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NeuroimageNord, Department of Systems Neuroscience, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany

Abstract

Temporal or delay discounting refers to the phenomenon that the value of a reward is discounted as a function of time to
delivery. A range of models have been proposed that approximate the shape of the discount curve describing the
relationship between subjective value and time. Recent evidence suggests that more than one free parameter may be
required to accurately model human temporal discounting data. Nonetheless, many temporal discounting studies in
psychiatry, psychology and neuroeconomics still apply single-parameter models, despite their oftentimes poor fit to single-
subject data. Previous comparisons of temporal discounting models have either not taken model complexity into account,
or have overlooked particular models. Here we apply model comparison techniques in a large sample of temporal
discounting datasets using several discounting models employed in the past. Among the models examined, an exponential-
power model from behavioural economics (CS model, Ebert & Prelec 2007) provided the best fit to human laboratory
discounting data. Inter-parameter correlations for the winning model were moderate, whereas they were substantial for
other dual-parameter models examined. Analyses of previous group and context effects on temporal discounting with the
winning model provided additional theoretical insights. The CS model may be a useful tool in future psychiatry, psychology
and neuroscience work on inter-temporal choice.
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Introduction

Delay or temporal discounting refers to the phenomenon that

humans and many animals discount reward value over time [1]. A

reward of 100J available in two weeks is subjectively of lesser

value than the same amount available immediately. The subjective

value of a reward therefore decreases with increasing delay.

Decisions between outcomes that are separated in time (‘‘inter-

temporal choice’’) are abundant in everyday life, and across a

range of disciplines, there is continually growing interest in such

decision processes, e.g. in economics [2], psychology [1],

psychiatry [3,4] and cognitive neuroscience [5,6]. A range of

models have been proposed that approximate the shape of the

discount function relating reward value to delay [7–15] or reward

value to the inter-reward-interval [16–18], the most frequently

used being single parameter exponential and hyperbolic models.

In standard hyperbolic discounting [9] (Table 1 Eq. 1), the

degree of discounting is a function of the delay, such that

discounting is relatively steeper over time intervals in the near

future than over time periods in the far future, giving rise to the

phenomenon of ‘‘decreasing impatience’’ [12]. In contrast, in the

exponential ‘‘discounted utility’’ model from classical economics

[8] it is assumed that decision-makers behave rationally in the

sense that the effect of a particular delay is independent of the

point in time when that delay occurs. According to the exponential

model (Table 1, Eq. 2), a waiting period of 1 week from today

should be treated the same way as a waiting period of 1 week in a

year’s time. In contrast to this prediction of ‘‘normative’’

exponential discounting, and in line with hyperbolic discounting,

humans often violate this assumption, an effect that has been

termed ‘‘dynamic inconsistency’’ [19], the ‘‘common difference

effect’’ [11], or ‘‘non-stationarity’’. In line with this effect, it is well

replicated that the hyperbolic model fits temporal discounting data

better than the exponential model [1,10,14,16,20–23].

Recent studies suggest that more than one free parameter is

likely required to accurately model human temporal discounting

data [10,24]. In particular, both the hyperbolic and the

exponential models typically over-estimate discounted values at

shorter delays and under-estimate discounted values at longer

delays [10]. The oftentimes poor fit of these standard models to

single-subject data has lead researchers to propose criteria for

identifying (and excluding) problematic datasets [25] or endorse

the use of more flexible models [13]. A practical side of this issue is

that temporal discounting is increasingly examined in a neuroe-

conomic context, where predictors derived from discounting

models are used in the analysis of neural data, e.g. neuroimaging

data or electrophysiological recordings [21,22,26,27]. In such

studies, the number of subjects is typically limited, exclusion is

costly, and adequate modelling of single-subject data is therefore

essential (see also Bleichrodt et al., 2009).
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At the same time, more adequate modelling of behaviour may

yield additional theoretical insights into the mechanisms underly-

ing the decision process. A classical view considers delay

discounting as a self-control problem [28] which depends on

(lateral) prefrontal cortex control regions [5,29–31]. However,

additional processes likely contribute to the phenomenon [32]. For

example, how objective time is processed may affect the degree of

discounting [33–38]. That is, non-linear scaling of objective time

may, like hyperbolic discounting, give rise to ‘‘decreasing

impatience’’ [35–37], resulting in a greater relative impact of

proximal compared to more distal temporal intervals. A number of

multi-parameter discounting models address this issue by model-

ling subjective time as a power-function of objective time

[7,14,24,36,39,40]. Along similar lines, non-linear scaling of

reward magnitude has been incorporated in some temporal

discounting models [7,41]. However, these models are beyond the

scope of the present paper. A desirable property of a temporal

discounting model with such a psychophysical temporal scaling

component would therefore be the potential possibility to

disentangle effects of impatience (i.e. the steepness of the

discounting function) from effects of temporal psychophysics (i.e.

whether subjective time is expanded or contracted). However, this

would require that the respective model parameters are largely

independent, an issue that previous model comparison efforts have

not addressed [10,24], but see [12].

Equations 3 and 4 from Table 1 show two modifications of the

single-parameter hyperbolic model, both of which include an

additional scaling exponent s at different positions in the

denominator. Equation 3 [20] raises the entire denominator of

the standard hyperbolic model to a power s. As shown by

Takahashi and colleagues [24], this model is equivalent to

exponential discounting with logarithmic (i.e. Weber-Fechner)

scaling of objective time. This model is also a special case of the

generalized hyperbola proposed by Loewenstein & Prelec [11].

