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Feedback loops are ubiquitous features of biological networks and
can produce significant phenotypic heterogeneity, including a bi-
modal distribution of gene expression across an isogenic cell
population. In this work, a combination of experiments and compu-
tationalmodelingwas used to explore the roles ofmultiple feedback
loops in the bimodal, switch-like response of the Saccharomyces cer-
evisiae galactose regulatory network. Here, we show that bistability
underlies the observed bimodality, as opposed to stochastic effects,
and that two unique positive feedback loops established by Gal1p
and Gal3p, which both regulate network activity by molecular se-
questration of Gal80p, induce this bimodality. Indeed, systematically
scanning through different single andmultiple feedback loop knock-
outs, we demonstrate that there is always a concentration regime
that preserves the system’s bimodality, except for the double dele-
tion of GAL1 and the GAL3 feedback loop, which exhibits a graded
response for all conditions tested. The constitutive production rates
of Gal1p and Gal3p operate as bifurcation parameters because var-
iations in these rates can also abolish the system’s bimodal response.
Our model indicates that this second loss of bistability ensues from
the inactivation of the remaining feedback loop by the overex-
pressed regulatory component. More broadly, we show that the
sequestration binding affinity is a critical parameter that can tune
the range of conditions for bistability in a circuit with positive feed-
back established by molecular sequestration. In this system, two
positive feedback loops can significantly enhance the region of bist-
ability and the dynamic response time.
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Cells are continuously faced with the challenge of sensing sig-
nals in their environment and eliciting intracellular programs

accordingly. Although changes in some environmental cues en-
gender graded and proportional responses, others induce decisive
action whereby a cell exhibits a binary (on or off) phenotypic
change. In the latter case, amplification of phenotypic heteroge-
neity may arise because single cells in a population make indi-
vidual decisions based on their perception of the environmental
stimulus, stochastic fluctuations in their molecular components,
and memory of past conditions. This thresholded cellular re-
sponse can manifest as a bimodal distribution in network activity
across an isogenic cell population.
Feedback regulation, which links the output of a circuit back

to its input, expands the set of possible biological properties,
including robustness to uncertainty (1), and can produce single-
cell phenotypic heterogeneity in a uniform environment. Many
features of individual positive and negative feedback loops have
been elucidated, including enhancement of response time and
reduction of gene expression noise by negative autoregulation, as
well as signal amplification and bistability using positive autor-
egulation (2–5). However, quantitative characterization of how
multiple feedback pathways interact to regulate and fine-tune
cellular decision-making presents many unresolved challenges.
The galactose gene-regulatory network of Saccharomyces cer-

evisiae (GAL) contains numerous feedback pathways. Isogenic
single cells respond heterogeneously to a range of galactose

concentrations, which manifests as a bimodal distribution of GAL
gene expression across the cell population (6). In contrast to
a graded response, in which the mean of a unimodal distribution
is continuously adjusted as the input is modulated, variations in
the concentration of galactose within a range shift the fraction of
the cell population distributed between distinct metabolic states.
Here, we focused on how the multiple feedback loops in the
system shape this bimodal cellular decision-making strategy in
response to galactose.
The GAL circuit consists of regulatory machinery (Gal2p,

Gal3p, Gal80p, and Gal4p) that dictates network activity and
a set of enzymes required for metabolizing galactose (Gal1p,
Gal7p, and Gal10p). In the absence of galactose, GAL genes are
repressed due to the sequestration of the potent transcriptional
activator Gal4p by the repressor Gal80p (7) (Fig. 1). In the
presence of galactose, the membrane-bound permease trans-
porter Gal2p significantly increases the rate of galactose uptake
from the extracellular environment (8). Galactose and ATP-de-
pendent activation of the signal transducer Gal3p lead to re-
pression of Gal80p by sequestration, thus liberating Gal4p (9).
The galactokinase Gal1p catalyzes the first step in galactose
metabolism by phosphorylating galactose to form galactose 1-
phosphate and has been shown to possess weak coinducing
functionality (10).
Galactose-dependent regulation of Gal2p, Gal3p, and Gal80p

forms feedback loops because these proteins modulate network
activity and are themselves transcriptionally regulated by Gal4p
(11). Gal2p and Gal3p form positive feedback loops because up-
regulation of their expression levels leads to an increase in
pathway activity, whereas Gal80p reduces pathway activity and
thus forms a negative feedback loop.
In addition to Gal2p, Gal3p, and Gal80p, there is evidence to

suggest that Gal1p has a regulatory role beyond its vital enzymatic
function for growth on galactose (10, 12, 13). Gal1p is a close
homolog of Gal3p and has been shown to interact with Gal80p
with a weaker affinity than Gal3p (14, 15). Furthermore, a GAL3
deletion strain was shown to induce GAL gene expression at
a significantly slower rate compared with WT, whereas cells with
combined GAL1 and GAL3 deletions fail to activate their GAL
pathway (16). A recent study demonstrated that cells initially
grown in galactose and then transferred to glucose exhibit a faster
induction response to a second galactose exposure than cells
grown only in glucose, and that Gal1p was critical for this de-
crease in response time (17). Finally, galactose induction was
shown to consist of two stages, the first of which is dominated by
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rapid association of Gal3p to Gal80p and a delayed second stage
consisting of dominance of the Gal1p–Gal80p complex (18).
In this paper, we use a combination of experimental meas-

urements and computational modeling to demonstrate that the
observed bimodality in the galactose metabolic pathway arises
from an underlying bistability in the system and that this bi-
modal response relies on the synergistic interplay of the GAL1
andGAL3 feedback loops. These central mediators have unique
mechanistic roles in the GAL system because they both regulate
circuit activity by competitive molecular sequestration of
Gal80p. Although the bimodal response can be transformed
into a graded response in the absence of the individual GAL1
and GAL3 feedback loops, this only occurs in a specific pa-
rameter regime in which the constitutive production rates of
Gal1p and Gal3p are greater than a threshold. A mathematical
model recapitulates the experimental results and provides cru-
cial insights about the roles of the autoregulatory loops on
bistability. More broadly, a simple mathematical model is used
to identify generalizable properties of positive feedback loops
created by molecular sequestration that implement robust
switch-like responses.

