has yielded promising results in an animal model of genital

herpes (HSV-2) [29] where the single siRNAs used targeted HSV

genes UL29 (a DNA-binding protein, ICP8) and UL27 (glycopro-

tein B). Many genes of HSV-1 and -2 have significant homology,

and could serve as targets for RNAi.

In the present study we compared the enzymatic activities of

HD and GD, evaluated the cellular responses induced by

canonical siRNA and DsiRNA molecules and studied the potency

of HSV-specific siRNA molecules to block HSV-1 infection in

human skin- and nervous system-derived cell lines. For the current

study, we chose the prototypic HSV-1 strain 17+ as a target,

because its genomic sequence is known and it infects well both

types of host cells included in our study. The specific aims were to

analyze if enzymatically produced siRNA pools could be applied

to control HSV infections and to evaluate the possible siRNA

length-dependent variation in antiviral and innate immune

responses induced by pools of siRNA molecules. Therefore, we

created two pools of siRNA molecules, processed either by HD or

GD, targeting the UL29 gene of HSV-1. These were compared to

the 21- or 27-nt single-site UL29-specific siRNAs or control RNAs

representing non-specific sequences. The results suggest that

neither canonical nor DsiRNAs influenced cell viability despite

a slight up-regulation of interferon pathway genes. Both siRNA

pools demonstrated equal potency to suppress virus replication in

both cell types, while the 21- and 27-nt single-site siRNAs

displayed significantly different immunostimulatory and antiviral

activities, especially in the nervous system-derived cell line.

Methods

Cell Lines, Plasmids and Bacterial Strains
Transfection experiments were carried out in human glioma

U373MG (ATCC) and human epithelial HaCaT [30] cell lines

maintained in high glucose Dulbecco’s modified Eagle’s Medium

(hg-DMEM, Gibco) supplemented with 2 mM L-glutamine and

10% heat inactivated fetal calf serum (FCS, PromoCell) or in low

glucose DMEM (DMEM) supplemented with 7% FCS, re-

spectively. African green monkey (Vero; ATCC) cells were

maintained in DMEM supplemented with 2 or 7% FCS. All cells

were incubated at +37uC in 5% CO2, unless otherwise stated.

The selected target sequence for RNAi within the UL29 gene of

HSV-1 prototype strain 17+ (GenBank accession number

NC_001806.1) was amplified by PCR using primers containing

restriction sites for EcoRI and HindIII (Table S1). The amplified

fragment was cloned into the multiple cloning site of pET32b

(Novagen) to generate plasmid pET32UL29. Plasmid pCR3.1-

eGFP [7] was used to produce an siRNA pool against enhanced

green fluorescent protein gene (eGFP). Plasmid pLM659 [31]

contains the complementary DNA (cDNA) copy of bacteriophage

phi6 genome segment S and was used as a template for the

production of the 88 base pair (bp) long dsRNA (88-bp dsRNA).

Escherichia coli strain DH5a was used for propagation of

pET32UL29 and pCR3.1-eGFP. Plasmid pLM659 was main-

tained in E. coli JM109.

dsRNA and siRNA Molecules
The UL29- and eGFP-specific as well as the 88-bp phi6-specific

dsRNA molecules were generated using Replicator RNAi kit

(Thermo Scientific) according to the manufacturer’s instructions.

For the production of radioactively labeled dsRNA 5 mCi of

[a-32]UTP (3000 Ci/mmol; Perkin Elmer) was included in the

reaction, and unincorporated nucleotides were removed using

MicroSpin G-25 Columns (GE Healthcare) after the reaction.

DNA templates for dsRNA synthesis reactions were prepared by

PCR amplification of the target sequences from an appropriate

plasmid using primers containing T7 (TAATACGACTCACTA-

TAGGG) or phi6 (GGAAAAAAA) polymerase promoter se-

quences at their 59-ends (Table S1). Enzymatically synthesized

dsRNAs were separated from single-stranded RNAs by successive

precipitations with 2 M and 4 M LiCl [7]. The resulting dsRNA

pellets were washed thoroughly with 70% ethanol and dissolved in

RNAse-free Milli-Q water (Millipore).

The synthesized UL29- and eGFP-specific dsRNA molecules

were digested with either GD (PowerCut Dicer, Thermo

Scientific) or HD (BLOCK-iT Dicer enzyme, Invitrogen) for

16 h at 37uC according to the manufacturer’s instructions

applying 1 U Dicer/mg of dsRNA and dsRNA concentration of

0.2 mg/ml, unless otherwise stated. The reactions containing

radioactively labeled dsRNA were stopped at the indicated time

points by the addition of 26U loading buffer (10 mM EDTA

pH 8.0, 0.2% SDS, 0.05% bromphenol blue, 0.05% xylene

cyanol, 6% (v/v) glycerol, 8 M urea).