Equation 4 [9,15] raises only the delay to a power s and thus

corresponds to hyperbolic discounting with power-scaling of

objective time [39,42]. Note that this function is a special case of

the initial formulation of a discounting-by-intervals function [40],

in which the delay to the smaller-sooner reward is 0.

Ebert & Prelec (2007) proposed a ‘‘constant sensitivity’’ (CS)

discounting function (Equation 5) based on a consideration of

decision heuristics. In this model, the a-parameter measures the

level of impatience, while time sensitivity is measured by the b-

parameter. Exponential discounting corresponds to the special

case b = 1. This model can account for a ‘‘present-future

dichotomy’’ heuristic [12], where all future rewards are similarity

down-weighted relative to the immediate present, by a small b

(b,,1). In contrast, an ‘‘extended present’’ heuristic in which all

options up to a particular delay are not discounted, and all later

options are discounted to a similar degree can be captured by a

large b (i.e. b..1). Note that (as discussed above) b could also be

interpreted as governing the power-scaling of time [see also

Killeen (2009)], similar to other models with a scaling exponent

[1,14,39]. In this sense, what Ebert & Prelec call ‘‘present-future

dichotomy’’ (b,,1) may arise because the relative impact of short

vs. long delays is enhanced due to a compressed time scale. The

‘‘extended present’’ (b..1), on the other hand, may arise because

the relative impact of long vs. short delays is enhanced due to an

expanded time scale. Note that this model is a special case of a family

of discount functions later described by Bleichrodt et al. [13].

Finally, the so-called ‘‘beta-delta’’ model accounts for dynamic

inconsistency through an ‘‘immediacy effect’’ such that all

outcomes that are not available now are discounted according to

discount rate b, whereas all further (non-immediate) discounting

occurs according to the discount rate d [43]. This model has

received particular attention based on the idea that the two model

components (b and d) may have distinct neural substrates

[3,30,44]. Nonetheless, such an ‘‘immediacy effect’’ may not be

sufficient to account for human behavioural data [23]. Note also

that the CS model encompasses the continuous-time version of the

beta-delta model (Ebert & Prelec, 2007, Proof in Appendix), which

is therefore not included as a separate model in this report.

We note that a number of previous comparisons of temporal

discounting models have been conducted [10,15,20,24]. With the

exception of the Takahashi et al. study [24], these studies have

focussed on variance-accounted-for (R2) as a measure of goodness-

of-fit. This approach is problematic for at least two reasons. First,

this analysis confounds goodness-of-fit with the discount rate, at

least in the single-parameter case, because R2 and k are positively

correlated [25]. This is because steeper discounting is associated

with a greater deviation of the indifference points from unity. As a

consequence, the fit of the non-linear regression relative to the

mean of the data (R2) increases with increasing discount rate.

Second, solely relying on goodness-of-fit for model comparison is

problematic when models have different numbers of free

parameters, as model complexity is not accounted for in the

model selection procedure, giving rise to the over-fitting problem

[45]. To avoid over-fitting, measures such as the Akaike

Information Criterion (AIC) [46] or the Bayesian Information

Criterion (BIC) [47] can be used, which include a penalty term for

increasing model complexity, thereby balancing parsimony and

goodness-of-fit [45,48]. Nevertheless, the only study that used such

an index (AIC) to compare temporal discounting models [24] did

Table 1. Model equations for five prominent models of inter-temporal choice; SV – subjective (discounted) value, A – reward
amount, D – delay.

Model Abbreviation used in text Equation

Hyperbolic H
SV~

A

(1zkD)

Exponential E SV~A � exp ({kD)

Green & Myerson (1995) GM
SV~

A

1zkDð Þs

Mazur (1987), Rachlin (2006) R
SV~

A

1zkDsð Þ
Ebert & Prelec (2007) CS SV~A � exp { aDð Þb

� �

doi:10.1371/journal.pone.0047225.t001
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not examine models 4 and 5 (see Table 1), making a direct

comparison to the data of McKerchar et al. (2009) difficult.

Data from temporal discounting paradigms are typically

available in two types of formats. Many classical studies are based

on a relatively small set of around 6–8 indifference points (i.e.

points of subjective equivalence in value of smaller-sooner [SS]

and a larger-later [LL] reward, for a particular delay), and curves

are fit to these data points using non-linear regression [10]. In

contrast, many neuro-economic investigations of temporal dis-

couting give rise to trial-by-trial discounting data, i.e. relatively

large sets of choices between SS and LL rewards across different

combinations of delays and amounts [16,22,26,49–51]. These

datasets can also be analyzed using curve fitting, although some

method needs to be implemented to estimate the indifference

points from trial-by-trial data [22,26]. Here we use an alternative

approach based on maximum likelihood estimation (MLE) and fit

the model to data from each participant in all trials [52].

Steep temporal discounting is a hallmark of many psychiatric

conditions, including substance abuse and addiction [3,5].

However, surprisingly little is known about differences in the

shape of the discount function between addicts and controls.

Earlier studies revealed a superior fit of the hyperbolic vs.

exponential model in both healthy controls and addicts [53,54],

and the overall fit of the hyperbolic model appears to be similar in

addicts and controls [50,55]. Nonetheless, dual-parameter dis-

counting models have to our knowledge not been examined in

addicts [though see Killeen (2009) for a re-analysis of previously

published group-aggregate data].

