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Abstract
Quantitative neuropathologic methods provide information that is important for both research and
clinical applications. The technological advancement of digital pathology and image analysis
offers new solutions to enable valid quantification of pathological severity that is reproducible
between raters regardless of experience. Using an Aperio ScanScope XT and its accompanying
image analysis software, we designed algorithms for quantitation of amyloid and tau pathologies
on 65 β-amyloid (6F/3D antibody) and 48 phospho-tau (PHF-1)-immunostained sections of
human temporal neocortex. Quantitative digital pathologic data were compared with manual
pathology counts. There were excellent correlations between manually counted and digitally
analyzed neuropathologic parameters (R2 values 0.56-0.72). Data were highly reproducible among
3 participants with varying degrees of expertise in neuropathology (Intra-class correlation
coefficient values >0.910). Digital quantification also provided additional parameters, including
average plaque area, which show statistically significant differences when samples are stratified
according to APOE allele status (average plaque area 380.9 μm2 in ApoE ε4 carriers vs. 274.4
μm2 for non-carriers, p < 0.001). Thus, digital pathology offers a rigorous and reproducible
method for quantifying AD neuropathologic changes and may provide additional insight into
morphologic characteristics that were previously more challenging to assess due to technical
limitations.
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INTRODUCTION
The association between the severity of Alzheimer disease neuropathologic changes
(ADNCs) and cognitive impairment has long been established (1-19). The burden of
neurofibrillary tangles (NFTs) and neuritic Aβ plaques (NPs), as well as their distribution
throughout the cortex, are the bases for the Braak and Consortium to Establish a Registry for
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Alzheimer’s Disease (CERAD) staging schemes, respectively (1, 20, 21). Previous studies
from the University of Kentucky Alzheimer’s Disease Center (UK-ADC) have demonstrated
the utility of quantitative assessment of ADNCs. Manual quantitation of AD pathologies has
been performed at the UK-ADC for more than 20 years. The quantitation of ADNCs helped
to demonstrate the association of the different lesion type densities with cognitive
impairment across the spectrum of disease from preclinical AD (11, 22) and mild cognitive
impairment (5) to end-stage disease (23). Using the quantitative manual counts, the severity
of ADNCs can also be correlated with possible risk factors such as diabetes (24) and to
related diseases such as tangle-only pathology lacking amyloid plaques (25); they can also
highlight differences in the anatomical distribution of ADNCs (26). Further, having
quantitative neuropathologic assessment enabled us to develop a model of how each
pathologic subtype contributes to cognitive impairment (27). In these studies, we previously
found evidence of a “leveling off” of amyloid plaques in late-stage disease (18), but our
confidence in these results was limited due to the technical drawbacks of the manual
counting method (i.e. with caps on amyloid plaque counts, as described [23, 25, 28]). Work
from other centers has also showed the benefits of quantitative assessment of AD
neuropathologic changes (29-33). A common thread in these published studies is that the
benefits of quantitative pathology can best be obtained if they are used in combination with
detailed data about the patients’ non-AD pathological findings, medical histories, and
cognitive status.

Although insights can be gained by quantitative assessment of ADNCs, manual methods as
performed at UK-ADC are painstaking efforts that suffer from certain drawbacks. This
process, which involves manual inspection and quantitation of 8 different areas of the brain
processed via the modified Bielschowsky silver impregnation protocol, is extremely time-
consuming. Also, despite our longstanding expertise in this area there is still suboptimal
inter-rater reliability, which limits the ability to generalize our findings to those of other
institutions. A final drawback includes the practice of limiting the counted area to 5
microscopic fields and implementing a cap value to plaques. While this is necessary to allow
manual counting to be manageable, it introduces a source of error to our quantitation results.

The advent of digital slide scanners and software analysis packages is revolutionizing the
practice of pathology and the research questions that can be addressed using pathological
material. Digital slide scanners create digitized images of glass slides that can be viewed
from a computer at varying magnifications and stored indefinitely. Such files can then be
used for high-throughput, sophisticated image analyses, which offer quantitation capabilities
that far exceed those that can be achieved manually in terms of reproducibility, unbiased
image recognition algorithms and sheer volume. Previous studies have demonstrated some
of the advantages of digital image analysis within AD research; either through montaged
still images (34) or a variety of digital slide systems (35, 36). One such software package is
Aperio’s Genie Histologic Pattern Recognition Tool (37). The Genie software has the ability
to “learn” objects of our specification, in this case NFTs and NPs, based on a set of
representative slides. Once this “teaching” is complete, the software has the ability to
identify NFTs and NPs on any PHF-1-stained section in a very reproducible manner. This
pattern recognition software has been successfully used in a variety of pathologic conditions,
ranging from kidney failure to breast carcinoma (38, 39).