For cell culture experiments the desalted Dicer products (NAP

column, GE Healthcare) were loaded onto the anion-exchange

Gen-Pak FAX column (Waters), connected to the ÄKTApurifier

system (GE Healthcare), and eluted (0.5 ml/min) using a linear

NaCl gradient in 25 mM Tris-HCI buffer, pH 8.0. Fractions of

Canonical and Dicer-Substrate Anti-HSV-siRNA Pools
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0.5 ml were collected and those containing siRNA molecules were

combined, desalted with NAP columns, and concentrated using

a SpeedVac concentrator (Thermo Savant). Commercial single-

site UL29S siRNA (21-nt) [29] and UL29L DsiRNA (27-nt, Table

S1) were purchased from Dharmacon and the eGFPS and

GAPDH siRNAs were from Qiagen [13]. The single-site siRNAs

did not harbor any modifications.

RNA concentrations were determined by measuring the

absorbance at 260 nm using a NanoDrop 2000 spectrophotometer

(Thermo Scientific). For the evaluation of RNA integrity and

purity samples were routinely analyzed by electrophoresis in either

0.8% (dsRNA) or 2.5% (siRNA) agarose gel. The radioactively

labeled reaction products were analyzed in 6% polyacrylamide gel

in Tris-glycine buffer. After electrophoresis the signals were

collected by autoradiography on BAS1500 image plates (Fujifilm),

which were scanned using a Fuji BAS-1500 phosphorimager

(Fujifilm).

Transfection and Cell Viability
Enzymatically synthesized siRNA pools, commercial single-site

siRNAs, 88-bp dsRNA or water were transfected with Lipofecta-

mine RNAiMAX (Invitrogen) according to manufacturer’s for-

ward transfection protocol using 96-well plates. At the recom-

mended confluency the number of cells per well was

approximately 30 000 or 15 000 for HaCaT and U373MG cell

lines, respectively. The transfection efficiency was visually assessed

using 4 pmol of fluorescein-labeled siRNA (Label IT RNAi

Delivery Control, Mirus), and fluorescence was detected with

Zeiss AxioVert 200 M microscope. The transfection efficiency was

further monitored with 10 pmol of unlabeled human GAPDH

(glyceraldehyde-3-phosphate dehydrogenase) -specific siRNA

(HS_GAPDH_3 FlexiTube siRNA, Qiagen) by measuring

changes in the mRNA levels of GAPDH gene using real-time

quantitative reverse transcription PCR (qRT-PCR; see below).

Cell viability was assessed 48 h post transfection with CellTiter-

Glo luminescent cell viability assay (Promega) [32].

Virus Propagation and Titration
Vero cells, grown in roller flasks at +35uC and maintained in

DMEM supplemented with 2% FCS, were infected with HSV-1

prototype strain 17+ at multiplicity of infection 0.01 and the

infection was allowed to spread to the entire culture. The cell

debris was removed from the infected culture by centrifugation at

21006gavg, +4uC for 10 minutes. Viruses were collected from the

resulting supernatant by centrifugation at 313006gavg, +4uC for

90 minutes. The virus-containing pellet was dissolved in MNT-

buffer [20 mM MES (Sigma), 100 mM NaCl, 30 mM Tris 7.4 pH

for 24 h in +4uC]. The virus stock was stored in aliquots at –70uC.

HSV-1 titers were determined on Vero cells maintained in

DMEM supplemented with 7% FCS and 20 mg/ml human

immunoglobulin G using 12-well plates. The plaque forming units

(pfu) were counted from infected cells fixed with methanol for

3 min and stained with 0.1% crystal violet in 2% ethanol three

days post infection.

RNA-transfected U373MG and HaCaT cells in 96-well plates

were infected with 1000 pfu/well of HSV-1 4 h post transfection.

Prior to infection cells were washed twice with RPMI 1640 (Gibco)

supplemented with 0.1% bovine serum albumin. Infection was

performed by addition of 100 ml of medium containing the virus.

After 1–1K h post infection cells were washed three times and

finally covered with 200 ml of culture medium per well. 48 h post

transfection cells were collected for RNA extraction and the

amount of released viruses in the culture medium was determined

by plaque titration.