Aims of this study were therefore first to compare goodness-of-

fit for a number of prominent temporal discounting models while

correcting for differences in complexity. Second, we examined

whether the same model accounts for data from controls and

pathological gamblers, a clinical group known for high trait

impulsivity. We fit several prominent models of delay discounting

(Table 1) to a large number of datasets from healthy controls

(n = 198) and pathological gamblers (n = 17). We applied Maxi-

mum Likelihood parameter estimation and used the AIC as a

measure of goodness-of-fit [46]. Analyses are complemented with

a Bayesian Model Selection procedure [56] that treats the

underlying model as a random effect across subjects, and is

therefore less prone to outliers than model selection solely based

on AIC.

Methods

Ethics statement
For all data re-analyzed in the present paper, informed written

consent was acquired from participants prior to participation. All

study procedures were approved by the local ethics committee

(Institutional Review Board of the Hamburg Physicians Associa-

tion).

Included data
We re-analyzed delay discounting data from three previously

published behavioural and functional magnetic resonance imaging

studies of delay discounting [26,49,50] as well as previously

unpublished behavioural data. Two types of datasets are included

in the analysis: Firstly, we re-analyzed behavioural data from three

functional magnetic resonance imaging studies (Exp. 1 from Peters

& Büchel, 2009, n = 22, Exp. 1 from Peters & Büchel, 2010,

n = 30, data from Miedl et al., 2012: n = 18 control subjects [note

that two of these subjects were not included in the original paper

because their matched pathological gamblers had to be excluded])

and one behavioural study of delay discounting (n = 16, Exp. 2

from Peters & Büchel, 2010) were analyzed (referred to henceforth

as ‘‘dataset 1’’). Data from n = 17 pathological gamblers (referred

to henceforth as ‘‘pathological gamblers’’) from a previous study

are included [50] to compare the findings in healthy participants

to a clinical group that is well known for their impulsive

discounting behaviour [50,55,57–59]. In dataset 1 and patholog-

ical gamblers, subjects made repeated choices between immediate

rewards of 20J and larger but delayed amounts. Choices involved

the possibility for real gains, as one trial was randomly selected

following testing, and paid out for real, either using gift certificate

from an online shop [26] or using timed bank transfers [49,50]. In

addition, all presented offers were pre-determined based on

subjects’ performance on a previous adaptive delay discounting

task (as in dataset 2, see next paragraph). The procedure for

calculating individual offers is described in detail elsewhere

[26,49,50]. In short, we estimated the standard hyperbolic

discount rate for an adaptive delay discounting task for each

participant. Based on this estimated discount rate, we calculated

indifference amounts for each delay (i.e. amounts that were

subjectively equivalent in value to the immediate reward of 20J).

The minimum amount was set to 20.5J and the maximum

amount to 80J. For each delay, equal numbers of uniformly

distributed offers were created with an estimated subjective value

lower (50% of offers) and higher (50% of offers) than the

indifference amount. Delays for the Peters & Büchel (2009)

datasets were 0.25 days, 1 day (d), 7 d, 30d, 90d, 180d. Delays for

the Peters & Büchel (2010) datasets were similarly spaced but

included one additional delay. Also, they differed slightly between

subjects (see Peters & Büchel, 2010 for details), because they were

selected individually to be non-overlapping with delays to subject-

specific future events, which were used in a separate experimental

condition [49]. Importantly, for consistency with dataset 2, for the

Peters & Büchel (2010) subjects we only include data from the

standard delay discounting condition without future event cues in

the model comparison.

Secondly, data from an adaptive delay discounting paradigm

were analyzed (n = 112 datasets, referred to henceforth as ‘‘dataset

2’’). This task was administered to all subjects at multiple time

points to assess the stability of temporal discounting over time. We

only include data from each participant’s first testing session. In

this task, subjects made repeated choices between 20J available

immediately and larger but delayed hypothetical amounts of

money (delays [days]: 1, 2, 7, 14, 30, 90, 180). The hypothetical

rewards always amounted to at least 20.5J, but without an upper

limit. An adjusting-amount procedure was used such that,

following two successive choices of the delayed reward, the

delayed amount was reduced, and following two successive choices

of the immediate reward, the delayed amount was increased in a

step-wise manner. The algorithm terminated as soon as the

difference between accepted and rejected delayed amounts

reached a delay-specific criterion [Criterion in J: 1.0 (1d), 1.5

(2d), 2.0 (7d), 2.0 (14d), 3.0 (30d), 4.0 (90d), 4.0 (180d)] [26].

Model fitting and comparison
Non-linear least squares and R2. Using R2 for model

selection is problematic in particular because of the problem of

over-fitting [45], and because R2 confounds goodness-of-fit with

the discount rate [25]. For comparison with previous studies

[10,20] we nonetheless include results from a ‘‘classical’’ analysis of

the fit of discounting models to indifference point data. We

examined median indifference points from two subsets of dataset 2

(see above, i.e. subjects with 6 and subjects with 7 indifference

points). Model equations (see Table 1) were fit to these group-

aggregate indifference points using non-linear least squares as

Dual-Parameter Temporal Discounting Models
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implemented in Matlab � (lsqcurvefit) and we report R2 as a

measure of goodness-of-fit. We used the same method to model

single-subject indifference point data and report the distributions

of these values. R2 values between dual-parameter models were

compared using Wilcoxon signed rank tests.