We took advantage of the strengths of digital pathology to update our quantitation protocol
for ADNCs. In addition to parameters similar to those that we also obtain manually, we
anticipated finding additional changes within plaque morphology that were impossible to
quantify rigorously by manual methods. Additional data provided routinely by the
algorithms include average plaque area and varying staining intensities. Such variables
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applied over many cases may reveal new insights into the pathological expression of the
disease that may never have been possible through manual methods alone.

MATERIALS AND METHODS
Case Selection and Scanning

Slides and paraffin-embedded tissue from the superior and middle temporal gyri were
analyzed from which manual quantitation of diffuse Aβ plaques (DPs), NPs, and NFTs had
already been performed on modified Bielschowsky impregnations of near-serial sections via
methods previously described in detail (23, 25, 28). Briefly, paraffin-embedded tissue was
processed and 8-μm-thick sections were cut and processed using a modified Bielschowsky
method (34). DPs were counted through a 10x objective (field size 2.35 mm2) in the 5 most
involved fields, with an arbitrary “cap” at 250 plaques over all 5 fields. NPs were also
counted in a similar manner but without a cap. NFTs were counted in the 5 most severely
affected fields through a 20x objective (field size, 0.586 mm2). An arithmetic mean was then
calculated for each parameter, resulting in a DP, NP, and NFT count/field.

For digital amyloid quantitation, a convenience sample of 65 cases was chosen based on the
manual DP counts. Cases were selected with the goal of ensuring an adequate distribution of
DP counts, ranging from 0 and 50 DP/field, i.e. not “anchored” in very high or very low DP
counts. For each case, Aβ immunohistochemical (IHC) staining had already been performed
via previously described methods (28), with a monoclonal NCL-β-amyloid 6F/3D antibody
(Novocastra, Newcastle, UK). Further analyses of amyloid plaque size distributions were
performed on those cases with known Apolipoprotein E (APOE) status (APOE ε4, n = 19;
APOE non-ε4, n = 41), as well as a subset of these with a final Mini-Mental State
Examination (MMSE) score of 27 to 30 (APOE ε4: n = 6; APOE non-ε4: n = 24).

For digital quantification of tau (neurofibrillary) pathologies, a convenience sample of 48
cases were chosen based on the Braak stage to ensure a full range of tau levels (4 cases
Braak 0, 5 cases Braak I, 4 cases Braak II, 3 cases Braak III, 4 cases Braak IV, 14 cases
Braak V, and 14 cases Braak VI). PHF-1 (a kind gift from Dr. Peter Davies, Bronx, NY)
IHC was performed on the superior and middle temporal gyri. Additional analyses to
compare digital amyloid and tau pathologies were performed on a subset of the cases in
which both PHF-1 and AβIHC stains were performed. Cases with confounding pathologies
(e.g. neocortical Lewy bodies, hippocampal sclerosis, vascular disease, frontotemporal
dementias, and progressive supranuclear palsy) were excluded from this analysis, leaving a
total of 24 cases across the full spectrum of ADNC severity. Slides were then loaded into an
Aperio ScanScope XT and scanned at 40x magnification (0.25 μm/pixel) via the semi-
automated method and then stored on a dedicated server. Slides were checked for image
quality by using an Aperio ‘quality factor >90’ and visual inspection.

Analysis Region Selection
Whole slide analysis was impractical because it was overly time-consuming and severely
biased by differential distribution of gray/white matter in different cases. To enable a more
focused analysis that could be reproducible between users, a square analysis region (4 mm2)
was created. For each case, that box was placed within the gray matter at the site of highest
concentration of pathological findings. Subsequent boxes were then placed as far from the
existing boxes as possible without overlapping other analysis regions. Areas of poor stain
quality were avoided. To minimize analysis alterations caused by portions of folded tissue or
foreign material, these were eliminated from the analysis boxes with the negative pen tool.
In the amyloid analyses, meningeal vessels were also excluded by the negative pen tool, so
as to limit the burden and plaque analyses to parenchymal content. Parenchymal vessels that
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were involved by amyloid angiopathy were included in the burden analysis; these vessels
were not picked up by the plaque density algorithm.