Quantitative RT-PCR
Total cellular RNA was isolated from cells using TRI Reagent

(MRC) according to manufacturer’s instructions. DNase-treated

(Fermentas) cellular RNA was reverse transcribed into cDNA

using RevertAid H Minus Reverse Transcriptase (Fermentas) and

random hexamer primers (Fermentas). cDNA samples were then

amplified using Maxima SYBR Green/ROX qPCR Master Mix

(Fermentas). qRT-PCR was performed with Rotor-Gene Q real-

time instrument (Qiagen) as described earlier [33]. The sequences

for the gene specific primers are shown in the Table S1. Relative

copy number values of each studied mRNA were obtained by

standardization against GAPDH mRNA copy numbers in the

corresponding sample. In the GAPDH knockdown experiment

GAPDH mRNA levels were standardized against b-actin mRNA

levels.

Computational Analyses
Basic Local Alignment Search Tool BLAST [34] and

miRBASE [35] were applied in the validation of the siRNA

target sequence. Signal intensities of radioactively labeled dsRNA

bands were quantitated using 1D Evaluation module of Aida

Image Analyzer v. 4.5 software (Raytest Isotopenmebgeräte

GmbH). Statistical analyses were performed using IBM SPSS

Statistics 20 software. Mann-Whitney U test was used to calculate

significance and threshold was set to p,0.05.

Results

Enzymatic Production of siRNA Molecules
Selection of the target-sequence within UL29 gene of HSV-

1. For the present work a 653 nt long target-sequence for RNAi

was selected from the UL29 gene coding for the essential ICP8

protein of HSV. The target sequence selection was based on

minimal homology with the host genome and maximal homology

within to date sequenced HSV strains of types 1 and 2 (GenBank

accession number NC_001806.1, GU734771.1, GU734772.1 and

NC_001798.1). The selected region (nucleotides 59301 to 59953

of UL29 gene from HSV-1 strain 17+) covers the target-site of the

previously used siRNA [29], which we here designate as UL29S (S

for small, 21-nt siRNA; Table S1). An extended version of this

single-site siRNA was also designed (UL29L; L for long, 27-nt

siRNA; Table S1). Non-specific control dsRNA and siRNA

molecules were derived from eGFP and Pseudomonas phage phi6

genome (88 bp long fragment from the S genome segment; [36]).

The UL29-, eGFP- and Pseudomonas phage phi6-specific

dsRNA molecules were generated from the corresponding DNA

(or cDNA) sequences by in vitro transcription using T7 DNA-

dependent RNA polymerase with subsequent replication of the

produced single-stranded RNA molecules by phi6 RNA-depen-

dent RNA polymerase [7]. The purified UL29- and eGFP-specific

dsRNA molecules were afterwards digested to provide siRNA

pools using either HD (to obtain 21- to 23-nt siRNAs) or GD (25-

to 27-nt siRNAs) enzymes (Figure 1A). The siRNA pools were

designated as UL29HD, UL29GD, and eGFPGD.

dsRNA processing and siRNA production by GD and

HD. The efficiency of dsRNA cleavage and siRNA production

by HD and GD was initially evaluated using internally labeled

UL29 dsRNA molecules as a substrate (Figure 1A and B). Aliquots

were sampled from HD- and GD-directed reactions at different

time points (from 30 s to 24 h) for subsequent electrophoretic

analysis (Figure 1A). siRNA-sized molecules were detected already

after 1 min and by 16 h (960 min; Figure 1) the reactions were

completed. Longer incubation time (up to 24 h) did not result in

further decrease in full length dsRNA amount (Figure 1B, upper

Canonical and Dicer-Substrate Anti-HSV-siRNA Pools
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panel) or increase in siRNA amount (Figure 1B, lower panel). Full-

length dsRNA processing by GD was faster than by HD (Fig. 1B,

upper panel). However, this did not influence the kinetics of

siRNA product accumulation (Fig. 1B, lower panel). The signal for

partially processed dsRNA molecules was evidently higher in GD-

than in HD-directed reactions (Figure 1A) suggesting that HD

possesses higher processivity on a single dsRNA substrate than

GD.

