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Abstract

Background: Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated
with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with
the development of anal squamous cell cancer (SCC). We sought to characterize broad methylation profiles across the
spectrum of anal squamous neoplasia.

Methodology/Principal Findings: Twenty-nine formalin-fixed paraffin embedded samples from 24 patients were evaluated
and included adjacent histologically normal anal mucosa (NM; n = 3), SCC-in situ (SCC-IS; n = 11) and invasive SCC (n = 15).
Thirteen women and 11 men with a median age of 44 years (range 26–81) were included in the study. Using the SFP10 LiPA
HPV-typing system, HPV was detected in at least one tissue from all patients with 93% (27/29) being positive for high-risk
HPV types and 14 (93%) of 15 invasive SCC tissues testing positive for HPV 16. Bisulfite-modified DNA was interrogated for
methylation at 1,505 CpG loci representing 807 genes using the Illumina GoldenGate Methylation Array. When comparing
the progression from normal anal mucosa and SCC-IS to invasive SCC, 22 CpG loci representing 20 genes demonstrated
significant differential methylation (p,0.01). The majority of differentially methylated gene targets occurred at or close to
specific chromosomal locations such as previously described HPV methylation ‘‘hotspots’’ and viral integration sites.

Conclusions: We have identified a panel of differentially methlylated CpG loci across the spectrum of HPV-associated
squamous neoplasia of the anus. To our knowledge, this is the first reported application of large-scale high throughput
methylation analysis for the study of anal neoplasia. Our findings support further investigations into the role of host-
genome methylation in HPV-associated anal carcinogenesis with implications towards enhanced diagnosis and screening
strategies.
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Introduction

Anal squamous cell cancers (SCC) account for 4% of all lower

gastrointestinal tract malignancies in the United States with an

estimated 6,230 new cases and 780 deaths expected in 2012 [1].

The incidence of anal cancer continues to rise steadily, with an

average increase of 2.4% per year reported between 1992 and

2009 [2,3]. Infection with human papillomavirus (HPV) has been

demonstrated to be the primary causative agent in the develop-

ment of SCC of the anogenital tract, including cancers of the

cervix, vulva, vagina and anus [4]. Although infection with HPV is

a common event, the subsequent development of cancer is rare,

suggesting that additional molecular events are required for

malignant transformation [5].

Anal intraepithelial neoplasia (AIN) is the precursor lesion of

invasive anal SCC. It is generally thought that high grade AIN

(HGAIN) or carcinoma in situ, but not low grade lesions, are at risk

of malignant progression to invasive anal SCC. It is estimated that

the risk of malignant progression of HGAIN is approximately 10%

but may be higher in immunocompromised individuals [6].

Consequently, the optimal method for screening and managing

patients with HGAIN (e.g. prophylactic treatment vs. observation)

remains somewhat controversial [7,8]. Molecular biomarkers of

anal neoplasia have the potential to more accurately risk stratify

HGAINs and also may improve the low sensitivity of HGAIN

diagnosis found with anal PAP smears, thus reducing the need for

costly invasive biopsies [9].
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It is well recognized that genetic mutations occur in cancer cells

and that these exert disease-associated changes in gene expression

and/or function. Very little is known about the specific genetic

events that drive anal carcinogenesis; although it has been

reported that alterations in TP53, DCC, APC and FHIT may be

contributing factors [10,11]. Cancer cells also exhibit aberrant

epigenetic alterations which appear to play a prominent role in

cancer development. DNA methylation is a key aberrant

epigenetic event that has been documented in virtually every

tumor type studied and is amongst the earliest disease-associated

changes observed during tumorigenesis [12]. HPV may influence

the host transcriptome via a number of epigenetic mechanisms

[5,13] including HPV E7 oncoprotein-mediated alterations in the

activity of DNA methyltransferases (DNMTs) [14,15], histone

deacetylases (HDACs), and pCAF acetyltransferase [14,16].

Despite the likely importance of aberrant DNA methylation in

the pathogenesis of anal SCC, there has only been one report

investigating methylation in anal cancer. Zhang et al. evaluated

the methylation status of 11 candidate genes identified from

studies of other HPV-associated malignancies [9]. They reported

higher methylation in HGAIN and anal cancer for two genes

compared to normal mucosa or low-grade lesions suggesting a role

for DNA methylation in anal carcinogenesis. Additional epigenetic

targets unique to anal cancer may be uncovered by a more

comprehensive high-throughput methylation array approach.