Results
History-Dependent Response Indicates That Bimodality Arises from
Underlying Bistability and Gal1p Significantly Enhances Sensitivity
to Galactose. The presence of bimodality does not necessarily
imply bistability because a bimodal distribution can arise from
stochastic effects (19–21). Hysteresis is a characteristic feature of
bistability, in which the system jumps from one branch of stable
steady states to a different branch of steady states as a parameter is
continuously increased but jumps from the second branch of
steady states back to the first branch at a different value of the
parameter as it is continuously decreased. This behavior stems
from a difference in the local stability of multiple stable equilibria.
To determine if bimodality in the GAL system was linked to
bistability, we checked for a history-dependent response, which is
an indicator of local equilibrium point stability. The bistable sto-
chastic counterpart of a deterministic bistable system may not
exhibit hysteresis due to an insufficient time-scale separation, and
a deterministic system can be bistable without displaying hysteresis
(22, 23). Here, we tested for a stochastic system that exhibits
hysteresis, which would be consistent with an underlying bistability
in a deterministic model of the system. Distinguishing whether
bimodality arises from stochastic interactions or a deterministic
bistability provides critical information about the operation of the
system, including the types of molecular interactions that might be
underlying this response, and suggests a mathematical modeling
framework for studying this phenotype.
We investigated the GAL system’s history-dependent response

by comparing the stability of its high and low metabolic states

as a function of galactose. To measure relative expression state
stability, we used flow cytometry to quantify the fluorescence
distributions of a genome-integrated GAL10 promoter fusion to
Venus (YFP) in WT single cells as an indicator of network ac-
tivity (PGAL10Venus) (24). The cells were grown first in the
presence (EH) and absence (EL) of an environment of 2% ga-
lactose in 2% (wt/vol) raffinose media. Cells from the two
environments were then shifted to a second set of environments
containing a wide range of galactose concentrations.
A history-dependent response existed if cell populations grown

in the two environments (EL and EH) had a different fraction of
cells distributed between the high and low expression states in
a range of galactose concentrations after ∼10 cell divisions after
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Fig. 1. The galactose gene-regulatory network in
S. cerevisiae. The permease Gal2p facilitates in-
tracellular galactose transport. By binding to ga-
lactose, the signal transducer Gal3p becomes highly
activated to sequester the transcriptional repressor
Gal80p. In the absence of galactose, Gal3p can also
inhibit Gal80p, presumably with lower affinity,
leading to GAL gene induction (10). Repression of
Gal80p liberates the transcriptional activator Gal4p
to up-regulate a set of target enzymatic and regu-
latory genes. A series of enzymatic reactions
(interactions inside the box) transforms galactose
into glucose-6-phosphate for glycolysis through the
activities of the galactokinase Gal1p, transferase
Gal7p, and epimerase Gal10p. The regulatory pro-
teins Gal2p, Gal3p, and Gal80p form positive, posi-
tive, and negative feedback loops, respectively.
Gal1p, a paralog of Gal3p, has been shown to
possess bifunctional activities by sequestering Gal80p in the presence and absence of galactose with different affinities, leading to GAL gene activation (10,
51). GAL1 and GAL10 share a bidirectional promoter (PGAL1-10).
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Fig. 2. History-response experiment indicates that GAL bimodal response
arises from underlying bistability. In this experiment, isogenic cells were
grown in two environments, EH (2% galactose and 2% raffinose) and EL (2%
raffinose) until steady state. Cells were then transferred from the two initial
environments to a new set of environments containing a range of galactose
concentrations. A history-dependent response was present if cells from EH
and EL were distributed differently between the high and low states for a
range of galactose concentrations after 30 h of induction. (Upper) Experi-
mental data show history-response region for WT cells. (Lower) Cells that do
not metabolize galactose (GAL1Δ) also displayed a history-dependent re-
sponse. Each data point is the mean of the fraction of cells in the high ex-
pression state, and the error bars represent 1 SD (n = 3). Lines represent
fitted Hill functions.
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the shift (30 h). A 30-h induction period was selected to allow
a sufficient number of cell divisions for dilution of the fluorescent
reporter from EH cells (SI Text, section S1). Within a range of
galactose concentrations, cells from EL and EH were distributed
differently between the high and low metabolic states (Fig. 2),
revealing a history-dependent response and corroborating the
existence of bistability.
To exclude the possibility that the difference in the thresholds

of the dose–responses was due to variable consumption of ga-
lactose, the history-response experiment was performed using
a GAL1 deletion strain that is incapable of metabolizing galac-
tose (GAL1Δ) (25). The GAL1Δ strain was used because cells
with gene deletions for the transferase GAL7 and epimerase
GAL10 are unable to grow in the presence of galactose due to
the toxic accumulation of phosphorylated galactose (26).
Investigation of history dependence in the GAL1Δ strain

revealed that its dose–response threshold was approximately
twofold higher than WT, demonstrating that Gal1p signifi-
cantly contributes to galactose sensitivity. The GAL1Δ cells
also exhibited a history-dependent difference in the galactose
threshold. However, the area separating the activation re-
sponse curves for GAL1Δ was smaller than WT, indicating a
diminished history-dependent response. Taken together, these
data corroborate bistability as the source of bimodality in the
response of the GAL network to galactose and strongly suggest
that Gal1p plays an important regulatory role in addition to its
metabolic function.

Combined Deletion of the GAL1 and GAL3 Feedback Loops Produces
a Graded Response, Demonstrating the Unique Role of Gal1p and
Gal3p in Generating Bistability. To explore Gal1p as a regulatory
component of the system further and to evaluate its role relative
to the other autoregulatory loops, we constructed a series of
feedback loop deletions involving different components of the
system. To do so, we deleted the coding region of a given gene
and integrated a single copy of this gene regulated by an in-
ducible TET promoter or a constitutive promoter. The rate of
production from the TET promoter could be adjusted by doxy-
cycline (dox)-dependent activation of rtTA, a reverse mutant of
the transcription factor TetR (27). In this fashion, the expression
of the gene involved in the feedback loop can be decoupled from
the activity of the galactose pathway because the regulation of
the constitutive or inducible promoter is external to the GAL
regulatory circuit.
To compare the operation of the WT system and the different

feedback mutants on equal footing, we selected the strength of
constitutive expression of each gene by mapping it to the cor-
responding WT expression levels using real-time quantitative
PCR (qPCR) (Table 1). We also explored a range of TET pro-
moter expression levels by scanning different dox concentrations
to investigate the relationship between constitutive expression of
each regulatory component and the steady-state dose–response.
The fluorescence distributions were classified as unimodal or

bimodal using a Gaussian mixture model (GMM) threshold
(Materials and Methods).
Eliminating the GAL2 or GAL80 feedback loop did not

abolish the GAL system’s bimodal response (Fig. 3 B1 and B2).
Instead, bimodality persisted for a range of expression levels for
Gal2p and Gal80p (Fig. S1 A and B). Compared with WT, cells
with a deleted GAL80 feedback loop (GAL80Δ fb) displayed
bimodality for a larger number of galactose concentrations.
Contrary to a previous study (28), we observed that the GAL3
feedback loop was not necessary for bimodality for WT expres-
sion levels of Gal3p (Fig. 3 A4 and Fig. S2). However, in the
GAL3Δ fb cells, the bimodal response could be transformed
into a graded response by driving the rate of constitutive Gal3p
production beyond a critical threshold (SI Text, section S2). We
found that the discrepancy with the previous study (28) can be
explained by constitutive Gal3p expression above this threshold.
Because the GAL2, GAL3, and GAL80 feedback loops were

not individually necessary for bimodality, we hypothesized that
they play compensatory roles or that bimodality relies on yet
another uncharacterized feedback loop. To address the possi-
bility that the feedback loops had overlapping or compensatory
functions, we constructed combinations of feedback loop dele-
tions of GAL2, GAL3, and GAL80 by constitutively expressing
them from the ADH1, TET, and STE5 promoters, respectively.
Remarkably, bimodality was preserved in the absence of both the
GAL2 and GAL3 feedback loops (GAL2Δ fb and GAL3Δ fb)
and also in a triple feedback loop deletion strain of GAL2,
GAL3, and GAL80 (Fig. 3 B3 and B4).
Therefore, combinations of GAL2, GAL3, and GAL80 feed-

back loops did not functionally overlap to create bimodality.
Because Gal1p regulates both the sensitivity and memory of the
GAL network to galactose (Fig. 2B), we explored the possibility
that Gal1p could be an important component of the system’s
bimodality.
In contrast to Gal3p and Gal80p transcriptional regulation,