Figure 1. Generation of anti-UL29 siRNA pools using GD and HD. Internally labeled UL29 dsRNA was incubated with either HD or GD (1 U of
enzyme was used for each mg of dsRNA). (A) Samples taken from the HD- (left panel) and GD- (right panel) directed reactions at the indicated time
points were analyzed on 6% polyacrylamide gel. The mobility of substrate- and product-length dsRNA molecules is indicated on the left. (B) Kinetics
of dsRNA substrate processing by HD and GD (upper panel) and time-dependent accumulation of siRNA product in the course of Dicer reaction
(lower panel). The dsRNA cleavage (%) (B, upper panel) was calculated as a ratio of the signal intensities corresponding to the full-length dsRNA in
each sample and the undigested substrate dsRNA (time point zero). The relative siRNA amount (B, lower panel) is presented as a percentage of the
signal intensity of the whole sample. The error bars represent the standard deviation of the mean from two independent experiments. (C) Viability of
HaCaT (upper panel) and U373MG (lower panel) cells 48 h after transfection with 1 pmol, 5 pmol or 10 pmol of dsRNA molecules. 88-bp dsRNA was
applied only in 1 and 5 pmol amounts. UL29GD, GD-digested anti-UL29 siRNA pool; UL29HD, HD-digested anti-UL29 siRNA pool; UL29L, 27-nt
chemically synthesized anti-UL29 siRNA; UL29S, 21-nt chemically synthesized single anti-UL29 siRNA.
doi:10.1371/journal.pone.0051019.g001
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Enzymatically produced HPLC-purified siRNA pools do

not cause toxic drop in cell viability. The produced

UL29HD, UL29GD and eGFPGD siRNA pools (as well as the

88 bp long phi6-specific dsRNA fragments) were purified by

anion-exchange chromatography with subsequent size exclusion

chromatography to desalt RNA samples and remove RNA

molecules which are longer than 30 bp or shorter than approx-

imately 10 bp. It is crucially important that purified siRNA pools

do not contain traces of undigested or partially digested dsRNA

molecules that are longer than 30 bp as such molecules have

a strong potency to induce IFN pathways and cellular apoptosis

[37]. To verify the quality of the applied purification procedure we

transfected human nervous system (glioblastoma-astrocytoma)-

derived U373MG and human skin-derived HaCaT (keratinocyte)

cells on 96-well plates with 1, 5 or 10 pmol of siRNA pools

produced using either GD or HD (Figure 1C). Chemically

synthesized single-site siRNAs (UL29S and UL29L) were applied

as reference siRNAs. The transfectability of the cell lines was

verified with fluorescein-labeled siRNA (data not shown). For

quantitative measurements of the transfection efficiency, we

transfected a validated commercial GAPDH siRNA into both cell

lines and measured the GAPDH mRNA knockdown level by qRT-

PCR (Figure S1). Transfection of 10 pmol/well of the GAPDH

siRNA resulted in 98% decrease in GAPDH expression in

U373MG cells and in 65% decrease in HaCaT cells (p,0.01

for both cell lines in comparison to control transfections).

The viability of HaCaT cells did not differ between water- and

siRNA-transfected cells (Figure 1C). Likewise, transfection of

U373MG culture with 1 pmol of siRNAs did not significantly

decrease the number of viable cells. However, at higher siRNA

doses the viability of U373MG cells was slightly decreased (,20%

reduction). The 88-bp dsRNA caused a clear reduction in the

viability of HaCaT cells, and even more prominent effect was

observed in U373MG cultures (Figure 1C). This decrease is likely

related to the strong activation of interferon responses by the 88-

bp dsRNA [36] (see also Figure 2).

Induction of the Interferon Response by siRNA Molecules
Single-site DsiRNA display stronger immunostimulatory

activity than its canonical counterpart. To investigate the

ability of enzymatically generated and chemically synthesized

canonical and DsiRNAs to induce IFN family genes, we treated

the cells with either 1 or 10 pmols of different siRNA molecules

and analyzed samples from three time points (8, 24 and 48 h) post

transfection with qRT-PCR for type I (IFN-a and IFN-b) and type

III (IFN-l1) interferon genes, and interferon-stimulated gene 54

(ISG54) expression (Figure 2; data not shown). As a positive

inducer of interferon induction we used the 88-bp dsRNA, which

is a potent activator of IFN genes with kinetics compatible with the

time points of our experiments [36].

As expected, we observed strong activation of IFN-b, IFN-l1
and ISG54 genes in response to 88-bp dsRNA with highly

significant (p,0.01) difference compared to all other treatments in

both HaCaT and U373MG cell lines at almost all time points

(Figure 2). The only exception was the relatively low ISG54

expression observed in HaCaT cells at 24 and 48 h post

transfection, which was in accordance with the generally mild

ISG54 response in this cell line (Figure 2C). Additionally, we could

observe only minimal alterations in the IFN-a gene expression

levels in both HaCaT and U373MG cells in all conditions (data

not shown).