However, due in part to the limited quantity and quality of anal

cancer tissue specimens, broad scale genomic techniques have not

been widely applied to this disease site. The successfully met

objectives of this study were first, to demonstrate the feasibility of

investigating DNA methylation in anal cancer utilizing methyla-

tion array technology and second, to identify CpG loci that were

differentially methylated in invasive SCC compared to pre-

invasive and/or normal mucosa.

Materials and Methods

Ethics Statement
Our study was approved by the Institutional Review Board at

the University of South Florida as exempt and not requiring

informed consent from study subjects. Data were collected and

appropriately de-identified prior to analysis.

Case Identification and Tissue Collection
The records of all patients treated at the H. Lee Moffitt Cancer

Center and Research Institute from 2000–2008 with the diagnosis

of anal SCC or SCC in situ (SCC-IS) were reviewed. Patients with

a pathological diagnosis of SCC or SCC-IS of the anus and

sufficient formalin-fixed paraffin-embedded (FFPE) tissue for

analysis were identified. Pertinent clinical data were collected

retrospectively utilizing our institutional electronic medical record

system. We identified 24 patients treated at the Moffitt Cancer

Center that met our inclusion criteria. Median age for the 24

patients (13 females and 11 males) in the study population was 44

years (range 26–81). Five patients were immunocompromised

secondary to HIV (n = 3) or immunosuppressive medications given

for organ transplantation (n = 2).

To ensure the accuracy of diagnosis, tissue samples were re-

reviewed and regions of histologically normal mucosa, SCC-IS,

and SCC were marked by a dedicated gastrointestinal pathologist

(DC). FFPE tissues were subsequently cut (15 mm thick) and

meticulously macrodissected to reduce cross contamination. Prior

to the macrodissection of each case, gloves and instruments were

changed and the workspace was disinfected. Of note, for the

purposes of this study, SCC-IS is considered equivalent to AIN III

and HGAIN.

HPV Genotyping
DNA was extracted from FFPE tissues using QIAamp DNA

FFPE Tissue Kit (Qiagen Inc, Valencia, CA). HPV genotyping

was performed using the INNO-LiPA HPV Genotyping Extra kit

(Innogenetics, Belgium). In brief, 100 ng of DNA was utilized for

PCR amplification of a short fragment (65-bp) of the HPV L1

region with biotinylated primers (SPF10) using the MJ PTC-200

DNA engine thermocycler. PCR products were hybridized to the

AutoBlot 3000H 20 Strip, a probe-specific nitrocellulose test strip,

placed on an adhesive LiPA-Scan Reading template and analyzed

using the LiRAS for LiPA HPVE v2.01 software (Innogenetics,

Belgium). All assays included the amplification of a 270 bp

fragment of HLA-DPB1 as a positive control for human DNA. All

PCR runs met quality control standards, with all samples positive

for internal positive controls and negative controls negative for

each run. This system detects 28 HPV types (HPV 6, 11, 16, 18,

26, 31, 33, 35, 39, 40, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 66, 68,

70, 73, and 82). High-risk HPV types were defined as the 12 high-

risk types classified as group 1 carcinogens (16, 18, 31, 33, 35, 39,

45, 51, 52, 56, 58, and 59) [17].

Methylation Array
Genomic DNA (500 ng) was sodium bisulfite-modified using the

EZ DNA Methylation kit (Zymo Research, Orange, CA) following

the manufacturer’s instructions. DNA methylation was measured

using the Illumina GoldenGate methylation assay with the Cancer

Panel 1 probes (Illumina, San Diego, CA) following standard

protocols [18]. This bead array platform interrogated 1505 CpG

loci that represent 807 cancer-related genes. In brief, following

methylation-specific hybridization, allele specific oligonucleotides

were extended and ligated to a locus-specific oligonucleotide

(LSO), which served as the template for fluorescently labeled

universal primers that amplify either unmethylated (U) or

methylated (M) templates. Labeled DNA contained a unique

IllumiCode address for hybridization to its complement bead type

(,30 replicates per CpG site) on a Sentrix Array Matrix (SAM)

plate. At each CpG site, U and M fluorescent intensities were

measured, averaged across replicate beads, and compared to a

panel of negative controls using the Illumina’s BeadStudio

Table 1. Primers for Bisulfite Sequencing,

Gene Forward Primer Reverse Primer Annealing Temp MgCl2 Amplicon size (bp)

HOXA5 TTA TTA GGA TGT ATT AAT TGT TAG GT CAA AAT TCA AAA CTA CTA ACA AAA C 48.2 2.5 192

TGFB3 GAT TGA GGT TTG GTA AGA AGG TGT A ACT AAA AAT CAA AAC CCA ACA AAA C 56.5 2.5 167

KRT1 TAG AGT AGG AGA TAG ATA TTA G TCC AAT ATA AAA CTT AAA TCA CC 48.2 2.75 176

doi:10.1371/journal.pone.0050533.t001
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Methylation Module v3.2. Probes that were significantly different

from negative controls were included in the analysis.