Gal1p is tightly repressed in the absence and strongly induced
in the presence of galactose. As a consequence, matching the
open and closed loop production rates using the TET promoter
was challenging. Similar to Gal3p, Gal1p has been shown to
activate GAL genes independent of galactose, and a sufficiently
strong constitutive Gal1p production rate could shift the op-
erating point of the network (10). We first explored the lowest
regime of Gal1p expression using a GAL1 gene deletion
(GAL1Δ), and bimodality was detected in this strain for several
galactose concentrations (Fig. 3A2). The GAL1 feedback loop
deletion, PTET GAL1 (GAL1Δ fb) was also bimodal in the
absence of dox for at least one galactose concentration (Fig.
3A3) but was graded in the presence of 10, 25, 50, and 100 ng/
mL dox (Fig. S4).
We examined the combined effect of removing the GAL2,

GAL3, or GAL80 in a strain lacking GAL1. As shown in Fig. 3
B5 and B6, the combined deletion of GAL1 and the GAL2
feedback loop (GAL1Δ GAL2Δ fb) and dual deletion of GAL1
and the GAL80 feedback loop (GAL1Δ GAL80Δ fb) displayed
bimodality for at least two galactose concentrations.
In stark contrast, the simultaneous deletion of GAL1 and the

GAL3 feedback loop (GAL1Δ GAL3Δ fb) produced a graded
response for the entire range of galactose (Fig. 3A5). Remark-
ably, this graded response persisted irrespective of the constitu-
tive Gal3p production rate in contrast to the single GAL3
feedback KO that displayed bimodality for some range of con-
stitutive Gal3p levels (Fig. S5A). These data provide further
evidence that GAL1 is an active regulatory component of the
circuit and that the interplay between the GAL1 and GAL3
feedback loops is crucial for bimodality.
In addition to eliminating bimodality, our results revealed that

removing GAL1 and the GAL3 feedback loop abolished ultra-
sensitivity in the dose–response to galactose, indicating a cou-
pling between the mechanisms for ultrasensitivity and bistability
in the GAL network. We found that the Hill coefficient for
PGAL10 Venus in WT was ∼3, whereas this same reporter

Table 1. Summary of real-time qPCR measurements comparing
constitutive expression in the feedback deletion strains and WT
mRNA levels of GAL1, GAL2, GAL3, and GAL80

Promoter gene Range of WT expression

PTET GAL1 0 (4%) and 100 (20%) ng/mL dox
PTET GAL2 100 (37%) ng/mL dox
PTET GAL3 0 (50%) and 20 (100%) ng/mL dox
PTET GAL80 0 (40%) and 25 (100%) ng/mL dox
PADHI GAL2 58%
PSTE5 GAL80 21%

Expression levels were compared with WT fully induced with galactose
(0.5% galactose). Each value is the mean of at least three independent qPCR
measurements (Fig. S3).
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exhibited a Hill coefficient of ∼1.3 in the absence of GAL1 and
the GAL3 feedback loop (GAL1Δ GAL3Δ fb) (Fig. S5B). This
link between ultrasensitivity and bimodality may arise due to the
necessity of ultrasensitivity for bistability (29).

Cooperative Gal4p Interactions at the Promoter Level Do Not
Generate Bimodal Response. Bimodality was not observed using
the GAL3 and GAL80 promoters as reporters of GAL network
activity in WT for any concentration of galactose (Fig. S1E). In
contrast to the GAL10 promoter, these promoters each contain
a single GAL4 binding site. Multiple GAL4 binding sites may
augment the dynamic range of the reporter to provide a suffi-
cient separation of the high and low expression states, or
cooperativity of Gal4 proteins at the promoter level may be
an important parameter of the bimodal response. To test
whether multiple GAL4 binding sites are necessary for bi-
modality, a synthetic GAL promoter containing a single Gal4p
binding site from the GAL7 promoter driving the expression
of a fluorescent reporter was constructed (Materials and
Methods). This reporter had minimal cooperativity, yet bi-
modality was detected for two galactose concentrations at
steady state (Fig. S6). These data demonstrate that bimodality
is not an exclusive property of promoters with multiple GAL4
binding sites but is instead a property of the upstream
regulatory network.

Deterministic Model of GAL Network Recapitulates Experimental
Results and Provides Insight into the Roles of Feedback Loops. To
probe the roles of the feedback loops further, we constructed an
ordinary differential equation (ODE) model of the system (SI
Text, section S4) that takes into account the concentrations of
Gal1p (G1), Gal3p (G3), Gal4p (G4), and Gal80p (G80). Be-

cause Gal1p and Gal3p can function as coinducers of GAL gene
expression independent of galactose, presumably with lower af-
finities than the galactose-bound forms, these different forms
were not differentiated in the model (10).
Based on these assumptions (a full description is provided

in SI Text, section S4), the set of differential equations for G1,
G3, G4, and G80 that models the interactions shown in Fig. 1 is
given by

d½G1�
dt

¼ αgaleþ αG1½G4�3
½G4�3þK3

G1

þ ω½G1�½G80�− γG1½G1�;

d½G3�
dt

¼ αgal þ αG3½G4�2
½G4�2þK2

G3

þ δ½G3�½G80�− γG3½G3�;

d½G4�
dt

¼ αG4 þ β½G80�½G4�− γG4½G4�;

d½G80�
dt

¼ αoG80 þ αG80½G4�2
½G4�2þK2

G80

þ ω½G1�½G80� þ δ½G3�½G80�

þ β½G80�½G4�− γG80½G80�:

:

Here, αgal represents galactose at a constant input rate.
Parameters were approximated from experimental measure-
ments and values from the literature (SI Text, section S5 and
Table S1). Using these estimates, the Hill coefficients for the
feedback functions involving GAL1, GAL3, and GAL80 were set
to 3, 2, and 2, respectively, but our conclusions were not sensitive
to variations in these values. Models of the individual GAL1,
GAL3, and GAL80 and combined GAL1 and GAL3 feedback
KOs (GAL1Δ fb, GAL3Δ fb, GAL80Δ fb, and GAL1Δ GAL3Δ
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Fig. 3. Double deletion of GAL1 and the GAL3
feedback loop abolishes bimodality. Representative
steady-state flow cytometry data of PGAL10 Venus in
WT and a set of single and multiple feedback loop
deletions induced with a range of galactose con-
centrations. Each black circle indicates the mean of
the distribution determined by a GMM algorithm
(Materials and Methods). Small random deviations
were added to each galactose concentration to
highlight the spread of the fluorescence dis-
tributions. (A) Either GAL1 or the GAL3 feedback
loop is required for bimodality. The WT, GAL1 de-
letion (GAL1Δ), GAL1 feedback deletion (GAL1Δ
fb), and GAL3 feedback deletion (GAL3Δ fb) strains
displayed bimodality for at least one galactose
concentration. GAL1Δ fb and GAL3Δ fb were not
induced with dox. Eliminating the GAL3 feedback
loop in the absence of GAL1 (GAL1Δ GAL3Δ fb)
produced a graded response for the full range of
galactose. (B) Bimodality was preserved for a series
of feedback loop disruptions. The single GAL2
(GAL2Δ fb) and GAL80 (GAL80Δ fb) loop deletions
were induced with 100 and 15 ng/mL dox, re-
spectively. Bimodality persisted for a dual feedback
loop disruption of GAL2 and GAL3 (GAL1Δ fb
GAL3Δ fb) and a triple feedback deletion of GAL2,
GAL3, and GAL80 (GAL2Δ fb GAL3Δ fb GAL80Δ fb).
For these two strains, GAL2, GAL3, and GAL80 were
expressed from ADH1, TET, and STE5 promoters,
respectively, in the absence of dox. Deleting the
GAL2 (GAL1Δ GAL2Δ fb) and GAL80 (GAL1Δ
GAL80Δ fb) feedback loops individually in a strain
lacking GAL1 preserved bimodality. GAL1Δ GAL2Δ
fb and GAL1Δ GAL80Δ fb were induced with 100
and 15 ng/mL dox, respectively.
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fb, respectively) were constructed by modifying appropriate
terms in the WT model (SI Text, section S6).

Bifurcation Analysis of GAL Model Confirms That Only the Combined
GAL1 and GAL3 Feedback Deletion Eliminates Bistability. At equi-
librium, the concentration of Gal4p can be written as an 11th-
order polynomial as described in SI Text, section S4. Similarly,
the individual feedback deletion models for GAL1, GAL3, and
GAL80 and for combined GAL1 and GAL3 were simplified to
eighth-, ninth-, ninth-, and sixth-order polynomials, respectively (SI
Text, section S6). The roots of these polynomials include the
equilibrium concentrations ofGal4p, which represent the activity of
the GAL network. All the models had the potential for bistability
for some region of parameter space because the degrees of the
polynomials were larger than a quadratic. Indeed, models with in-
dividual feedback deletions were still capable of bistability as
a function of αgal (Fig. 4 A1–A4). By contrast, removing both the
GAL1 andGAL3 feedback loops abolished bistability for the entire
range of αgal, consistent with experimental data (Fig. 4 A5 and A6).

GAL1 and GAL3 Feedback Loops Combine Synergistically to Augment
Bistability. Using the model, we explored the effects of the GAL1
and GAL3 feedback loops on the range of αgal for which the
system exhibits bistability. We defined the hysteresis strength,DH ,
as the difference between the bifurcation points of αgal, as shown
in Fig. 4A1 (Materials and Methods). DH represents the range of
conditions in which the system exhibits bistability; thus, the ro-
bustness of bistability to parameter variations increases with DH.
The GAL1 and GAL3 feedback deletion models had approxi-
mately 48% and 31% DH , respectively, compared with WT (Fig.
4B). By contrast, removing the GAL80 feedback significantly in-
creased DH to 166% compared with its WT value, indicating that
this negative autoregulatory loop undermines bistability.
The generality of these results and the dependence on parame-

ters were explored by comparing the DH of the WT and feedback

deletions using randomly generated parameter sets. A total of
10,000 parameter sets were obtained by sampling a normal distri-
bution with a mean equal to the values of parameter set I and
a coefficient of variation equal to 0.1. All parameters were varied,
except for the constitutive production rates of Gal1p (αG1s), Gal3p
(αG3s), and Gal80p (αG80s). This computation confirmed that
GAL80Δ fb had a larger DH compared with WT and that the WT
exhibited a larger DH than either the GAL1Δ fb or GAL3Δ fb
model for all parameter sets (Fig. 4C). These findings are consistent
with the experimental characterization of the history-dependent
response of the GAL1Δ strain (Fig. 2B) and the data showing that
the range of galactose concentrations that produced bimodality was
expanded in the absence of the GAL80 feedback loop (Fig. 3B2).
In summary, collaboration between the GAL1 and GAL3

autoregulatory loops expands the region of bistability across a
broad region of parameter space, suggesting that this synergy be-
tween dual positive feedback loops may be a consequence of the
unique regulatory roles of Gal1p and Gal3p in the GAL circuit. In
addition, we found that GAL1Δ fb GAL3Δ fb and GAL1Δ fb
GAL3Δ fb were monostable for all 10,000 parameter sets, in-
dicating that one of these autoregulatory loops is necessary for
generating bistability across a broad region of parameter space.
Recently, a two-stage galactose induction model has been

proposed whereby the Gal3p–Gal80p complex (C83) dominates
initially and the Gal1p–Gal80 complex (C81) dominates at a
later stage (18). To check the consequences of including this
feature in our model, we scanned a wide range of parameters
using the Latin hypercube sampling method (30) (SI Text, section
S5) and identified sets of parameters that qualitatively matched
all our data in addition to the dynamic ordering response of C83
and C81 (Fig. S7 B and C). This newly identified parameter set
exhibited the same roles for theGAL1 andGAL3 feedback loops
in enhancing DH across a broad region of parameter space,
further illustrating the generality of our results (Fig. S7D).
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Fig. 4. Bifurcation analysis of the GAL model
qualitatively matches experimental results and
reveals that the GAL1 and GAL3 feedback loops
combine synergistically to expand the parameter
region for bistability. The bifurcation parameter
αgal represents galactose, and the equilibrium value
of Gal4p (G4e) represents the activity level of the
GAL network. (A) Bifurcation plots of WT and the
feedback deletions of GAL1 (GAL1Δ fb), GAL3
(GAL3Δ fb), GAL80 (GAL80Δ fb), and combined
GAL1 and GAL3 (GAL1Δ GAL3Δ fb and GAL1Δ fb
GAL3Δ fb). Blue and red represent stable and un-
stable equilibrium points, respectively. Reflecting
the experimental results in Fig. 3, WT, GAL3Δ fb,
GAL1Δ fb, and GAL80Δ fb exhibit bistability,
whereas GAL1Δ GAL3Δ fb and GAL1Δ fb GAL3Δ fb
are monostable for the full range of αgal . A repre-
sentative distance between the bifurcation points,
DH, is highlighted by a solid black line. (B) Quanti-
fication of the range of bistability for the WT and
single feedback KOs shown in A. Normalized DH is
equal to the range of αgal that produces bistability
relative to WT. (C) Comparison of DH in the WT,
GAL1Δ fb (blue), GAL3Δ fb (red), and GAL80Δ fb
(magenta) models for 5,000 representative ran-
domly generated parameters sets sampled from a
normal distribution with Cv = 0.1. Data points above
the x ¼ y line (black) correspond to parameter sets,
where DH is larger in WT compared with the single
feedback loop KOs.
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Constitutive Production of Gal1p and Gal3p Can Abolish Bimodality in
the Absence of the Individual GAL1 and GAL3 Feedback Loops. We
next tested whether the model could predict and explain the
disappearance of bimodality due to high unregulated levels of
Gal1p and Gal3p in the absence of their individual feedback
loops (Fig. 5 and Figs. S2 and S4). The individual GAL1 and
GAL3 feedback loop deletion models predicted the loss of
bistability as the rate of constitutive production, αG1s or αG3s, was
increased (Fig. 5 C and D). An increase in αG1s in the GAL1Δ fb
model caused the bistable region to contract and vanish at a
critical value (αG1s ¼ 4) (Fig. 5C). In the GAL3Δ fb model, in-
creasing αG3s caused the bistable region to shift to smaller values
of αgal (Fig. 5D) and eventually move out the positive orthant to
negative values of αgal at a critical αG3s (αG3s ¼ 1), thus producing
monostability for all physically realistic values of αgal.