Analysis Workflow
Once the analysis regions were selected, the next step was to identify the appropriate
quantitation algorithms to use. For cases in which there was no need to subtype pathologies
within a given immunostain, for example, with the AβIHC stain, the pattern recognition
software adds an unnecessary and time-consuming step. Therefore, analysis of either
amyloid plaque density or overall amyloid burden could be performed by simple
modification of the pre-existing algorithm templates. In contrast, within a single PHF-1
immunostain we wanted to quantitate NFTs and NPs separately. The pattern recognition
software allows each of these structures to be highlighted in isolation. Once identified, they
could then be quantitated by a variety of mechanisms. A representative schematic of the
digital workflow is in Figure 1.

β-Amyloid Quantitation
Two different parameters were calculated for amyloid pathologies: an overall amyloid
burden and an amyloid plaque density. For the overall amyloid burden, the Aperio Image
Analysis Toolbox Positive Pixel Count (PPC), version 9.1, was used. Modifications were
made to the input parameters of the algorithm to optimize for our staining protocol based on
comparison of sample analysis markups with manual counting results by visual inspection in
multiple areas upon 3 representative slides (Table, Supplemental Digital Content 1, http://
links.lww.com/NEN/A398). The modified PPC was then run on the 10 4-mm2 boxes
selected on each slide as described above. The amyloid burden was calculated by adding up
all of the weak (1+, yellow), positive (2+, orange), and strong (3+, red) pixels from the data
and dividing by the overall analysis area (40 mm2). For the amyloid plaque density, the
Aperio Image Analysis Toolbox Nuclear algorithm, version 9.1, was used with subsequent
modifications, derived in a similar manner to the amyloid burden (Table ,Supplemental
Digital Content 2, http://links.lww.com/NEN/A399). This modified algorithm was then run
on the same 10 boxes chosen for the amyloid burden analysis. The amyloid plaque density
was calculated by adding up all the weakly (1+, yellow), moderately (2+, orange), and
strongly (3+, red) positive ‘nuclei’ and dividing by the overall analysis area (40 mm2).

Tau Quantitation
Three different parameters were quantified for tau pathologies: NFT density, NP burden,
and overall tau burden. For the NFT and NP quantitation, a single Genie algorithm was first
developed to separate NFTs and NPs from the background. Approximately 10 to 15
representative samples for each of the 3 classes (NFTs, NPs, and background) were
highlighted using a digital pen tool. In selecting sample structure, care was taken to make
sure the range of possible morphologies was covered for any given pathology (e.g. making
sure that multiple areas with white matter, vasculature, or meningeal tissue were included
for the ‘background’ training). Then the Genie training algorithm, consisting of 2000
iterations, was run with the apparent 5X magnification. The algorithm was then evaluated by
visual inspection in an unmarked area to assess its accuracy. This process was repeated until
the algorithm, or “classifier” could identify both structures to our satisfaction. The NFT/NP
Genie algorithm was then used in subsequent analyses for quantification.

The NFT density was calculated via a modified nuclear algorithm, version 9.1, with our
NFT/NP Genie classifier limited to NFTs. An input parameter that was important to address
was the minimum nuclear cutoff size (μm2). To find the nuclear size that would both
maximize the number of NFTs and minimize the number of non-NFT particles counted (i.e.
oligodendroglia and glial inclusions), the algorithm was run multiple times on a subset of 10
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cases using a series of ‘minimum nuclear size’ cutoffs ranging from 35 to 100 μm2. The
NFT density for each cutoff was calculated and then compared to both the manual counts
and the final MMSE scores. Using this method, it was found that a minimum nuclear size of
40 μm2 provided the most accurate result. The algorithm input parameters are listed in
Table, Supplemental Digital Content 3, http://links.lww.com/NEN/A400. The modified
nuclear algorithm was run on 10 4-mm2 boxes selected by the method stated above within
the gray matter in the PHF-1-immunostained sections. The NFT density was calculated by
dividing the total number of nuclei counted by the overall analysis area (40 mm2).