Maximum-likelihood estimation (MLE). For the remain-

ing model comparison procedures, we applied maximum-likeli-

hood estimation [48] with optimization procedures implemented

in Matlab � (fminsearch) to obtain the best-fitting parameter

estimates for each individual participant. Note that this procedure

uses trial-by-trial data [52]. Specifically, we applied the softmax

choice rule

P(chosen)~
exp SVchosen=bð ÞP

i

exp SVi=bð Þ ð6Þ

to estimate the probability of choosing the selected option (Pchosen)

on each trial, given the subjective values of the available options i.

These subjective values (SV) correspond to values of the smaller/

sooner reward and larger/later rewards according to the particular

discounting model under consideration. Because the immediate

reward was fixed in all experiments, the value of this option was a

constant (20J). Here, the free parameter b models the

stochasticity of a participants’ choice behaviour, given a particular

discounting model, i.e. the steepness of the sigmoid choice

function. This choice function is frequently applied in computa-

tional modelling of reinforcement learning [60,61] and decision-

making, including delay discounting [34,41,50,51,62,63] to

convert value differences between decision options into choice

probabilities. To illustrate the use of the softmax function, Figure 1

shows data from three individual subjects with different degrees of

stochastic responding (i.e. different slopes [b-parameters] of the

sigmoid). Note that for Figure 1, the subjective values plotted on

the x-axis were calculated using Equation 4, the R model. Note as

well how increasing numbers of choices that are inconsistent with a

participant’s ML parameter estimates result in a decrease in the

steepness of the sigmoid and thus in an increase in b.

To obtain the best-fitting model parameters for each model and

subject, we then maximized the log-likelihood (LL) of the choice

probabilities (i.e. Pchosen from Eq. 6) given a particular set of model

parameters h, summing across all trials t for each subject:

LL~
X

t

log (Pchosen tð Þ hj ) ð7Þ

To avoid local minima, the estimation procedure was repeated

with 20 random combinations of starting values for each model in

each subject, while keeping track of the overall maximum LL. As

measure of goodness-of-fit we calculated the Akaike Information

Criterion (AIC) [24,46]:

AIC~{2LLz2n ð8Þ

Here, n is the number of free parameters in the model and LL is

the log-likelihood from equation (7). Because the relative

differences in model fit, rather than the absolute AIC scores, are

of interest [64], we calculated DAIC values for each model M as

DMAIC~AICM{ min AICð9Þ

That is, the AIC of the best-fitting model is subtracted from

each models’ AIC value. This is done at the group level (for the

summed AIC values across subjects) and for each individual

subject, yielding a DAIC of 0 for the best-fitting model. Statistical

comparisons were conducted on the single-subject DAIC values

using non-parametric Wilcoxon Signed Rank tests to account for

the skewed distribution of these measures. We also performed all

analyses using the Bayesian Information Criterion BIC instead of

AIC [47]. However, since results were largely comparable to the

analyses using AIC, these data are not reported here.

Bayesian model selection. Finally, we applied Bayesian

Model Selection (BMS) [56,65] as implemented in the software

package Statistical Parametric Mapping (SPM) version 08-4267

(Wellcome Department of Cognitive Neurology, University

College London). In short, this model comparison procedure

treats the underlying model M as a random variable across

subjects and assumes that different subjects may have different

generating models. In contrast to a consideration of DAIC scores

(see previous paragraph), in the BMS approach the influence of

outliers has a natural bound, because the belief that model M

generated the data of a particular subject can not exceed unity

[56]. Notably, this procedure requires only the log-model-

evidences of each model as input, which can be approximated

with the AIC or BIC [56]. The BMS analysis computes an

exceedance probability for each model, which is the probability that a

particular model is more likely than any other of the models tested

to have generated the data of a randomly selected subject from the

population. BMS has been previously applied to model selection in

the context of reward-based decision-making [65]. In line with this

previous study, we consider an exceedance probability of P.95%

to be decisive.

Inter-parameter correlations. We examined dependencies

between model parameters using the following procedure. For

each subject, the Hessian matrix (i.e. the matrix of second

derivatives of the likelihood function) was estimated using

numerical finite difference approximation [48,66,67] with the

step-size set to 1023. The inverse of the Hessian was taken to

obtain the covariance matrix [48], and subsequently converted to

a correlation matrix using the Matlab function corrcov. Correlations

between parameters were then averaged across subjects.

Note that in some cases the obtained Hessians may be non-

invertible, precluding one from obtaining a covariance matrix.

This can occur if the ML estimates lie close to a parameter

boundary (e.g. zero) or if they are located on a plateau or ridge of

the surface of the likelihood function [68]. Because the a-

parameter in the CS model often takes on values close to 0, the

problem was particularly pronounced for this model (non-

invertible Hessians in dataset 1: 29/86, dataset 2: 28/112,

gamblers: 2/17). We therefore re-fit the CS model using a re-

scaling of the a-parameter (i.e. we fitted a/100 rather than a) which

effectively reduced the number of subjects with non-invertible

Hessians (dataset 1: 11/86, dataset 2: 12/112, gamblers: 1/17).