Bisulfite Sequencing
Primer design and amplification of target CpG

site. Primer sets targeting HOXA5, TGFb3, and KRT1 genes

were designed with MethPrimer software [19] or derived from the

published literature (Table 1). The primers specifically amplified

the CpG sites measured in the Illumina GoldenGate assay. Using

2 ml of bisulfite-converted DNA as PCR template, a 50 ml reaction

containing 0.02 mM of each primer, 0.2 mM dNTP, 1 unit of

HotStarTaq Plus polymerase and varying amounts of magnesium

was performed. Initial denaturation was at 95uC for 15 min,

followed by 40 cycles of 94uC for 1 min, 48.2uC–56.5uC annealing

for 1 min and 72uC for 1 min; and a final extension cycle of 72uC
for 10 min. PCR products were viewed with a 1.5% agarose gel

stained with ethidium bromide. Target amplicons were gel-

extracted and purified using the QIAquick Gel Extraction Kit

(Qiagen Inc., Valencia, CA) according to the manufacturer’s

instructions.

Figure 1. Gender Heatmap of X-linked CpG Loci. DNA methylation is involved in the transcriptional activation of genes on one of the two X
chromosomes in female somatic cells. In general, male and female cases clustered together with methylation levels of the majority of X-linked genes
correlating well with the gender of the tissue source (i.e. little-to-no methylation in male samples and hemi-methylation in female samples). Sample
gender is represented above the heatmap (pink = female, blue = male). Methylation is represented by the beta value, or percent of total signal with
green representing low methylation and red representing hemi-methylation. 51 of 84 loci within X-linked genes were differentially methylated
(p,0.05) between males and females.
doi:10.1371/journal.pone.0050533.g001
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Cloning, transformation, and sequencing. Gel-purified

PCR products were ligated into a TA cloning vector, pCRH 4 -

TOPOH, using Invitrogen’s TOPO cloning kit (Life Technologies,

Carlsbad, CA), transformed into Escherichia coli competent cells,

and plated on 100 mg/ml LB-ampicillin agar plates. Ligation and

transformation was confirmed by PCR (12.50 ml of Platinum

Supermix, 0.5 ml each of 10 mM gene-specific forward primer,

M13 Universal Reverse primer and colony template) using the

following thermocycler conditions: 1 cycle at 95uC for 6 min; 40

cycles of 94uC for 30 secs, appropriate annealing temperature

(Table 1) for 30 secs and 72uC for 1 min, and 1 cycle at 72uC for

10 min. PCR confirmed positive colonies were inoculated into LB-

Amp broth and incubated overnight at 37uC. Plasmid DNA was

extracted using the QIAGEN Miniprep Kit (Qiagen Inc.,

Valencia, CA) according to the manufacturer’s instructions.

Plasmid DNA was sequenced using M13 universal primers on

the ABI 3600 sequencer (Applied Biosystems, Foster City, CA).

Methylation Array Bioinformatics and Statistical Analyses
Methylation data were pre-processed by setting non-detected

probes as N/A (Not Applicable) for samples in which the detection

p value for the probe was .0.05. Chip-wide controls and Multi-

Dimensional Scaling plots were used to visualize data quality.

Methylation data were analyzed using the R statistical software

package and Bioconductor packages. Internal functional valida-

tion of the assay was performed by unsupervised clustering to

confirm separation by gender due to the presence of X-linked

CpG sites on the array (Figure 1) [18]. Analysis of X-linked genes

with respect to gender was performed using the Mann-Whitney

non-parametric test with p,0.05 as the threshold for significance.

Clustering was performed using non-centered correlation as the

similarity metric within R. X-linked methylation probes were then

discarded prior to further analysis.

The number of paired, matched tissues was small; therefore, we

examined the three groups of tissues in a pooled fashion to identify

targets with differential methylation in pre-invasive (normal and

SCC-IS) vs. invasive cancer samples. Due to non-normal

distribution of beta ratios, we applied a Mann-Whitney test for

differences in groups to a total of 1,421 CpG loci (1,505–84 X-

linked loci) and selected significant loci using a conservative

threshold to partially correct for multiple testing problems

(p,0.01). Boxplots were used to visualize aggregate methylation

data, representing the median methylation of each group.