For the NP burden, the Positive Pixel Count (PPC), version 9.1, was used with our NFT/NP
Genie classifier limited to NPs and modified for our staining protocol via visual inspection.
The algorithm input parameters are listed in Table, Supplemental Digital Content 4, http://
links.lww.com/NEN/A401. The modified PPC was then run on the same boxes selected for
NFT analysis. The NP burden was calculated by adding up all the weak (1+, yellow),
positive (2+, orange), and strong (3+, red) pixels from the data and dividing by the overall
analysis area (40 mm2).

The overall tau burden was determined using a PPC algorithm, version 9.1, similar to the
amyloid burden quantitation, but with stain-specific modifications based on visual
inspection. The algorithm input parameters are listed in Table, Supplemental Digital Content
5, http://links.lww.com/NEN/A402. The modified PPC was then run on the same 10 4-mm2

boxes selected for the other tau analyses. The tau burden was calculated by dividing the
“strong” (3+, red) pixels by the overall analysis area (40 mm2).

Inter-observer Variability
To test the reproducibility of the algorithms, a subset of 30 Aβ- and 30 PHF-1-stained
sections were given to 2 additional individuals with varying degrees of neuropathology
expertise, i.e. the brain bank coordinator involved in the manual counting of these
pathologies and an undergraduate student with no neuropathology experience. Each
individual was given the same set of digital slides, along with instructions for analyses as
described above, with no pre-existing analysis boxes selected. This method was only
performed a single time. All 5 digital analyses were then run on these selected regions and
compared to the original data received from the fields selected by a neuropathologist.

Statistical Analysis
Ordinary least-squares regression was conducted to assess the relationship between manual
and digital counts. Group comparisons involved paired t-tests, with graphed results of
amyloid plaque morphology shown as arithmetic mean ± SEM, using MS Excel. Intra-class
correlation coefficients were calculated to assess inter-rater reliability for the 3 users. One-
way analysis of variance tables (with autopsy case as the factor) were constructed for each
measure using PROC GLM in SAS/STAT 9.3, and estimated Intra-class correlation
coefficients and 95% confidence intervals were calculated based on the mean squared errors
for within and between subjects.

RESULTS
After scanning, the next step was to identify the regions for analysis. Although initial
analyses were run on the entire slide, it was found to be inefficient, taking hours to identify
one parameter when the Genie software was used. Limiting the analysis area to a preset
region of known size and shape led to far faster analyses. In order to balance accuracy and
efficiency, a series of 30 4-mm2 annotation boxes were placed in the manner described
above (Fig. 2A) on 15 representative Aβ-stained slides. Amyloid quantitation via the
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modified nuclear algorithm was then performed in each of the square regions. By adding the
plaque numbers within each box together in a sequential manner and then dividing by the
total area analyzed (e.g. Box 1 plaque #/4 mm2, Box 1+2 plaque #/8 mm2, Box 1+2+3
plaque #/12 mm2, etc.), an additive amyloid plaque density was calculated. When these
additive densities were graphed with respect to box number, it became clear that the density
approached an asymptote (Fig. 2B). In all cases tested this asymptote was approached by 8
to 10 analysis boxes. To ensure that the box selection procedure was not significantly
biased, we also performed the same analyses on a subset of 5 cases, choosing the first square
in a region with the least involvement of pathology. In all cases, the analyses approached the
same asymptote as was reached in the original selection. A second algorithm, the overall
amyloid burden, was also tested and showed similar results. Because of these findings, we
used 10 4-mm2 boxes for each slide to quantitate amyloid and tau pathologies. This dropped
the analysis time from an average of 1 and 6.5 hours to 5 and 45 minutes for each amyloid
and tau algorithm, respectively.

Amyloid Quantitation
Both the amyloid burden and amyloid plaque density (Fig. 3) correlated strongly with
manual DP counts, with R2 values of 0.62 and 0.72, respectively (Table 1, Fig. 4A). By
altering our quantitation protocol from the modified Bielschowsky to amyloid IHC, the
ability to distinguish DPs from NPs during amyloid quantitation was lost. Because the
amyloid IHC should pick up both plaque types, the digital parameters were correlated to the
sum of the manually derived DP and NP counts. This resulted in similar correlations
between our methods (R2 values 0.60 and 0.67 for amyloid burden and plaque density,
respectively) (Table 1, Fig. 4B). An additional confounding issue involved the artifactual
capping of manual counts at 50 plaques/field. When a similar cap was employed on the
digitally derived numbers, purely for the sake of correlation, there was marked improvement
of correlation between the amyloid plaque density and manual DP counts, with an R2 value
of 0.82, as well as with the sum of DP and NP manual counts (R2 = 0.79). Finally, the 2
separate digital amyloid parameters were correlated to each other to confirm concordance,
which was found to be the case (R2 = 0.76, Fig. 4C).