Because Gal1p and Gal3p played an important role in gen-
erating bistability, we suspected that the disappearance of
bistable behavior for αG3s or αG1s exceeding critical values could
be the result of an indirect neutralization of the remaining loop.
For example, it could be case that overexpression of Gal3p in
a GAL3 feedback deletion had the effect of neutralizing the
GAL1 feedback loop. The computational model afforded us the
possibility of testing this hypothesis. For a given value of αG3s, we
defined the GAL1 feedback activity as the maximum change in
steady-state Gal1p concentration across the full range of galac-
tose (αgal ¼ 0− 2 nM·min). As shown in Fig. 5E, the GAL1
feedback was highly active for a range of αG3s values but abruptly
approached 0 at a critical threshold of αG3s (dashed blue line).
Therefore, increasing the constitutive production rate of Gal3p
was indeed equivalent to removing the GAL1 feedback because
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Fig. 5. Model predicts that constitutive production
of Gal1p or Gal3p above a threshold can abolish
bistability in the absence of the individual GAL1 or
GAL3 feedback loop (matching experimental data
in SI Text, section S2 and Figs. S2 and S4). (A) Critical
constitutive level of Gal1p in the absence of the
GAL1 feedback loop produced a graded response.
Flow cytometry measurements of PGAL10 Venus in
a GAL1 feedback deletion strain (GAL1Δ fb). In this
strain, GAL1 was expressed from a TET promoter
and induced with 100 ng/mL dox, corresponding
to ∼20% of fully induced WT levels (Fig. S3A1). (B)
Critical level of Gal3p in the absence of the GAL3
feedback loop produced a graded response. Flow
cytometry measurements of the GAL3 feedback
deletion strain (GAL3Δ fb). GAL3 was expressed
from a TET promoter and induced with 10 ng/mL
dox, corresponding to ∼63% of fully induced WT
levels (Fig. S3A3). (C) In the GAL1Δ fb model, in-
creasing the constitutive production rate of Gal1p
(αG1s) decreases the region of bistability and
causes bistability to vanish at a critical value
(αG1s ¼ 4 nM/·min). Regions of bistability (red) and
monostability (blue) for different values of αG1s and
αgal in GAL1Δ fb show that the bistability parame-
ter region contracts and eventually vanishes with
increasing αG1s. (D) In the GAL3Δ fb model, in-
creasing the constitutive production rate of Gal3p
(αG3s) eliminates bistability by shifting the bistable
region to smaller αgal values. A critical threshold of
αG3s (αG3s ¼ 1 nM/·min) causes the bistable region to
move out of the positive orthant, producing mono-
stability for all physically realistic αgal values. Regions
of bistability (red) and monostability (blue) for dif-
ferent values of αG3s and αgal are shown. (E) GAL1
feedback nonlinearity disappears with increasing
αG3s in the GAL3Δ fb model. The maximum differ-
ence in Gal1p steady-state concentration (G1e) was
computed across the full range of αgal for a series of
αG3s values and represents the activity of the GAL1
feedback loop. Above the critical αG3s threshold
(dashed blue line), G1e does not change in response
to αgal , indicating that the GAL1 autoregulatory loop
is not active in this parameter regime.
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a sufficiently large αG3s mapped the GAL1 feedback nonlinearity
to a saturated (inactive) regime.
The insight generated by the model about the link between the

constitutive production rates of Gal1p or Gal3p and the loss of
bistability suggested that the graded response observed in
GAL3Δ fb (Fig. 5B) should be the result of overexpressing the
Gal3 protein. To test this possibility, we compared the GAL3
mRNA expressed from the TET promoter with that of WT in-
duced with 0.005% and 0.05% galactose using qPCR. These data
showed that the GAL3 mRNA level in GAL3Δ fb induced with
10 ng/mL dox was overexpressed by 43% relative to WT induced
with 0.05% galactose, which was significantly higher than GAL3
mRNA levels for the bimodal range of WT and GAL3Δ fb (Fig.
S3A3). These results argue that to study the functional contri-
bution of feedback loops to a phenotype, the strength of con-
stitutive expression needs to be carefully tuned to recapitulate
the physiological operating point(s) of the WT circuit.

Properties of Positive Feedback Loops Established by Molecular
Sequestration. Sequestration binding affinity of an activator and
repressor can tune the range of conditions for bistability. To general-
ize our results further, we explored the principles by which the

interactions of the positive feedback loops mediated by Gal1p
and Gal3p generate bistability. Characterizing the set of essential
molecular interactions that combine to generate bistability in the
GAL system may be useful for analyzing other natural switch-
like biological networks and for constructing robust and tunable
bistable synthetic circuits. Gal1p and Gal3p competitively se-
quester a common protein, Gal80p. Competitive binding inter-
actions and molecular sequestration can produce ultrasensitivity,
which is a crucial building block for a bistable system (31–34).
Therefore, we suspected that the competitive sequestration of
Gal80p by Gal1p and Gal3p may constitute a critical feature of
the system.
To probe the functionalities provided by positive feedback