Additional analysis was performed using a Kruskal-Wallis non-

parametric test to accommodate variables with three levels

(Normal, SCC-IS and Invasive).

Results

HPV Genotyping
HPV genotyping was performed on adjacent histologically

normal anal mucosa (n = 3), SCC-IS (n = 11), and SCC (n = 15)

tissues. HPV viral DNA was detected in all tissues, with 38 total

infections detected (33 high-risk and 5 low-risk types, Table 2).
High-risk HPV types were detected in 93% (27/29) of tissues; 3

patients with SCC-IS were positive for low-risk HPV 6. HPV 16

was the most common infection, being detected in 76% (22/29)

tissue samples overall and in 87% of SCCs. It was most often

detected as a single infection (59%, 17/29 tissue sections). Two

SCCs were positive for HPV 52; whereas HPV 18 was only

detected in one SCC-IS. Infection with multiple HPV types was

detected in 7 (29%) of 24 patients, of which two were HIV

positive. The detection of low-risk and high-risk types occurred

concurrently in 3 out of the 5 low-risk infections detected;

specifically, two SCC tissues had co-infection with HPV 11 and

16. Of the SCC-IS tissues where HPV 6 was detected, only one

had a concurrent high-risk type detected (HPV 52). No correlation

between multiple infections and histological diagnosis (normal

mucosa, SCC-IS, SCC) or immunocompetency was identified.

Quality Control Analysis of GoldenGate DNA Methylation
Data

The GoldenGate array contains standard control probes that

assess several parameters including 1) Allele specific extension, 2)

Bisulfite Conversion, 3) Extension Gap, 4) First hybridization, 5)

Gender, 6) Negative Control, 7) PCR Contamination, and 8)

Second Hybridization [18]. All cases used for this study were

reviewed and passed these quality control measures. Figure 1
presents the quality control analysis of the methylation probes by

gender to confirm separation due to the presence of X-linked CpG

sites on the array [18]. In an unsupervised cluster analysis of X-

linked CpG sites, a distinct separation of patients by gender was

observed with 51 of 84 (61%) X-linked genes found to be

differentially methylated (p,0.05) between specimens derived

from male and female patients. These analyses support the

internal validity of our methylation data.

Table 2. HPV Genotyping of Anal Tissues: Overall Prevalence and Across the Spectrum of Anal Neoplasia.

HPV Type
Overall HPV Prevalence* (n = 24
Patients)

Normal Mucosa (n = 3
Tissues)

SCC-in Situ (n = 11
Tissues) SCC (n = 15 Tissues)

High Risk

HPV-16 22 (92%) 3 (100%) 6 (54%) 13 (87%)

HPV-18 1 (4%) – 1 (9%) –

HPV-31 1 (4%) – 1 (9%) –

HPV-39 2 (8%) – 1 (9%) 1 (7%)

HPV-52 6 (25%) – 4 (36%) 2 (13%)

HPV-54 1 (4%) – 1 (9%) –

Low Risk

HPV-6 3 (13%) – 3 (27%) –

HPV-11 2 (8%) – – 2 (13%)

*A total of 38 HPV infections were detected in 29 tissues, due to multiple infections.
doi:10.1371/journal.pone.0050533.t002
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Differential Methylation in Invasive SCC vs. Pre-invasive
Anal Tissue

To optimize the numbers of cases per comparison group,

methylation profiles were compared between pre-invasive anal

tissue (normal and SCC-IS) and invasive SCC specimens using the

Mann-Whitney test. A total of 22 CpG loci corresponding to 20

genes was noted to have significant (p,0.01) differential methyl-

ation between the two groups (Table 3). Of these, all but 2 CpG

loci demonstrated increased methylation in invasive SCC com-

pared to pre-invasive tissues (Figure 2 and Figure S1).
Methylation levels of these 2 CpG sites both within the GABRA5

gene were significantly lower in invasive SCC compared to pre-

invasive tissues. (Table S1 provides detailed annotation for genes

containing differentially methylated CpG loci).

There were three distinct patterns of methylation observed in

the differentially methylated CpG panel (Figure 2): 1) Loci with

low methylation levels (median beta value ,0.3) in all tissue types

(e.g. ID1, KDR, TNFRSF10B, and SEMA3B) but with a statistically

significant difference between non-invasive and invasive tissues; 2)

loci with high methylation levels (median beta $0.3) in all tissue

types (e.g. GABRA5, BCL2A1, CCL3, DI03, FRK, KRT1, KRT5,

P2RX7, PRSS8, and TGFB3) but with a statistically significant

difference between non-invasive and invasive tissues; and 3) loci

with little to no methylation in non-invasive tissues (beta

values,0.3) with a significant increase above the threshold into

Table 3. Genes with Differentially Methylated CpG Loci in the Progression of Anal Neoplasia.