Tau Quantitation
Correlations between tau pathologies were more variable (Table 1). Representative images
of the Genie NFT/NP recognition and the subsequent tau algorithms are shown in Figures 5
and 6, respectively. Digital NFT density correlated well with the manual NFT counts (R2 =
0.57, Fig. 7). Whereas there was no official capping policy of tau pathologies, the manual
NFTs were never more than 50 NFTs/field, despite the Aperio density often being
significantly larger. We hypothesize that a bias due to counting fatigue likely affected the
manual data. For correlation purposes, the Aperio data were capped at 50 NFTs/mm2, as was
done on the amyloid plaque density. This resulted in a significant improvement in the
correlation, with an R2 value of 0.7369. Overall tau burden showed good correlation with
manual NFT counts (R2 = 0.56) and the digitally derived NP burden (R2 = 0.73) and NFT
density (R2 = 0.86), but weaker correlation with the manual NP counts (R2 = 0.27). NP
burden showed the weakest correlation with manual counts, with an R2 value of 0.31. Even
implementing a cap (as with the NFT and amyloid plaque densities), there was only a mild
improvement in correlation (R2 = 0.37) (Fig. 8). By visual inspection, the NP burden
algorithm appeared to appropriately highlight NPs. Further visual comparison between the
original silver impregnation preparations (on which the manual counts had been obtained)
and the new PHF-1 immunostain highlighted the markedly increased sensitivity of the
PHF-1, which identified more NPs than were seen on with the Bielschowsky method (Fig.
8B, C).
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Inter-observer-Variation
The observed agreement among the 3 users was very good for all measures assessed (Table
2). Intra-class correlation coefficients ranged from 0.910 (95% confidence interval 0.855,
0.945) for the NFT density to 0.986 (95% confidence interval 0.977, 0.992) for the tau
burden. R2 correlation coefficients were also calculated via least squares regression and
found to range from 0.93 to 0.98 between the individual users.

Additional Analyses
By examining subsets of the above cases, additional comparisons were made using
information gathered from the above algorithms. The first subset of cases was limited to
those with only ADNCs and had both PHF-1 and Aβ immunostaining performed (n = 24).
Digital amyloid plaque densities (as well as the manual sum of DPs and NPs) were
examined as a function of increasing tau burden. The results showed the digital amyloid
plaque density began decreasing when the tau burden approached 500,000 3+pixels/mm2

(Fig. 9); this trend was not identified through the manual counts due to the capping
procedure.

The second additional analysis involved the comparison of amyloid plaque area for cases
with known APOE allele status. When separated, 2 two cohorts based on the presence (n =
7) or absence (n = 41) of the APOE ε4 allele, those cases with at least one APOE ε4 allele
had statistically larger plaque sizes (mean = 380.9 μm2) vs. those lacking the APOE ε4
allele (mean = 274.4 μm2, p < 0.001) (Fig. 10A). This finding maintained significance even
when the analysis was limited to those cases with a final MMSE score of 27 to 30. Those
with APOE ε4 (n = 5) had an average plaque size of 333.20 μm2, whereas those without
APOE ε4 alleles (n = 25) had a significantly smaller plaque size (233.48 μm2. p = 0.023)
(Fig. 10B).

DISCUSSION
The goals of this study were to establish a set of computer algorithms to replace manual
quantitation at our center and to highlight the possible benefits that digital pathology may
provide over the traditional counting methods at other research centers. The results indicate
that amyloid plaque parameters, NFT density, and overall tau burden correlate strongly with
the manual count data that have been used for years and in dozens of published studies at the
UK-ADC. We also were able to elucidate new features of plaque morphology that would be
practically impossible to evaluate using most other methods.