Canonical single-site siRNA UL29S did not cause IFN

responses, whereas the UL29L DsiRNA induced significant

dose-dependent activation of most of the measured IFN pathway

genes in both cell lines at several time points (Figure 2).

The pool of HD-generated canonical siRNAs displays

elevated immunostimulatory activity. Both GD- and HD-

generated siRNA pools activated IFN-b, IFN-l1 and ISG54

expression in a dose-dependent manner (Figure 2). However,

after 8 h post transfection the higher dose of HD-produced siRNA

pool induced significantly (p,0.01) higher response than the other

siRNAs in both cell lines as indicated by the expression level of all

the genes studied (Figure 2). The same trend was evident also at

the later time points (Figure 2A and C), and in the case of IFN-l1
expression the differences between canonical siRNA and DsiRNA

pools (UL29HD and UL29GD, respectively) were statistically

significant (Figure 2B) at almost all time points.

Antiviral Activity of siRNA Molecules
UL29-specific siRNAs induce substantial inhibition of

HSV-1 replication. To explore the potential differences in the

RNA-dependent gene silencing activity of the HD- and GD-

produced siRNA pools (UL29HD and UL29GD) as well as the 21-

nt and 27-nt single-site siRNA molecules (UL29S and UL29L), we

infected siRNA-treated U373MG and HaCaT cells with HSV-1

strain 17+ and determined the viral progeny production by plaque

titration (Figure 3A). In addition, we evaluated the effect of the

UL29-specific siRNA molecules on the expression of the viral

target gene by real-time qRT-PCR (Figure 3B). The data obtained

demonstrated that all the specific anti-UL29 siRNA molecules

significantly reduced viral shedding and the UL29 gene expression,

whereas the non-specific anti-eGFP siRNA molecules (eGFPGD

pool and single-site eGFP-specific siRNA, eGFPS; Table S1) did

not (Figure 3).

Anti-UL29 siRNAmolecules demonstrate cell type-specific

differences in their ability to inhibit HSV

replication. Without siRNA treatment HSV-1 replicated in

both cell lines with approximately equal efficiency (Figure 3A).

Distinct antiviral effects were observed with all the HSV-specific

siRNA molecules. However, the degree of siRNA-induced

antiviral effects depended on the cell line used. Treatment of

U373MG culture with either GD- or HD-generated UL29-specific

siRNA pool resulted in a four orders of magnitude reduction in the

efficiency of HSV-1 replication, whereas in the HaCaT cells the

viral titers were dropped to approximately one-tenth of that

observed in the untreated controls (Figure 3A). The lower

efficiency of HSV inhibition in HaCaT cells could reflect, at least

partially, the differences in transfection competence between the

two cell cultures (Figure S1). Furthermore, qRT-PCR experiments

revealed that, unlike in U373MG cells, in HaCaT cell culture the

anti-UL29 pool composed of canonical siRNA molecules

(UL29HD) caused slightly higher reduction in the UL29 mRNA

levels than the corresponding DsiRNA pool (UL29GD)

(Figure 3B). However, these differences in mRNA levels did not

result in significant differences in the efficiency of virus replication

(Figure 3A).

Antiviral effects of UL29-specific single-site DsiRNA

molecules were less pronounced than the effects of other

HSV-specific siRNAs. In the HaCaT cells the antiviral effects

of the siRNA pools were more evident than those of the single-site

siRNA molecules (Figure 3A); the HaCaT cells transfected with

single-site canonical or Dicer-substrate UL29-specific siRNA

molecules had 2- and 3-fold higher viral titers, respectively, than

the cells treated with pools of canonical siRNAs or DsiRNAs,

respectively.