Symbol Product Annotation CpG Number* P-value

MW{ KW{

Growth Regulation and Cell Cycle Control

TGFb3 Transforming growth factor,
beta 3

Controls proliferation and differentiation cg17928876 0.0012 0.0063

FRK Fyn-related kinase SRC kinase family with epithelial tissue-specific
expression

cg26557270 0.0054 0.0247

PADI4 Peptidyl arginine deiminase,
type IV

Post-translational modification (arginine methylation
and citrull-ination) of histones

cg19159961 0.0030 0.0155

ID1 Inhibitor of DNA binding 1
isoform a

Helix-loop-helix protein cg09569033 0.0071 0.0228

Differentiation

S100A2 S100 calcium binding protein
A2

Small, acidic Ca(2+)-binding proteins in nucleus cg09232826;
cg21074565

0.0015;
0.0083

0.0040; 0.0325

KRT1 Keratin 1 Differentiation-dependent keratin cg06030058 0.0015 0.0071

KRT5 Keratin 5 Primary keratin cg04254916 0.0033 0.0154

PRSS8 Prostasin pre-protein Trypsinogen; serine proteases cg27436259 0.0022 0.0116

Angiogenesis

FLT1 Fms-related tyrosine kinase 1 VEGF receptor tyrosine kinase (also VEGFR1) cg21787743 0.0020 0.0041

KDR Kinase insert domain receptor VEGF Type III receptor tyrosine kinase (also VEGFR2) cg04695981 0.0044 0.0197

Apoptosis

DAPK1 Death-associated protein kinase
1

Calmodulin-dependent serine-threonine kinase cg01984172 0.0021 0.0106

HOXA5 Homeobox A5 DNA-binding transcription factor cg27409178 0.0037 0.0133

TNFRSF10B Tumor necrosis factor receptor
superfamily, 10b

Death domain associated receptor cg07508317 0.0026 0.0112

BCL2A1 BCL2-related protein A1 Reduces pro-apoptotic cytochrome C release; blocks
caspase activation.

cg27177709 0.0061 0.0262

SEMA3B Semaphorin 3B isoform 1 Extracellular secreted protein important in axonal
guidance; induces apoptosis

cg12999941 0.0083 0.0283

Other Processes

CCL3 Chemokine (C-C motif) ligand 3 Macrophage inflammatory protein-1 cg05481196 0.0096 0.0374

P2RX7 Purinergic receptor P2X7
isoform b

Cell surface ATP receptor; ligand-gated ion channel cg08688169 0.0096 0.0156

CD9 CD9 antigen Cell surface tetraspanin (TM4SF) glycoprotein cg19415774 0.0071 0.0228

DIO3 Deiodinase, iodothyronine, III Selenoenzyme cg18191511 0.0074 0.0133

GABRA5 Gamma-aminobutyric acid A
receptor, alpha 5

heteromeric pentameric ligand-gated ion channels cg02225257;
cg20051555

0.0030; 0.0044 0.0112; 0.0044

*CpG locus label within the GoldenGate methylation array.
{Mann-Whitney test for methylation differences between two groups (pre-invasive vs. invasive SCC) using a conservative threshold to partially correct for multiple
testing problems (p,0.01).
{Kruskal-Wallis non-parametric test performed to test three levels (Normal, SCC-IS and Invasive).
doi:10.1371/journal.pone.0050533.t003
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high methylation levels (beta $0.3) in invasive SCC (e.g. CD9,

DAPK1, FLT1, HOXA5, and PADI4). For S100A2, one CpG site

demonstrated low methylation levels in all tissues (median beta

value,0.3) while the other was consistent with pattern 3; however,

the general trend was suggestive of a low to high methylation

pattern across both sites within this gene.

Although the number of samples in each group was relatively

small, and particularly, in the normal tissue group, we performed

an exploratory analysis to identify targets with differential

methylation across all three groups (normal, SCC-IS and SCC).

Using a Kruskal-Wallis non-parametric test and p-value ,0.01, 7

probes had differential methylation across the 3 groups, four of

which (S100A2, FLT1, TGFB3 and KRT1) were identified in our

binary analysis (Table 3 and Figure 2) and three were not

(BMP4, EV12A, and IL1RN). In fact, the top 20 significant and near

significant (p,0.02) differentially methylated loci from the

Kruskal-Wallis analysis and the top 20 significant (p,0.01) loci

from the Mann-Whitney analysis were highly similar with 13 CpG

sites in common.