Digital pathology offers multiple benefits that surpass both semiquantitative methods and
manual counts. Digital algorithms offer superior reproducibility and higher throughput
performance that enables a far more standardized approach to the assessment of ADNCs. If
individual centers begin to use a standard algorithm for quantitation, results could be used
across institutions, thereby exponentially increasing the statistical power available to all
centers involved. The digital approach is relatively efficient when it comes to manpower.
While it does take additional time to scan the slide and set up the analysis windows
(approximately 45 minutes to prepare and scan at 40x via the semi-automated method and
an additional 5 to 10 minutes to select the analysis windows per slide), the bulk of the
analysis work is done by the server alone. These analyses can be set up during the day and
then allowed to run overnight without interruption. In addition, neuropathologic expertise is
not a requirement for this method. Anyone at any level of expertise can be taught to select
analysis areas in a few minutes. Because the analysis algorithms are held constant,
regardless of who sets up the windows, the data will be consistent. This could be expanded
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to involve algorithm sharing between institutions and thus improve the inter-rater reliability
between the different research centers to help standardize the field of quantitative ADNCs.

Prior work showed that digital pathology could help elucidate different subtypes of AD
cases based on quantifiable patterns of ADNCs (29). We confirmed that digital pathology
can be used to discover new and interesting trends that we were not able to identify before at
our center despite decades of work in quantitative assessment of ADNCs. While our
manually quantified ADNC numbers suggested that amyloid plaque burden leveled off with
increasing pathology, we failed to identify that it actually decreases with increasing tau
burden by our manual methods alone. Intuitively, it makes sense that individuals with ApoE
ε4 alleles would have more amyloid plaque pathology (40-43), and this might correspond
with having larger amyloid plaques; however, using manual counts, we could not
demonstrate this trend reliably. These data may enable other new insights into the pathologic
changes seen in AD.

Despite the benefits of the digital pathology methods, they also entail potential drawbacks.
The up-front cost of digital pathology could be problematic for some centers and hospitals;
the system described here cost almost $300,000 in 2010. Whole slide analysis was the
theoretical goal; however, the massive amount of analysis time this required made this
impractical. Our protocol still quantitates far more area than was previously examined
manually. The most problematic pathology to quantitate were the NPs, as indicated by the
weaker correlations between digitally and manually counted numbers. Due to the
heterogeneous nature of the NPs, single plaques could not be counted individually, as they
could by manual methods. Thus, we had to convert to an NP burden, which gives a picture
of overall NP surface area, rather than individual plaque number. We also switched our
staining protocol from the modified Bielschowsky histochemical method to the PHF-1 IHC
stain. This stain has a better sensitivity for tau-related abnormalities (44-47), and thus
highlighted many more NPs than were seen with the silver method. It is likely this
combination of variables led to the weaker correlation seen between our NP parameters.

Digital pathology offers a valuable resource for quantitative pathology in neurodegenerative
disease. With these algorithms, more AD-type pathology can be counted faster and more
reproducibly than by manual inspection alone. In addition, more parameters can be
rigorously examined, from staining intensity to plaque size and more. As our use of this
technology advances, it will open up new understanding of the pathologies in human brain
aging.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A, B) Analytic workflow for high-throughput quantitation of Alzheimer Disease-type
neuropathologic changes (A), with a more detailed explanation of the image analysis steps
(B). IHC, immunohistochemistry; NFTs, neurofibrillary tangles; NP, neuritic Aβ plaques;
PHF-1, phospho-tau immunostain.
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Figure 2.
Determination of appropriate analysis area. (A) A 4-mm2-square annotation was initially
placed in the gray matter region with highest density of pathology (*). Subsequent regions
were then randomly selected, up to 30 regions. The plaque density was then calculated for
each individual box and then sequentially averaged together in a step-wise fashion. (B) The
average density approached an asymptote by 10 boxes in all test cases studied. Scale bar = 2
mm.
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Figure 3.
Amyloid quantification. (A) β-amyloid immunostain was performed on the superior and
middle temporal gyri (SMTG) of all cases. (B) Digital analysis of amyloid plaque density in
number of diffuse Aβ plaques (DP #)/mm2 via a modified nuclear algorithm. In addition to
quantitation of the amyloid plaques, the digital analysis also separated the plaques by
varying degrees of intensity (0: blue, 1+: yellow; 2+: orange; 3+: red). Scale bar = 50 μm.
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Figure 4.
Amyloid quantification correlations (n = 65). (A) There was good correlation between the
digital quantification via digital amyloid plaque density and the manually derived diffuse Aβ
plaque (DP) counts. (B) Inclusion of the manually counted neuritic Aβ plaques (NPs), which
were also picked up by the amyloid immunohistochemistry, also showed excellent
correlation. (C) Correlation of the digital plaque density to digital amyloid burden.
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Figure 5.
Use of Genie Histopathology Pattern Recognition Tool to identify tau pathologies on
phospho-tau (PHF-1) immunohistochemistry. (A) An area selected for Genie analysis
contained both neuritic Aβ plaques (NPs) (arrowheads) and neurofibrillary tangles (NFTs)
(arrows). (B) The crafted algorithm highlighted these structures automatically (NFTs green,
NPs gray). Scale bar = 25 μm.
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Figure 6.
Digital quantification of tau pathologies. (A) Analyses were performed on phospho-tau
(PHF-1)-immunostained sections. (B) After using the crafted Genie NFT/NP algorithm to
isolate the neurofibrillary tangles (NFTs), the NFT density (NFTs/mm2) was determined by
a modified nuclear algorithm, with NFTs ranging in staining intensities from 0+ (blue), 1+
(yellow), 2+ (orange), and 3+ (red). (C) In a similar manner, the neuritic Aβ plaque (NP)
burden was calculated by first using the same crafted Genie algorithm to isolate the NPs and
then running a modified positive pixel count to highlight each pixel based on a similar
staining intensity as above. (D) An overall tau burden was also calculated (red: positive
immunohistochemical (IHC) staining; blue: negative IHC staining). Scale bar = 25 μm.