Group differences and context effects. We examined

previously described group and context effects in temporal

discounting using the winning model. To this end, we compared

model parameters from the gamblers to a set of n = 18 matched

controls [50]. We also examined our previously published data on

effects of episodic future thinking on temporal discounting. Here

we compared model parameters from a temporal discounting

Dual-Parameter Temporal Discounting Models
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condition in which subject-specific episodic event cues were

presented in addition to delays, to a control condition without such

event cues [49]. Note that the skewed distribution of discounting

model parameters typically requires transformation before para-

metric statistics can be applied [25,49,50]. Here we used a square-

root transformation [69] that has the advantage that the

transformed values have a lower bound of 0. In contrast, the

commonly applied log-transformation can cause problems with

parameter values that approach zero, because log (x)?{?as

x?0.

Results

General approach
Medians and inter-quartile ranges of single-subject maximum

likelihood parameter estimates are listed in Table 2 for each

model. We applied several model comparison procedures: 1)

comparison of R2 based on model fits to group-aggregate and

single-subject indifference points [10], 2) examination of group

aggregate [41] and mean individual DAIC scores 3) a random-

effects Bayesian model comparison [56,65]. The first approach

was included primarily to improve accessibility of this report for

researchers more familiar with more classical model selection

procedures, and because this procedure is still widely applied in

the psychological literature on temporal discounting [10,15,20].

The second approach alleviates the main problem associated with

model comparison based on R2, over-fitting [45], because the AIC

includes a penalty term for model complexity. Nevertheless, both

approaches can be influenced by outliers, and both essentially

attempt to determine the model that best fits the data of all

subjects. In contrast, Bayesian model selection (BMS) is a recently

developed approach [56] that computes an exceedance probability

for each model, i.e. the probability that a given model is more

likely than any other model from the set to have generated the

data of a randomly selected subject from the population. This

approach therefore acknowledges that different subjects may have

different data-generating models, but attempts to identify the most

likely model in the population.

Model comparison based on R2

Figure 2 plots the fits of the discounting models of interest to

group-median indifference points, separately for datasets with six

(top row, n = 50) and seven (bottom row, n = 55) indifference

points. (Note that indifference points were unavailable for 7

additional subjects, which are nonetheless included in dataset 2 for

the analysis using maximum likelihood estimation.) Value is

plotted both against time (left) and time1/2 (center panel) to

improve visualization of the shorter delays. It can be seen the dual-

parameter models fit the data better than the single-parameter

hyperbolic and exponential models [1,10,15]. As shown previously

[10], it can be seen in the center panels of Figure 2 that the poorer

fit of the single-parameter models was primarily due to an

overestimation of value for shorter delays, and an underestimation

of value for longer delays. Table 3 summarizes the results from the

non-linear regression analysis. For the individual subject fits, the

order of goodness-of-fit was CS.R.GM.H.E. Among the

dual-parameter models, all paired comparisons of R2 values were

significant (Wilcoxon signed rank tests, CS. vs. R: Z = 22.67,

p = .0076; CS. vs. GM: Z = 24.57, p,.001; GM vs. R: Z = 5.29,

p,.001).

Model comparison based on AIC
We next examined whether dual-parameter models improved

the fit to discounting data over and above an increase in fit due to

their additional complexity. To this end, we calculated DAIC

scores (see methods section) for both group aggregate and single-

subject data. All dual-parameter models had lower DAIC scores

than the single-parameter models, both for group-aggregate data

(Figure 3A) and single-subject data (Figure 3B). This confirms

previous findings that greater R2 (see above) is not purely due to

over-fitting [24,45]. Amongst the dual-parameter models, the CS

model showed the smallest group-level DAIC and smallest average

single-subject DAIC scores for dataset 1 and pathological

gamblers. For dataset 2, DAIC scores of the R model were

slightly lower.

Figure 3C provides a statistical comparison of single-subject

DAIC values for all model pairings and datasets using non-

parametric Wilcoxon signed rank tests. Many of the direct

comparisons even among dual-parameter models were significant.

However, note that this analysis aims to identify the single best

model across subjects. Yet, it can be seen from the box plots in

Figure 3B that DAIC scores showed considerable variability

between subjects (including outliers) which can influence model

selection even if non-parametric statistics are applied [56]. Also,

Figure 1. Actual choices of three exemplary subjects from dataset 1 (a–c). Red circles indicate choices of the immediate reward, whereas
blue circles indicate choices of the delayed reward. The x-axis shows the subjective discounted value of the delayed reward, in this particular case
calculated using Eq. 4 (R model). The y-axis plots the estimated probability of choosing the delayed reward based on the softmax choice function
[P(choose delayed), black solid line] calculated using the best-fitting model parameters for that particular subject. Each green line indicates an
‘‘inconsistent’’ choice that is not predicted by the model. The steepness of the sigmoid softmax function (plotted in black) is modelled by the temp-
parameter. Subjects with low (a, b= 0.6986), moderate (b, b= 1.9212) and high (c, b= 3.7625) degrees of stochastic responding are displayed to
illustrate inter-subject variability. Note how increasing numbers of inconsistent choices are reflected in an attenuated steepness of the sigmoid.
doi:10.1371/journal.pone.0047225.g001
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different subjects may have different data-generating models. We

therefore next examined the proportion of participants for whom

each model provided the best fit, based on the AIC. It can be seen

from Figure 4 that the CS model was the most frequent winning

model, providing the best fit in roughly 40% of participants across

all datasets. To more formally quantify this observation, we

conducted a Bayesian Model Selection procedure.