Measurement of Methylated Targets by Bisulfite
Sequencing

Given the scarcity of these specimens, a confirmatory measure-

ment of methylation using conventional bisulfite sequencing was

performed in a total of 9 anal tissues (8 SCC and 1 SCC-IS) for

which there was sufficient remaining tissue and/or genomic DNA.

We selected 3 genes for the determination of methylation status by

bisulfite sequencing: TGFb3 and KRT1 had high methylation in all

tissue types while HOXA5 demonstrated a progression of

methylation from low to high levels across tissues. Within this

study, the median beta values for CpG sites within TGFb3, KRT1

and HOXA5 genes were 0.86, 0.86 and 0.77, respectively. Within

the set of 9 patients, the average methylation levels at the CpG site

of interest, as determined by bisulfite sequencing, for TGFb3,

KRT1 and HOXA5 were very similar to the corresponding average

array beta values (63% vs. 69%; 68% vs. 76% and 63% vs. 63%,

respectively). On an individual tissue specimen level, we demon-

strated evidence of methylation (median beta value of $0.3) at the

CpG site of interest in $30% of corresponding clones by bisulfite

sequencing at concordance rates of 88% (8 of 9 clones) for TGFb3,

75% (6/8) for HOXA5 and 100% (9/9) for KRT1. In all cases of

non-concordance, a low array beta value was associated with a

higher percentage of methylated clones by sequencing. Our

findings confirm previous reports of high concordance between

GoldenGate methylation array technology and conventional

methylation assays [20,21].

Discussion

The molecular events involved in HPV-associated anal carci-

nogenesis, including alterations in host genome methylation,

remain poorly studied. With respect to HPV characterization, all

patients in our study were found to be infected with one or more

HPV genotypes. HPV 16 was the predominant oncogenic subtype

Figure 2. Boxplot Representations of Selected Differentially Methylated CpG Loci. Boxplots illustrating methylation levels of selected
significant differentially methylated CpG sites (Mann-Whitney p,0.01) across histologic subtypes (normal and SCC-IS vs. invasive CC). Three patterns
are identified: A: Loci with low methylation levels (median beta value ,0.3) across all tissues. B: Loci with high methylation levels (median beta value
$0.3) across all tissues. C: Loci demonstrating little to no methylation in non-invasive tissues with significant levels of methylation in invasive SCC.
doi:10.1371/journal.pone.0050533.g002

Table 4. Chromosomal Mapping of Genes with Differentially Methylated CpG Loci.

Gene Symbol Chromosomal Location Relation to HPV or hotspots

TGFB3 14q24.3 HPV integration site

GABRA5 15q12 HPV integration site

FRK 6q22.1 HPV integration site

CCL3 17q12 HPV integration site

KDR 4q12 HPV integration site

BCL2A1 15q25.1 Close to 15q25.3 HPV integration site

HOXA5 7p15.2 HPV16 and 18 hypermethylation hotspot

DAPK1 9q21.33 Close to 9q21.31 HPV18 hypermethylation hotspot

DIO3 14q32.31 Close to 14q32.33 HPV 16 and 18 hypermethylation hotspot

P2RX7 12q24.31 Close to 12q24.33 HPV 16 and 18 hypermethylation hotspot

S100A2 1q21.3 Close to 1q21.1 HPV16 and 18 hypomethylation hotspot

KRT1 12q13.3 Potential novel hypermethylation hotspot with KRT5 and CD9

KRT5 12q13.3 Potential novel hypermethylation hotspot with KRT1 and CD9

CD9 12q13.3 Potential novel hypermethylation hotspot with KRT1 and KRT5

PRSS8 16p11.2 Telomeric region

ID1 20q11.2 Telomeric region

FLT1 13q12.2–12.3 Telomeric region

TNFRSF10B 8p21.3 No associations

SEMA3B 3p21.31 No associations

PADI4 1p36.13 No associations

doi:10.1371/journal.pone.0050533.t004
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identified; however, HPV 18, 32, 39 and 52 were also observed.

The HPV prevalence and type distribution are similar to previous

reports in anal cancer [22–26]. In the current investigation, we

utilized an FFPE-tissue compatible methylation array to evaluate

the methylation status of 1,505 CpG loci representing 807 genes.