loops linked to molecular sequestration, we examined a simple
model of a single positive feedback loop that is implemented by
an activator x that can form an inactive complex with a tran-
scriptional repressor z. In this circuit, z transcriptionally represses
the production of x, and a positive feedback loop is thus estab-
lished by inhibition of the transcriptional repressor using molec-
ular sequestration (Fig. S8A). We first examined the parameter
dependence of this system in the absence of transcriptional
cooperativity and found that this circuit could exhibit bistability
depending on the value of the binding affinity of the activator and
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Fig. 6. Molecular consequences of
positive feedback loops established
by molecular sequestration. Seques-
tration binding affinities (KD1 and
KD2) can tune the parameter region
for bistability, and the addition of
a second positive feedback loop can
reduce the deactivation response
time and augment the range of
conditions for bistability. (A) Circuit
diagram for dual positive feedback
loops mediated by the activators, x1
and x2, coupled by molecular se-
questration to a transcriptional re-
pressor, z. Transcriptional feedback
regulation of x1 and x2 is modeled
by Hill functions with Hill coef-
ficients of 3 (nHill = 3) and 2 (nHill = 2),
respectively. The single positive
feedback loop models were ob-
tained by removing the appropriate
repression arrow from z to the pro-
moter of x1 or x2 or, equivalently, by
replacing the Hill functions with a
constant production rate, α1s or α2s.
(B) Bifurcation diagrams relating the
input to the steady-state concentra-
tion of z (ze) reveal that symmetri-
cally (KD1 = KD2) weakening the
binding affinities shrinks the region
of bistability. (C) Parameter regions
of bistability (red) and monostability
(blue) for different values of the in-
put and symmetrically varying KD1,
KD2 in the single and double feed-
back loop models. (D) Range of bist-
ability (DH) for a range of KD1 and KD2

values in the double feedback loop
system. (E) Relationship between DH

and the deactivation response time
measured in cell-generations (SI Text,
section S7). For a constant nonzero
DH, the dual feedback loop circuit
exhibited a faster deactivation re-
sponse time compared with the ei-
ther of the single positive feedback
loop models.
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repressor (Fig. S8B). Therefore, modifying this parameter is an
alternative mechanism to induce bistability in the circuit without
increasing the cooperativity.
Building on these results, we next investigated the roles of

double positive feedback loops connected by molecular seques-
tration. We considered a three-state ODE model consisting of
a transcriptional repressor z that directly regulates two activa-
tors, x1 and x2, with Hill coefficients of 3 and 2, respectively. x1
and x2 can form inactive heterodimers with z; hence, x1 and x2
compete to bind z (Fig. 6A). In this model, the mechanisms of
sequestration and positive feedback are triggered by an input (u)
that represents a basal production rate of x1 and x2. The system
of equations that model the interactions in Fig. 6A (a full de-
scription is provided in SI Text, section S7) is

dx1
dt

¼ uþ α1K3
1

K3
1 þ z3

þ β1x1z− γ1x1;

dx2
dt

¼ uþ α2K2
2

K2
2 þ z2

þ β2x2z− γ2x2;

dz
dt

¼ αz þ β1x1zþ β2x2z− γzz:

In the double positive feedback case, bistability could be in-
duced in this system by adjusting the binding affinities KD1 and
KD2 (which modify β1 and β2) as bifurcation parameters without
changing the cooperativity of the transcriptional regulation (Fig.
6 B and C). Setting KD2 = KD2, we found that the range of
the input that produced bistability was inversely related to the
magnitude of the binding affinities (Fig. 6B). In addition, the
range of the input that generated bistability was increased in
a system with two positive feedback loops compared with a single
positive feedback loop for the set of symmetrically varying KD1
and KD2 values (Fig. 6C).
To explore asymmetry in the binding affinities, DH was com-

puted for a series of linearly spaced KD1 and KD2 values within the
range of 0.5–80 nM (Fig. 6D). The largest range of bistability was
obtained for the strongest binding affinities, and DH decreased
monotonically with increasing KD1 or KD2. In addition, fixing one
KD and varying the other (Fig. 6D, left column and bottom row)
did not decreaseDH as significantly as symmetrically changing the
two binding affinities together (Fig. 6D, diagonal). These results
suggest that asymmetry in the binding affinity strengths, whereby
one activator interacts strongly and the other activator binds
weakly to the same repressor, can preserve bistability over a wide
range of values for the weaker KD, thus reducing the system’s
sensitivity to variations in this parameter.
Double-positive feedback loops can produce a larger range of bistability
and a faster dynamic response than a single feedback loop. We sus-
pected that modulating the binding affinities to induce bistability
may concurrently alter other circuit functions, such as the dy-
namic response time to a change in the input. To explore these
relationships, we measured the response times of the circuits to
switch from the low → high state (activation response time) and
from the high → low state (deactivation response time). To do
so, a step function increase or decrease in the input was applied
and the delay for the circuit to adapt to this transition was
quantified (SI Text, section S7). The time required for an output
species that was transcriptionally repressed by z (representing
a fluorescent reporter) to increase or decay to half of its maxi-
mum value was quantified in cell-generations.
In the double feedback loop system, the activation response

time decreased with the strength of the binding affinities,
whereas the deactivation response time had the opposing re-
lationship and increased with the strength of the binding affini-
ties (Fig. S8 C and D). For a constant nonzero DH, the dual
feedback loop system could switch faster to the high state than

either of the single feedback loop models (Fig. S8E). Because
both the DH and the deactivation response time are inversely
related to KD1 and KD2, a tradeoff exists between increasing the
range of conditions for bistability and decreasing the de-
activation response time (Fig. 6E). A comparison of DH and the
response times for the single and double feedback loop systems
revealed that dual feedback loops can produce a larger DH over
a narrower range of deactivation response times compared with
the single feedback loop systems with Hill coefficients of 2 or 3.
Taken together, the dual feedback loop system can produce
a larger range of bistability and exhibit a faster response time to
abrupt changes in the environment compared with a single
feedback loop system.

Discussion
A bimodal distribution of gene expression across a population of
isogenic cells, which generates two distinct cellular states, can
produce significant cell-to-cell heterogeneity. This bimodality
can also lead to a switch-like response that filters out noise below
a threshold and produces a large fold change in the system’s
output if the input crosses this threshold (35). In this work, we
used the GAL gene-regulatory circuit as a model system to dis-
sect and analyze the origins of bimodality in a natural biological
network. We demonstrated that bistability underlies this bi-
modality and used a combination of experiments and computa-
tional modeling to identify two key features that produce
bistability: (i) a threshold established by two positive feedback
loops mediated by Gal1p and Gal3p and (ii) an ultrasensitive
stage produced by competitive molecular sequestration of
Gal80p by Gal1p and Gal3p.
To unravel the molecular interactions critical for bistability in

the GAL system, we performed a comprehensive exploration of
multiple feedback loops. Our investigations revealed that the
GAL bimodal response is remarkably robust to feedback loop
perturbations. Indeed, individual elimination of the GAL1,
GAL2, GAL3, and GAL80 feedback loops was insufficient to
abolish bimodality. Furthermore, bimodality persisted for mul-
tiple deletions of these loops and, surprisingly, only disappeared
in a double deletion of GAL1 and the GAL3 feedback loop. We
therefore identified Gal1p and Gal3p as central mediators of two
synergistic positive feedback loops that generate bistability in the
GAL gene-regulatory network. Multiple positive feedback loops
can facilitate the bistable behavior of a circuit by expanding the
range of conditions for bistability, which improves the robustness
of bistability to parameter variations (35).
A previous study attributed bimodality in the GAL pathway to