Bayesian Model Comparison
AIC scores as an approximation to the log-model-evidence were

submitted to a BMS analysis as implemented in the software

package SPM-08. As can be seen in Figure 5, both for dataset 1

and dataset 2, the exceedance probability of the CS model was

decisive (P.95%) suggesting that the CS is most likely to be most

frequent in the population, out of the five models examined in this

report. The CS model also had the highest exceedance probability

in the dataset of pathological gamblers, although due to the small

sample size it was not decisive (P<90%). Note the difference in the

conclusions that we can draw from the BMS analysis as opposed to

the previous consideration of DAIC scores. The DAIC analysis

suggests that the CS model accounts for the data best on average

across subjects. In contrast, the BMS analysis, which places a

natural bound on the influence of outliers (the confidence that

model M generated the data for a particular subject cannot exceed

unity) suggests that the probability that the CS model is more

frequent in the population than any other model tested is decisive

(i.e. p.95%).

Table 2. Medians (M) and inter-quartile ranges (IQR) of maximum likelihood parameter estimates for the five discounting models
examined (see Table 1 for model equations, numbers and abbreviations).

Model parameters

b k/a s/b

Dataset Model 1 2 PG 1 2 PG 1 2 PG

(1) H: Median (M)) 2.16 4.29 2.66 .0083 .0112 .0463

Inter-quartile
range (IQR)

1.06–2.88 2.59–6.66 1.51–4.41 .0042–.0166 .0047–.0249 .0125–.144

(2) E: M 2.44 6.59 3.32 .0055 .0055 .0314

IQR 1.16–3.87 3.04–10.99 1.66–5.18 .0032–.009 .0029–.0097 .0073–.102

(3)GM: M 1.36 2.56 1.82 .0434 .0991 .0778 .403 .543 .712

IQR .72–1.93 1.46–3.51 1.09–2.45 .0064–.0409 .0087–.4231 .0047–.328 .174–.895 .159–1.03 .26–1.34

(4) R: M 1.36 2.28 1.77 .0366 .0573 .0749 .713 .751 .752

IQR .65–1.97 1.38–3.51 1.02–2.43 .0068–.091 .01–.117 .0097–.191 .429–.938 .449–1.03 .467–.998

(5) CS: M 1.22 2.16 1.86 .0049 .0067 .0287 .562 .511 .681

IQR .62–1.94 1.31–3.64 .86–2.69 .0015–.0084 .0028–.0162 .0068–.0592 .348–.755 .357–.779 .411–.899

Parameters are shown separately for the three different datasets (1, 2, pathological gamblers [PG]).
doi:10.1371/journal.pone.0047225.t002

Figure 2. Discount function fit to median indifference points (a: n = 50, b: n = 55). Leftmost panels plot subjective discounted value against
time, center panels plot value against time1/2 to improve visualization of the shorter delays. R2 for each model function is plotted in the rightmost
panels.
doi:10.1371/journal.pone.0047225.g002

Dual-Parameter Temporal Discounting Models

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e47225



Scaling parameter ranges and inter-parameter
correlations in dual-parameter models

As outlined in the introduction, exponents in temporal

discounting models are often interpreted in terms of psychophys-

ical scaling of time or reward magnitude [7,10,12,15,24,39], which

would entail exponent values ,1 [39,42]. In this sense, scaling

parameters of 1 indicate a linear representation of the respective

variable (e.g. linear subjective time). Smaller scaling exponents

indicate non-linear scaling of the variable, such that the relative

impact of smaller vs. larger values is increased. Scaling exponents

above 1 indicate that the relative impact of larger vs. smaller

values is increased.

We tested this hypothesis (exponent,1) statistically using

Wilcoxon signed rank tests, and results are summarized in

Table 4. In datasets 1 and 2, there was at least a trend for

exponent values ,1 for the R, GM and CS models. This effect

appeared most pronounced for the CS model. We did not observe

exponent values ,1 in the pathological gamblers, likely due to

smaller number of subjects.

Table 3. R2 values (medians and inter-quartile ranges) for the non-linear regression analysis of indifference point data for single-
subject fits.

Model R2 group fit (6-ID-points) R2 group fit (7-ID-points) Median (IQR) R2: individual subject data

H .861 .917 .876 (.714–.943)

E .758 .832 .814 (.607–.905)

GM .933 .963 .953 (.912–.972)

R .973 .982 .957 (.930–.979)

CS .986 .988 .961 (.926–.983)

doi:10.1371/journal.pone.0047225.t003

Figure 3. Model comparison based on AIC. a) Group-aggregate DAIC scores for each model were calculated by summing AIC scores over all
subjects and then substracting each model’s AIC score from the best-fitting model’s AIC score, yielding a DAIC of 0 for the best-fitting model. b)
Boxplots of single-subject DAIC values. c) P-values from Wilcoxon rank-sum tests conducted on DAIC values for each model pairing.
doi:10.1371/journal.pone.0047225.g003
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Although scaling exponents in temporal discounting models

have been interpreted as reflecting distinct changes in underlying

processes (e.g. time or magnitude scaling) based on fits to group-

level data [see e.g. Killeen (2009)], how the different model-

parameters are correlated has received relatively little attention

[but see Ebert & Prelec (2007) for an analysis of between-subject

inter-parameter correlations]. We therefore examined, for each

dataset separately, the inter-parameter correlation for all dual-

parameter models. This was done via numerical approximation of

the Hessian matrix for each model and participant. The inverse of

the Hessian is the covariance matrix, from which inter-parameter

correlations can be calculated (see methods section for details).

Figure 6 plots the average inter-parameter correlations for all dual-

parameter models. It can be seen that k and s in the GM and R

models showed a strong negative dependency. In contrast, the

association between a and b in the CS model was considerably less

pronounced.