In the U373MG cells canonical single-site anti-UL29 siRNA

molecule (UL29S) displayed similar activity as the UL29-specific

Canonical and Dicer-Substrate Anti-HSV-siRNA Pools
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Figure 2. Innate immunity responses to siRNA pools and single-site siRNA molecules. HaCaT and U373MG cells were transfected with
either 1 (light grey) or 10 (dark grey) pmol of the indicated siRNA molecules; 1 pmol of 88-bp dsRNA (black bar) or water (control, grey bar); or left
untreated (control, white bar). The expression levels of IFN-b (A), IFN-l1 (B) or ISG54 (C) were assessed by qRT-PCR 8 h, 24 h or 48 h post transfection.
Values were normalized to the GAPDH housekeeping gene and shown on a logarithmic scale. The mean values+S.D. of at least two independent
experiments, each with a minimum of three biological replicates, are shown. Data were compared by Mann-Whitney U-test. The statistical
significance is indicated as (6) p , 0.01 or (¤) p , 0.05 against the controls; (**) p , 0.01 or (*) p , 0.05 against a group of comparison; (#) p , 0.01
against all other transfections. UL29GD, GD-digested anti-UL29 siRNA pool; UL29HD, HD-digested anti-UL29 siRNA pool; UL29L, 27-nt chemically
synthesized anti-UL29 siRNA; UL29S, 21-nt chemically synthesized single anti-UL29 siRNA. No significant signal was detected for IFN-l1 mRNA in
U373MG cell culture (B, right panel) if no dsRNA was applied (non- and mock-transfected cells).
doi:10.1371/journal.pone.0051019.g002

Canonical and Dicer-Substrate Anti-HSV-siRNA Pools

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e51019



siRNA pools (UL29HD and UL29GD), whereas the antiviral

effects of the single-site DsiRNA (UL29L) were less pronounced.

Thus, in the U373MG cells treated with single-site DsiRNA

molecules, the virus titer decreased only by approximately one

order of magnitude instead of four orders of magnitude observed

for the other virus-specific siRNA molecules (Figure 3A). The same

pattern of siRNA activities was detected also for the expression

level of UL29 gene (Figure 3B).

Discussion

A variety of approaches have been developed for the selection

and production of siRNA molecules for RNAi applications. In this

study, we have evaluated antiviral and immunostimulatory

activities of canonical siRNA and DsiRNAs pools and compared

to those obtained by chemically synthesized siRNAs.

HD and GD processed the 653 bp UL29-specific dsRNA with

approximately equal efficiency, and both HD- and GD-directed

reactions were completed in 16 h (Figure 1A and B). This differs

from the earlier studies on HD and GD where shorter substrate

molecules were applied and almost 100% cleavage was observed

already within 2 h [20,38]. Comparison of the reaction products

produced by the two enzymes revealed differences in the way of

dsRNA processing. In GD-directed reaction the amount of full

length dsRNA decreased faster than in HD-directed reaction

(Figure 1B, upper panel), and dsRNA processing by GD resulted

in generation of a pool of intermediate size products, that were not

as prominent in HD-catalysed reaction (Figure 1A). Both

phenomena indicate that HD has higher processivity on a single

Figure 3. Inhibition of HSV-1 replication by UL29-specific siRNA molecules. HaCaT and U373MG cells on 96-well plates were transfected
with 10 pmol of indicated siRNA molecules or water. After 4 h the cells were infected with 1000 pfu of HSV-1 and incubated for 44 h. (A) Dilutions of
the HaCaT and U373MG supernatant, collected 48 h after transfection (44 h post infection) were assayed for released virus by plaque formation on
Vero cell culture. (B) The relative expression of the target HSV-1 gene UL29 was measured by qRT-PCR from samples of the infected cultures. Values
were normalized to the GAPDH housekeeping gene and shown on a logarithmic scale. The mean values+S.D. are shown for six replicates. Data were
compared by Mann-Whitney U-test. The statistical significance is indicated as (6) p , 0.01 and (¤) p,0.05 against the controls; (*) p , 0.05 against
a group of comparison; (#) p , 0.01 against all other siRNA transfections. NT, no transfection; mock, transfection with water; eGFPGD, anti-eGFP
siRNA pool; eGFPS, single-site anti-eGFP siRNA; UL29GD, GD-digested anti-UL29 siRNA pool; UL29HD, HD-digested anti-UL29 siRNA pool; UL29L, 27-nt
single-site anti-UL29 siRNA; UL29S, 21-nt single-site anti-UL29 siRNA.
doi:10.1371/journal.pone.0051019.g003
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dsRNA molecule than GD. GD lacks multiple domains that are

present in HD [20]. The lack of one of these domains could

promote spontaneous dissociation of GD from the dsRNA

substrate molecule between each cleavage step.

Previous studies have indicated that long chemically synthetized

siRNA molecules (DsiRNAs) are more potent inducers of in-

terferon pathway genes than the canonical siRNAs [23,24] and,

consequently, it has been proposed that short siRNAs are more

safe to use in RNAi applications. Accordingly, we observed

stronger induction of all studied interferon pathway genes as

a result of transfection with the single-site DsiRNA UL29L than

with the canonical siRNA molecule UL29S (27 and 21 nt in size,

respectively) (Figure 2). Surprisingly, the effect of the length of the

siRNA molecules was different when enzymatically produced

siRNA pools were applied. Consequently, it appears that within

the range of siRNAs shorter than 30 nt there are other factors

than the length of the molecule contributing to the siRNA-induced

activation of innate immunity system. The effects of these factors

may totally shield the potential effects that are dependent on the

size of the molecule. As proposed previously [39], one such factor

could be the sequence of the siRNA molecule. In a pool of siRNA

molecules the sequence-related effects are averaged due to the low

concentration of individual siRNAs, whereas in the single-site

siRNA molecules such factors may contribute significantly.