the activity of the GAL3 feedback loop (28). Here, we demon-
strate that cells with a deleted GAL3 feedback loop are still ca-
pable of bimodality in their response to galactose for low levels of
constitutive Gal3p expression. However, we found experimentally
that bimodality vanishes when Gal3p is expressed at high and
unregulated levels. Our computational model explains this be-
havior by the loss of remaining GAL1 feedback due to constitu-
tive expression of Gal3p beyond a threshold. Interestingly, in this
regime, the genetic wiring of the GAL1 feedback loop is present
but the feedback loop was rendered inactive indirectly by con-
stitutive Gal3p expression above a threshold.
These results underscore the challenges inherent in the in-

terpretation of feedback deletion experiments in which the
specific range of constitutive expression of the deleted link might
become an important determinant of the system’s properties and
can mask the true functional roles of the feedback pathway.
These findings also argue that the complete interpretation of
feedback KOs requires thorough investigation of active mecha-
nisms and nonlinearities that are operational in a given circuit,
beyond static snapshots of the circuit’s topology as determined
by genetics (36).
Stoichiometric binding interactions, for example, molecular se-

questration of a repressor by an activator or inhibition of an en-
zyme by a small molecule, can produce ultrasensitivity in biological
circuits (31–34, 37). Our computational model indicates that
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competitive molecular sequestration of Gal80p by Gal1p and
Gal3p produces an ultrasensitive change in the concentration of
free Gal4p in response to small variations in extracellular galactose
and that this ultrasensitivity does not rely on cooperative binding of
Gal4p to GAL promoters and/or oligomerization. These results
suggest that the stoichiometric inhibition of Gal80p by Gal1p and
Gal3p is a crucial source of ultrasensitivity in the GAL network
that sets the stage for a robust bistable response to galactose be-
cause ultrasensitivity is required for bistability (34, 38).
Beyond the GAL system, we believe these results to be ap-

plicable to many bistable systems. We used a simple computa-
tional model to explore the general mechanisms by which
positive feedback loops linked to competitive sequestration can
produce ultrasensitivity and bistability. Using this model, we
found that the positive feedback and sequestration topology can
be used to build a bistable system in the absence of transcrip-
tional cooperativity by adjusting the binding affinity parameter
between the activator and inhibitor. If bistability confers a fitness
advantage, this parameter could be adjusted through mutation of
the protein–protein binding interface and may be more evolvable
than modifying the cooperativity of transcriptional regulation
through oligomerization or multiple transcription factor binding
sites. In addition, we identified a tradeoff between the range of
bistability and the deactivation response time of this circuit. In
response to an abrupt change in the stimulus, we found that
a system with double positive feedback loops can switch faster to
the low state compared with the single feedback loop system for
a fixed range of bistability, highlighting an additional property of
multiple positive feedback loops.
Positive feedback loops established by molecular sequestration

may represent a general class of systems for implementing robust
switch-like cellular responses. For example, the conserved reg-
ulatory network that controls cell differentiation in Drosophila
consists of molecular mechanisms similar to those of the GAL
circuit, including molecular sequestration and multiple feedback
loops that implement a switch-like developmental program (39,
40). Activation of this cell-differentiation circuit relies on mo-
lecular titration of a repressor, Extramacrochaetae by the acti-
vators Daughterless (Da) and Achaete-Scute complex (As-c). Da
and As-c transcriptionally autoregulate, and thus form two pos-
itive feedback loops (41).
S. cerevisiae cells growing on galactose could benefit from

bistability on a single-cell and population level. A bistable circuit
can produce a decisive response to a slow variation in the stimulus
(37). This decoupling ensures that the abrupt change in the sys-
tem’s output is not dependent on the rate of change of the
stimulus and is instead an intrinsic property of the circuit’s dy-
namic system. In addition, bimodality due to underlying bistability
can produce stable lineages of cells with a memory of previous
environmental conditions. As a consequence of hysteresis, cells
with a history of the stimulus will respond differently to a second
exposure due to a shift in the threshold of deactivation. This
epigenetic memory of previous environments can fine-tune the
switching threshold and provide an additional source of cell-to-
cell heterogeneity in the perception of the stimulus.
There are also several potential advantages of bimodality at a

population level. For example, significant single-cell phenotypic
variation, generated by bimodality, can serve as a bet-hedging
strategy for microbial populations in uncertain environments (42,
43). Because S. cerevisiae grows poorly even in the presence of
high concentrations of galactose and risks accumulation of the
toxic intermediate galactose-1-phosphate, the bimodal response
may serve as a population strategy to weigh the energetic costs
and benefits of activating the GAL regulon (26). Another in-
triguing possibility is whether bimodality establishes a division of
labor in which the high population metabolizes galactose and
produces a byproduct that is used by the low population (44).
Feedback loops are ubiquitous in biological systems, and dis-

secting their precise quantitative roles is a crucial step for unrav-
eling the organizational principles of cellular decision making.
Although a single transcriptional positive feedback loop can gen-

erate bistability with cooperativity and precise parameter tuning,
this study suggests that a single noncooperative positive feedback
loop with sequestration can generate bistability and that this bist-
ability parameter region can be significantly augmented by the
addition of a second positive feedback loop. These insights will be
essential for pinpointing the operational principles of switch-like
cellular responses, in addition to suggesting rules for designing
robust synthetic circuits.

Materials and Methods
Strains. All plasmids used in this study were derived from a set of yeast single
integration vectors constructed in the laboratory of Wendell Lim (University
of California, San Francisco). These vectors contain markers and targeting
sequences for the LEU2, HIS3, TRP1, and URA3 loci. These vectors were lin-
earized for transformation by digestion with PmeI and transformed using
standard techniques. Promoters were cloned between the PspOMI and XhoI
restriction sites, and coding sequences were inserted between the XhoI and
BamHI sites. These plasmids contained an ADH1 terminator downstream of
the BamHI site. All strains were haploid, with the exception of MA0182 and
WT diploid (28). In the haploid backgrounds, rtTA-M2 was expressed from a
medium-strength variant of the TEF promoter, TEFm4 (27, 45). Gene dele-
tions were verified using PCR. A functional test for constitutive PGAL10 Venus
expression in the absence of galactose was also used to verify successful
deletion of GAL80. Strains are listed in Table S2. The sequences for the GAL3,
GAL10, and GAL80 promoters were 1,017, 646, and 283 bp upstream of the
start codons, respectively. The TET promoter consisted of a region of the
CYC1 promoter and two TetR operator binding sites (46). The synthetic
single GAL4 binding site promoter, PCYC1-G4BS, consisted of a binding site
from the GAL7 promoter (CGGACAACTGTTGACCG) upstream of the CYC1
core promoter.