Neltner et al. Page 17

J Neuropathol Exp Neurol. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 7.
Neurofibrillary tangle (NFT) quantification correlations (n = 48). The correlation between
digital NFT density and the manual NFT counts are shown.
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Figure 8.
Neuritic Aβ plaque (NP) quantitation correlation (n = 48). (A) Even with a virtual cap, the
correlation between the digital NP burden and the manual NP counts was below that of the
neurofibrillary tangles (NFTs). Upon review of the cases with high digital NP burden and
low manual NP counts, much of this was thought to be due to the increased sensitivity of the
phospho-tau (PHF-1) immunostain when compared to the modified Bielschowsky method.
(B, C) A representative 10x field in the superior and middle temporal gyri (SMTG) of the
case highlighted with an arrow in (A). Those that were likely counted as diffuse Aβ plaques
(DPs) on the silver stain (B) were actually NPs by PHF-1 IHC (C). Scale bar = 50 μm.
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Figure 9.
Comparison of varying amyloid plaque densities as overall tau burden increases (n = 24).
With the increased counting capabilities offered by digital quantitation, it was clear that
plaque number tended to decrease as tau burden increased, a trend that could not be seen
using our manual data alone. DP = diffuse Aβ plaques.
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Figure 10.
Examination of amyloid plaque area in patients with known APOE allele status (APOE ε4 n
= 7; non-APOE ε4 = 41). (A) Patients with APOE ε4 alleles had a significantly larger
average plaque area vs. those without an APOE ε4 allele. (B) This finding holds true even
when the degree of cognitive impairment is controlled by limiting the final Mini-Mental
State Examination (MMSE) scores to 27 to 30 (APOE ε4 n= 5; non-APOE ε4 = 25) (B).
Graphs are mean ± SE; *p < 0.001, **p < 0.023.
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Table 1
Ordinary Least Squares Regression R2 Correlation Coefficients for Comparisons
Between Manual Counts and Digital Parameters

Digital Amyloid (n=65) Correlation
with Manual

DPs
R2 (p) values

Correlation with
Manual DPs +

NPs
R2 (p) values

Amyloid Burden 0.62 (<0.001) 0.60 (<0.001)

Amyloid Plaque
Density

0.72 (0.001) 0.67 (0.09)

Digital Tau (n=48) Manual NFTs
R2 values

Manual NPs
R2 values

NFT Density 0.57 (0.04) --

Tau Burden 0.56 (NA) 0.27 (NA)

NP Burden -- 0.31 (<0.001)

DPs, diffuse plaques; NPs, neuritic plaques; NFTs, neurofibrillary tangles; NA, not applicable.
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Table 2
Intra-Class Correlation Coefficients with 95% Confidence Intervals to Assess Inter-Rater
Reliability for 3 Users

Measure Estimated ICC (95% Confidence
Interval)

Amyloid Burden 0.973 (0.956, 0.984)

Amyloid Plaque Density 0.974 (0.957, 0.984)

Tau Burden 0.986 (0.977, 0.992)

NFT Density 0.910 (0.855, 0.945)

NP Density 0.970 (0.951, 0.982)

ICC, intra-class correlation coefficient; NP, neuritic plaque; NFT, neurofibrillary tangles
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