Therefore, the results of the effect of the size using the siRNA

pools are likely more reliable than those obtained with single-site

siRNAs (Figure 2).

The HSV UL29-specific siRNAs induced substantial inhibition

of viral replication (Figure 3A). The effect was especially

prominent when human glioma cells were used, in which four

orders of magnitude reduction in virus production was observed.

Consequently, RNAi-based approaches could be applied to inhibit

HSV infections not only in epithelial cells, as shown previously

[29], but also in cells derived from the nervous system, which are

the natural hosts for neurotropic viruses such as HSV. The pools

of siRNAs appeared especially powerful in viral knockdown

(Figure 3A). Inhibition by the canonical single-site UL29S siRNA

was also substantial in the glioma-derived cell culture, but the

effect of UL29L DsiRNA was modest when compared to all the

other UL29-specific siRNAs (Figure 3A). Upon the introduction

into the cells, DsiRNAs are digested with cellular Dicer enzyme

[12,25] which results in the generation of a set of 21-mer

molecules possessing different potency [40]. In the case of the

single-site siRNA UL29L, these heterogenic siRNAs demonstrated

significantly lower gene silencing activity (U373MG cell line,

Figure 3A) although the original 27 bp siRNA comprises the

highly efficient UL29S sequence (Table S1). At the same time,

a substantial induction of inflammatory responses was observed

(Figure 2). Interestingly, the siRNA-induced suppression of HSV

replication was equal in cells transfected with HD- or GD-

generated siRNA pools presenting canonical and DsiRNAs,

respectively. This is in accordance with previous results [12] and

implies that the processing of siRNA by endogenous Dicer [25]

does not markedly improve the siRNA-induced silencing. Based

on earlier studies it was proposed that processing of exogenously

applied siRNA by endogenous Dicer could promote siRNA

incorporation into the siRNA pathway [25]. However, modified

siRNAs that are not processed by Dicer are also incorporated into

the RISC [41], and although required in drosophila, Dicer seems

to be dispensable for RISC loading in mammals [42]. Apparently,

the previously observed differences in the efficiency of siRNA

silencing by the two size classes of chemically synthesized siRNAs

reflects sequence-dependent variances introduced by Dicer

processing [40], which can be difficult to control when using

single-site siRNAs.

In conclusion, both HD and GD were equally efficient in the

generation of siRNA pools (Figure 1), and siRNA pools produced

using HD or GD did not significantly differ in their potency to

suppress HSV infection (Figure 3A). Although the enzymatically

produced siRNAs, unlike chemically synthesized ones, contained

trace amount of siRNA having 59-triphosphate (one triphosphate

in every twelfth or fifteenth siRNA in UL29GD and UL29HD

pools, respectively) which are capable of stimulating type I IFN

responses [11], transfection of cell cultures derived from human

skin or nervous system by either pool resulted only in mild

activation of genes involved in interferon pathway, especially when

the GD-produced DsiRNA pool was applied (Figure 2). Conse-

quently, both Dicers can potentially be used to produce siRNA

molecules for therapeutic applications.

Selection of target sequences is a critical step in the production

of single-site siRNA molecules as siRNA with different sequences

may have substantially different RNAi activity [43,44]. Further-

more, the siRNA-induced off-target effects [45] and immunosti-

mulatory activities may differ depending on the selected sequence

[39]. Although a variety of siRNA design tools have been

developed, not all potentially risky motifs have been discovered

[46] bringing additional complexity and unpredictability to the

selection process. The difficult design procedure of single-site

siRNAs can, however, be largely overcome by using pools of

siRNAs, applicable as single-site siRNAs, for example in a topical

fashion [29]. The topical delivery of siRNAs may be feasible for

treatment of ocular infections caused by HSV-1. Disease models

exist for HSV keratitis, where the efficacy and delivery of siRNA

pools can be further tested. The siRNA pools may be well suited

for antiviral applications, as it is unlikely that functional viral

escape mutants or variant viral strains would emerge when the

target-sequence is long [14–16].