We identified a panel of 20 CpG loci representing 19 genes with

increased methylation in the progression from pre-invasive normal

and SCC-IS tissues to invasive anal SCC. Of these CpG loci, 6

had low methylation levels in normal and pre-invasive tissues but

were hypermethylated in invasive SCC. From a biological

standpoint, this panel of CpG sites may represent biomarkers of

anal neoplastic progression from non-invasive to invasive anal

neoplasia and may reflect carcinogenesis-related epigenetic

alterations with a transition from an unmethylated to methylated

state.

We identified a panel of CpG loci that were differentially

methylated in HPV-associated anal SCC (Table 3 and Table
S1). These epigenetic events occurred in genes encoding proteins

that play a role in growth regulation/cell cycle control (e.g. TGF-

B3[27–29], FRK[30–32], PADI4[33–36], and ID[37–41]) and

critical regulation of apoptosis (e.g. TNFRSF10B[42–47],

DAPK1[9,48–50], HOXA5 [51–54], BCL2A1[55–59], and

SEMA3B[60–62]). CpG loci that were shown to have high

methylation levels across the spectrum of anal tissues but with a

significant difference between non-invasive tissues and invasive

SCC may be markers of early epigenetic alterations in HPV-

induced carcinogenesis. For example, methylation of CpG loci in

two keratin genes, KRT1 and KRT5, the products of which

contribute to the differentiation of squamous epithelium, may be

early biomarkers of HPV-associated carcinogenesis[63–65]. The

HPV oncogenes E6 and E7 primarily target p53 and Rb,

respectively, for degradation [66]. Interestingly, methylation levels

of several CpG loci occurred within genes that either interact with

or are part of the p53 or Rb pathways, including PAD14 [33,35],

HOXA5 [67], FRK [32], and DAPK1 [50] (Table S1). Several

differentially methylated loci identified in this study appear within

genes that may be potential novel targets in the setting of cancer,

such as FRK, BCL2A1, GABRA5, DIO3, P2RX7, CCL3 and ID.

Overall, there appears to be a clustering of methylation in CpG

sites across genes with similar functions within anal SCC and these

epigenetic differences may have potential utility as biomarkers of

HPV-associated carcinogenesis (Table S1) [68–93].

Zhang et al. evaluated the methylation status of 11 candidate

genes (DAPK1, IGSF4, MLH1, HIC1, RARB, p14, TP73, MGMT,

RASSF1, APC, and CDKN2A) in a set of 172 anal biopsies, which is

the only published analysis of DNA methylation in anal cancer [9].

They reported an increased frequency of DAPK1 and IGSF4

methylation during the progression from normal mucosa to SCC-

IS to invasive SCC. In our study, we have indeed confirmed that

CpG loci within DAPK1 were among the most significantly

methylated sites with increasing methylation across the spectrum

of anal carcinogenesis. However, neither of the IGSF4 probes

demonstrated significant differential methylation in our study

(p = 0.029 and 0.052 respectively by Mann-Whitney, data not

shown). While data are limited in anal cancer, there is evidence for

aberrant DNA methylation in HPV-associated cervical cancer

[5,9,94]. Of the significant differentially methylated sites identified

in our anal cancer study, DAPK1 is the only methylation target that

has been similarly shown to be methylated in invasive cervical

SCC (55%) and high-grade pre-invasive lesions (52%), with

reduced methylation in normal and low-grade lesions [48,49,95–

98]. These data support a possible role for the epigenetic alteration

of DAPK1 in HPV-associated carcinogenesis.