Sensitivity to group differences and contextual effects
Finally we examined the sensitivity of the CS model to

previously reported group and context effects on temporal

discounting. Note that we provide results from the hyperbolic

model for comparison, because this model has been applied in the

previous analyses of these data [49,50]. To account for the fact

that a- and k-parameters can take on values close to 0, we applied a

square-root transformation to all parameters, rather than a log-

transformation (see methods). Gamblers had a greater hyperbolic k

(t(33) = 2.14, p = .04, two-tailed). In the CS model, we observed a

significantly increased a-parameter in the gamblers (t(33) = 2.28,

p = .023, two-tailed), whereas there was no significant group

difference in b (t(33) = 1.23, p = .23, two-tailed).

We next re-examined a within-subject comparison between a

control condition and a discounting condition involving episodic

future thinking. Note that in the control condition, subjects

performed a standard delay discounting task (see methods). In the

episodic condition, additional information regarding subject-

specific future event cues was shown [49]. Note also that for this

analysis we pooled across subjects from Experiments 1 and 2 of the

Peters & Buchel (2010) study, yielding n = 46 in total. The

hyperbolic k was significantly greater in the control compared to

the episodic condition (t(45) = 2.493, p = .016, two-tailed). In

contrast, the a-parameter of the CS model showed no difference

(t(45) = 1.342, p = .186, two-tailed) whereas the b-parameter tended

to be larger in the episodic condition (t(45) = 21.871, p = .0679,

two-tailed).

Discussion

We applied maximum likelihood parameter estimation and

model comparison techniques to examine different models of

temporal discounting. We assessed the fit of a range of prominent

models in a large number of datasets from healthy human subjects

(n = 198). Additionally, data from pathological gamblers (n = 17)

were analyzed to assess models in a clinical group with known

impairments in impulse control. The analyses replicate the

previous observations that dual-parameter models provide a

superior fit to human discounting data than single-parameter

models [10,15,20,24], even when accounting for model complexity

[24]. Two of the dual-parameter models (R and CS) were not

examined in previous comparisons [10,24], and one of them, the

CS model [12] emerged as providing the best fit to human

temporal discounting data, both for healthy participants and

pathological gamblers. This result extends a previous report which

examined an exponential-power model with the exponent fixed at

0.5 [14]. Results were confirmed in a number of analyses. R2 was

greater for the CS model than any other, for both group and

individual indifference point data. Also, the CS model was the

‘‘winning model’’ in the largest proportion of participants across

different datasets. Finally, a Bayesian Model Selection analysis

Figure 4. Proportion of subjects for whom each model provided the best fit, based on AIC. In all datasets, the CS model was the most
frequent winning model, providing the best fit in roughly 40% of participants across datasets.
doi:10.1371/journal.pone.0047225.g004
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[56] revealed that the CS model was more likely than any other

model from the set of candidate models to have generated the data

of a randomly selected participant from the population.

A number of features of the CS model may prove useful in

future studies. First, the model incorporates exponential discount-

ing as a special case (b = 1). Degrees of deviation from ‘‘rational’’

or ‘‘normative’’ temporal discounting can thus be directly assessed.

Second, our analyses confirm that the formulation of the model

leads to estimates of impatience (a-parameter) and time-sensitivity

(b-parameter) that are only moderately correlated. Importantly,

the inter-parameter correlations observed for the CS model were

considerably lower than those observed for the GM and R models.

Thus, although the fit to empirical data (at least relative to single-

parameter models) is improved with the GM and R models, a

separate interpretation of the parameters obtained from these

models is complicated by this strong dependence. Third, the CS

model was found to be sensitive to both group differences in

discounting between gamblers and controls, and context effects on

discounting within healthy controls. Interestingly, we observed a

significantly increased a-parameter (increased impatience) in the

gamblers. Experimental manipulations that alter attention to time

have been reported to affect b rather than a [12], and our data

therefore suggest that diminished self-control in pathological

gamblers may largely affect a. Despite the considerable literature

on dual-parameter models (see introduction), with a few excep-

tions [70] the many studies examining group differences in delay

discounting apply single-parameter models. One reason may be

that for some well-known dual-parameter models (e.g. R, GM)

group differences may be masked by the strong dependencies

between parameters. In line with this idea, none of the paired

comparisons between controls and gamblers for the R and GM

model parameters were significant, neither when using t-tests on

square-root transformed values, nor for non-parametric Wilcoxon

rank-sum tests (all p..31). In contrast, our analyses suggest that

the CS model is sensitive to such group differences. With respect to

contextual effects, our data suggest that episodic event cues may

exert their influence via an increase in b, rather than a decrease in

a. This may suggest that future event cues increase participants’

sensitivity to time [12], thereby driving the discount function more

in the direction of ‘‘rational’’ exponential discounting (i.e. the

resulting b-parameters are closer to 1).

A recent study modelled temporal discounting as a forward

search process through a representational space of future outcomes

[71]. Depending on available search time and the presence of

attractor basins in the energy landscape of future rewards, the

model produced different discount functions. An interesting

observation was that under some conditions, the discount

functions revealed initial plateaus, similar to the case of b.1 in

the CS model (see e.g. Ebert & Prelec 2007, Figure 1), which was

observed in <17% of participants. The other dual-parameter

models examined in this study cannot account for such behaviour.