Supporting Information

Figure S1 GAPDH knockdown level in HaCaT (A) and
U373MG (B) cells. HaCaT and U373MG cells were transfected

on 96-well plate with 10 pmol/well of either GAPDH or eGFPS

siRNA. The expression level of GAPDH gene was assessed 48 h

post transfection by real-time qRT-PCR. Values were normalized

to human b-actin gene. The mean values+S.D. of two in-

dependent experiments performed in triplicates are presented.

Data were compared by Mann-Whitney U-test. (**) p,0.01. NT,

non-transfected control; mock, mock-transfected control; eGFP,

cells transfected with non-specific anti-eGFP siRNA; GAPDH,

cells transfected with anti-GAPDH siRNA.

(TIF)

Table S1 Chemically synthesized oligonucleotides used
in this study.

(DOCX)
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13. Nygårdas M, Vuorinen T, Aalto AP, Bamford DH, Hukkanen V (2009)

Inhibition of coxsackievirus B3 and related enteroviruses by antiviral short
interfering RNA pools produced using phi6 RNA-dependent RNA polymerase.

J Gen Virol 90: 2468–2473.

14. Wilson JA, Richardson CD (2005) Hepatitis C virus replicons escape RNA
interference induced by a short interfering RNA directed against the NS5b

coding region. J Virol 79: 7050–7058.
15. Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, et al. (2006)

Postexposure protection of guinea pigs against a lethal ebola virus challenge is
conferred by RNA interference. J Infect Dis 193: 1650–1657.

16. Gitlin L, Stone JK, Andino R (2005) Poliovirus escape from RNA interference:

short interfering RNA-target recognition and implications for therapeutic
approaches. J Virol 79: 1027–1035.

17. Buchholz F, Kittler R, Slabicki M, Theis M (2006) Enzymatically prepared
RNAi libraries. Nat Methods 3: 696–700.

18. Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, et al. (2002)

Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J
21: 5864–5874.

19. Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002) Human Dicer
preferentially cleaves dsRNAs at their termini without a requirement for ATP.

EMBO J 21: 5875–5885.
20. MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, et al. (2006) Structural basis for

double-stranded RNA processing by Dicer. Science 311: 195–198.

21. Bohula EA, Salisbury AJ, Sohail M, Playford MP, Riedemann J, et al. (2003)
The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth

factor receptor (IGF1R) is influenced by secondary structure in the IGF1R
transcript. J Biol Chem 278: 15991–15997.

22. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of

gene expression by small double-stranded RNAs in invertebrate and vertebrate
systems. Proc Natl Acad Sci U S A 98: 9742–9747.

23. Foster DJ, Barros S, Duncan R, Shaikh S, Cantley W, et al. (2012)
Comprehensive evaluation of canonical versus Dicer-substrate siRNA in vitro

and in vivo. RNA 18: 557–568.

24. Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, et al. (2006)

Induction of the interferon response by siRNA is cell type- and duplex length-

dependent. RNA 12: 988–993.

25. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, et al. (2005) Synthetic

dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol

23: 222–226.

26. Zhang YQ, Lai W, Li H, Li G (2008) Inhibition of herpes simplex virus type 1 by

small interfering RNA. Clin Exp Dermatol 33: 56–61.

27. Bhuyan PK, Kariko K, Capodici J, Lubinski J, Hook LM, et al. (2004) Short

interfering RNA-mediated inhibition of herpes simplex virus type 1 gene

expression and function during infection of human keratinocytes. J Virol 78:

10276–10281.

28. Duan F, Ni S, Nie Y, Huang Q, Wu K (2012) Small interfering RNA targeting

for infected-cell polypeptide 4 inhibits herpes simplex virus type 1 replication in

retinal pigment epithelial cells. Clin Exp Ophthalmol 40: 195–204.

29. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, et al. (2006) An

siRNA-based microbicide protects mice from lethal herpes simplex virus 2

infection. Nature 439: 89–94.

30. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, et al.

(1988) Normal keratinization in a spontaneously immortalized aneuploid human

keratinocyte cell line. J Cell Biol 106: 761–771.

31. Gottlieb P, Strassman J, Qiao X, Frilander M, Frucht A, et al. (1992) In vitro

packaging and replication of individual genomic segments of bacteriophage f6

RNA. J Virol 66: 2611–2616.

32. Peri P, Mattila RK, Kantola H, Broberg E, Karttunen HS, et al. (2008) Herpes

simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in

cultured monocytic cells. Virol J 5: 140.
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