Until recently, the mechanisms responsible for the association

between HPV infection and epigenetic alterations have been

somewhat speculative with limited in vitro data. HPV has been

shown to upregulate and augment DNMT [14,15,99,100] and

HDAC activity [14,16]; thus it is biologically plausible that

epigenetic alterations may play a role in HPV-induced carcino-

genesis. Leonard et al. [15] have demonstrated that the transfec-

tion of the episomal forms of both HPV16 and 18 result in the

induction of DNMT1 and DNMT3B expression and subsequent

alterations in methylation status of numerous host genes across the

genome. Of interest, they observed that the majority of HPV-

induced methylation targets appeared to be non-random and were

associated with cis-acting events (e.g. increased CpG dinucleotide

density, CpG sites near telomeres and known HPV integration

sites) and clustered across genes within specific chromosomal

locations (e.g. HPV methylation hotspots) [15]. We determined

that 19 of the 22 differentially methylated CpG loci identified in

our study occurred in genes that fit the criteria for these

‘‘methylation-prone’’ areas (Table 4). TGFB3, GABRA5, KDR,

FRK and CCL3 all localize directly to known HPV integration sites

while BCL2A1 is immediately adjacent to one such site [15,101–

105]. HOXA5 is located at an exact HPV 16 and 18

hypermethylation hotspot while DAPK1, DIO3, and P23X7 are

all immediately adjacent to a described hotspot [15]. FLT1, PRSS8

and ID1 are located in the telomeric regions of their respective

chromosomes. Finally, we have noted what appears to be a novel

hotspot at 12q13.3 with KRT1, KRT5 and CD9 all mapping

directly to this locus. Our findings lend further support to the

notion that HPV-associated methylation events appear to occur in

a non-random fashion and suggest that there may be similarities in

epigenetic alterations across HPV-associated cancers. A critical

area for future research will be to distinguish between epigenetic

alterations that are oncogenic drivers versus those that may simply

be bystander effects of HPV infection.

To our knowledge, this study is the first to demonstrate the

feasibility of a large-scale evaluation of DNA methylation in FFPE

tissues from anal SCC, which in addition includes corresponding

HPV genotyping. We acknowledge the fact that the GoldenGate

array interrogates a number of selected known methylation targets

and as such, does not represent a full evaluation of genome-wide

events. In addition, with this array, we were unable to determine

whether differences in methylation at specific CpG loci had

biological consequences, such as gene silencing. However,

differential methylation events at specific loci may still represent

potential biomarkers of HPV-associated carcinogenesis. This study

is certainly limited by its small sample size, which unfortunately is

inherent with the relative paucity of anal cancer tissues treated at

one center. Normal anal mucosa was identified by histologic

review; however, these tissues were HPV-positive and adjacent to

SCC-IS or SCC, thus, do not represent purely unaffected anal

mucosa. Non-neoplastic anal tissues infected by HPV may have

altered epigenetic profiles but nonetheless are relevant as the

earliest end of the spectrum of HPV-associated anal carcinogen-

esis. In this study, due to a small sample size, we were unable to

fully analyze differences in methylation by HPV genotype.

However, in an exploratory analysis, we identified a panel of 27

CpG loci that were differentially methylated (p,0.05 by Mann

Whitney) between the HPV16+ and HPV16- tissues (data not

shown). Larger studies are needed to fully evaluate the impact of

HPV-related factors, such as genotype or number of infections, on

epigenetic profiles and associated biologic pathways.

Our data provide preliminary evidence that the progression

from normal anal mucosa and anal SCC-IS to invasive SCC is

associated with distinct alterations in host genome methylation
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which in turn may be a consequence of high risk HPV infection.

With the application of broad high-throughput methylation

profiling, we have generated a candidate list of progressively

methylated CpG loci across the spectrum of anal squamous

neoplasia, including sites within genes previously unassociated

with anal SCC. Despite the small numbers of patients evaluated in

this study, our findings are in agreement with what is known about

the impact of HPV on epigenetic profiles including increased

methylation at or close to specific chromosomal locations

including previously described HPV methylation ‘‘hotspots’’ and

viral integration sites. Our work represents an important initial

step in understanding the epigenetic events associated with anal

carcinogenesis. A critical translational step would be to apply

broad methylation assays to identify a relevant panel of

methylation biomarkers that could not only refine the diagnosis

of HGAIN or SCC-IS but also serve as an indicator for increased

risk of subsequent malignant transformation to invasive SCC.

Molecular guidance ultimately may reduce the burden of

potentially unnecessary screening, biopsy and treatment proce-

dures. Further evaluation of methylation events in anal squamous

neoplasia is clearly warranted in larger patient populations and

may contribute not only to a better understanding of anal

carcinogenesis, but also to the development of novel biomarkers

that may ultimately impact on enhanced diagnosis, screening and

prevention.

Supporting Information

Figure S1 Boxplot Representations of All Differentially
Methylated Loci. Boxplots illustrating methylation levels of 22

significant differentially methylated CpG sites representing 20

genes (Mann-Whitney p,0.01) across histologic subtypes (normal

and SCC-IS vs. invasive CC). Three patterns are identified: A:

Loci with low methylation levels (median beta value ,0.3) across

all tissues. B: Loci with high methylation levels (median beta value

$0.3) across all tissues. The two CpG sites within the GABRA5

gene demonstrated reduced methylation with neoplastic progres-

sion C: Loci demonstrating little to no methylation in non-invasive

tissues with significant levels of methylation in invasive SCC.

(TIF)

Table S1 Genes with Differentially Methylated CpG
Loci in the Progression of Anal Neoplasia with Full
Annotation.

(DOC)
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