All model comparison procedures applied in the present study

are dependent upon the particular set of models examined, i.e.

they test for evidence that a particular model is the ‘‘best’’ model in

the set of candidate models. Conclusions are therefore always specific to

the set of candidate models examined. Some discussion regarding

models omitted from the comparison procedure is therefore

warranted. A model by Grace [72] that includes an additive

constant in the denominator of the hyperbolic equation was also

examined (data not shown) but not included in the final model

comparison because its’ fit was lower than that of the single

parameter models. Because we focussed on the single vs. dual-

parameter comparison, we also did not include models with non-

linear outcome scaling [7,41]. Finally, the discounting-by-intervals

model (DBI) suggests that hyperbolic discounting may occur

because discounting is subadditive [17,40,73], i.e. steeper over

shorter intervals, regardless of when in time these intervals occur,

Figure 5. Results from the Bayesian model selection procedure [56] using the AIC as approximation to the log-model-evidence.
Plotted are exceedance probabilities for each model (i.e. the probability that each given model is more frequent in the population than any other
model in the set). The red line denotes p.95%.
doi:10.1371/journal.pone.0047225.g005

Table 4. Results of non-parametric statistical comparisons
(Wilcoxon signed rank test) of dual-parameter model
exponent parameters to 1.

Model

GM R CS

Dataset1

Z-value 21.76 24.60 26.12

P-value .0786 ,.001 ,.001

Dataset2

Z-value 22.33 22.52 23.73

P-value .020 .0117 ,.001

Pathological Gamblers

Z-value 2.261 21.11 21.21

P-value .795 .266 .227

Please refer to Table 2 for the medians and inter-quartile ranges of these
parameters.
doi:10.1371/journal.pone.0047225.t004
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rather than because impatience is decreasing. In all datasets

analyzed here, the delay to the larger-later reward was confounded

with the interval between the two rewards (the delay to the

smaller-sooner option was always 0), effectively precluding us from

directly testing the DBI model [17]. However, note that when the

delay to the SS reward is 0, the DBI model corresponds to

hyperbolic discounting with power-scaling of time (i.e. the R

model). An examination of the models by Scholten & Read

[17,73], in comparison to the models tested in this report, may

therefore be an interesting issue for future modelling work on

inter-temporal choice. Similarly, future studies might benefit from

utilizing more sophisticated procedures for trial generation, which

may improve the ability to differentiate between different

underlying models [74].

Parameter estimates from mathematical discounting models

have consistently been shown to be stable in individual subjects

across intervals ranging from weeks to months [26,75–78]. Delay

discounting is therefore at least in part similar to a personality trait

[5,79]. In contrast, the decision-by-sampling model (DbS) [80]

emphasizes the instability and context-dependency of preferences,

including temporal discounting. DbS suggests that attributes of

options (e.g. magnitudes, delays, probabilities) are subjectively

weighted by comparing the attribute’s actual value to a

distribution drawn from memory via repeated sampling. This

distribution is in turn directly affected by the immediate context in

which a decision occurs [81], thereby providing a mechanism by

which context may affect choice. Notably, however, these accounts

(preference stability vs. context-dependency) are not mutually

exclusive, as context-dependent (state) modulations likely occur

relative to a stable, trait-like baseline level [3,5,79].

Goodness-of-fit is one important aspect of model selection, but

not the only one. For example, the extent to which different

models fit into a larger theoretical framework needs to be taken

into account [10]. The R and CS models as well as the additive

utility model [7] include a time scaling exponent and are thus

compatible with Stevens psychophysical law [42]. In contrast, the

GM model equation can be derived by assuming exponential

discounting with subjective time r following the Weber-Fechner-

Law, i.e. r~a log 1zbDð Þ [24]. Recent empirical work has also

focussed on disentangling effects of temporal discounting per se

from effects of subjective time perception [35,36], though these

studies did not examine dual-parameter models. The analyses

presented in the present report show that temporal discounting

data are better accounted for by the CS model than any other

Figure 6. Within-subject inter-parameter correlations averaged across participants for each dataset. Note the strong inverse
relationship between k and s in the R and GM models. In contrast, correlations between a and b in the CS model were much less pronounced.
Correlations were computed based on a numerical approximation of the Hessian matrix (see methods section).
doi:10.1371/journal.pone.0047225.g006
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model examined. In addition, our re-analyses of previously

published data with the CS model provides additional insights.

Loss of self-control in gamblers may affect the a-parameter

(increased impatience) whereas reduced discounting due to

episodic thinking may affect the b-parameter (increased temporal

attention/attenuated non-linear temporal scaling). Further work is

required to establish the utility of these more sophisticated

discounting models in the analysis of individual differences and

contextual modulations.

Taken together, our comparison of temporal discounting

models confirms that dual-parameter models outperform single-

parameter models, even when controlling for model complexity,

complementing and extending previous model comparison studies

[10,24]. An exponential-power model (CS) [12] provided the best

fit to human discounting data across a range of datasets. This

result was confirmed in a BMS analysis [56], which revealed that

the CS model was more likely than any other model tested to have

generated the data of a randomly selected subject from the

population (exceedance probability .95%). Inter-parameter

correlations in the CS model were moderate compared to two

other prominent dual-parameter models (GM and R), in which

inter-parameter correlations were substantial. Finally, we show

that the CS model is sensitive to previously reported group and

context effects on temporal discounting, suggesting that it might be

a useful tool in future psychiatry, psychology and neuroscience

work on inter-temporal choice.
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