Growth Conditions and Flow Cytometry. Cells were grown in appropriate
dropoutmedia supplementedwith 2%filter-sterilized raffinose at 30 °C. In 2%
raffinose media supplemented with no or small amounts of galactose, cell
divisions occurred approximately every 3 h during the exponential growth
phase. Steady-state measurements were performed after a 20-h induction
period. Cells were induced for 30 h for hysteresis experiments (a discussion is
provided in SI Text, section S1). OD600 (cell density) was maintained below 0.1
to prevent significant changes in the galactose concentration for the duration
of the experiment. Flow cytometry measurements were made using a MACS-
Quant VYB (Miltenyi Biotec) or LSRII analyzer (BD Biosciences). For both
instruments, a blue (488 nm) laser was used to excite YFP. Emission was
detected on the MACSQuant or LSRII using 525/50-nm and 530/30-nm filters,
respectively. At least 10,000 cells were collected for each measurement.

Analysis of Flow Cytometry Distributions. Bimodality classification. Flow cy-
tometry distributions were analyzed using a GMM algorithm (MATLAB;
MathWorks) (47). The GMM algorithm assumes that the data are a mixture
distribution, where the probability density function is a linear combination
with coefficients that sum to 1 (ξ1 þ ξ2 ¼ 1):

fðxÞ ¼ ξ1N1ðμ1; σ1Þ þ ξ2N2ðμ2; σ2Þ:

The parameters for the GMM algorithm include the means, μ1 and μ2; SDs,
σ1 and σ2; and mode weights, ξ1 and ξ2. A distribution was categorized as
bimodal if the following conditions were true:

jμ1 − μ2j> 2maxðσ1; σ2Þ;

minðξ1; ξ2Þ> 0:1:

Activation responses. Activation responses for bimodal transitions were ana-
lyzed using the fraction of high expressing cells (FH). The threshold was set to
the minimum separating the two local maxima. FH ¼ nH

ntot
, where nH and nL are

the number of high and low expressing cells, respectively (ntot ¼ nH þ nL). The
activation level for a graded response was quantified using the normalized
mean fluorescence level (MY):

MY ¼ ðlog10ðYÞ−minðlog10ðYÞÞ
ðmaxðlog10ðYÞÞ−minðlog10ðYÞÞ

:

Real-Time qPCR. Total RNA was isolated using a YeaStar RNA Kit (Zymo Re-
search Corp.). Oligonucleotides for real-time qPCR were designed using In-
tegrated DNA Technologies PrimeTime qPCR assay. Five hundred nanograms
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of total RNA was reverse-transcribed using the iScript cDNA synthesis kit (Bio-
Rad). The reaction mix contained 5 μL of SsoFast Probes SuperMix (Bio-Rad),
0.5 μL of primer probe corresponding to 250 nM primers and 125 nM probe
(20× stock), and 0.5 μL of cDNA. Three technical replicates for each sample
were analyzed using the CFX96 real-time PCR machine (Bio-Rad). Relative
expression levels were determined by the 2ð−ΔΔCtÞ method (48). Each sample
was normalized by the cycle threshold geometric mean for the reference
genes ACT1 and UBC6 (49).

Computational Modeling. Code for mathematical modeling was written in
MATLAB and Mathematica (Wolfram Research).

We identified turning, fold, and saddle-node bifurcation points that can
create bistability by computing the values of αgal that caused a real eigenvalue
of the Jacobian matrix to change from negative to positive, producing a sin-
gular Jacobian matrix at the point where the real part of the eigenvalue
equaled 0. The bifurcation parameter (λ ¼ αgal) appeared linearly in the poly-
nomial equations for the equilibrium concentrations of Gal4p. To satisfy the
conditions of a singular Jacobian matrix and equilibrium, there were two
equations in two unknowns using the Gal4p polynomial (x ¼ Gal4p):

fðxÞ þ λgðxÞ ¼ 0;

f ′ðxÞ þ λg′ðxÞ ¼ 0:

We solved the system of equations using the Sylvester resultant (50). This
resultant provides conditions for the coefficients of two polynomials of
a single variable to have a root in common. Sylvester matrices A and B
contained the coefficients of f, f ′ and g, g′, respectively. The dimensions of A
and B were ðd1 þ d2Þ × ðd1 þ d2Þ, where d1 and d2 are the degrees of highest
polynomial of either f or g and, correspondingly, f ′ or g′, respectively. The
bifurcation points were computed by solving the generalized eigenvalue
problem ðAþ λBÞϕ ¼ 0.

ACKNOWLEDGMENTS.We thank Louis Romero for mathematical modeling
insights and Rochelle Diamond and Josh Verceles for assistance with flow
cytometry. We are grateful to the laboratory of Christina Smolke and to
Murat Acar for providing yeast strains used in this study. This research
project was supported by the Institute for Collaborative Biotechnologies
through Grant W911NF-09-0001 from the US Army Research Office.

1. Astrom K, Murray R (2008) Feedback Systems: An Introduction for Scientists and
Engineers (Princeton Univ Press, Princeton).

2. Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response
times of transcription networks. J Mol Biol 323(5):785–793.

3. Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation.
Nature 405(6786):590–593.

4. Isaacs FJ, Hasty J, Cantor CR, Collins JJ (2003) Prediction and measurement of an
autoregulatory genetic module. Proc Natl Acad Sci USA 100(13):7714–7719.

5. Brandman O, Meyer T (2008) Feedback loops shape cellular signals in space and time.
Science 322(5900):390–395.

6. Biggar SR, Crabtree GR (2001) Cell signaling can direct either binary or graded
transcriptional responses. EMBO J 20(12):3167–3176.

7. Torchia TE, Hamilton RW, Cano CL, Hopper JE (1984) Disruption of regulatory gene
GAL80 in Saccharomyces cerevisiae: Effects on carbon-controlled regulation of the
galactose/melibiose pathway genes. Mol Cell Biol 4(8):1521–1527.

8. Tschopp JF, Emr SD, Field C, Schekman R (1986) GAL2 codes for a membrane-bound
subunit of the galactose permease in Saccharomyces cerevisiae. J Bacteriol 166(1):
313–318.

9. Torchia TE, Hopper JE (1986) Genetic and molecular analysis of the GAL3 gene in the
expression of the galactose/melibiose regulon of Saccharomyces cerevisiae. Genetics
113(2):229–246.

10. Bhat PJ, Hopper JE (1992) Overproduction of the GAL1 or GAL3 protein causes
galactose-independent activation of the GAL4 protein: Evidence for a new model of
induction for the yeast GAL/MEL regulon. Mol Cell Biol 12(6):2701–2707.

11. Bajwa W, Torchia TE, Hopper JE (1988) Yeast regulatory gene GAL3: Carbon
regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and
MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases.
Mol Cell Biol 8(8):3439–3447.

12. Hawkins KM, Smolke CD (2006) The regulatory roles of the galactose permease and
kinase in the induction response of the GAL network in Saccharomyces cerevisiae. J
Biol Chem 281(19):13485–13492.

13. Sellick CA, Jowitt TA, Reece RJ (2009) The effect of ligand binding on the
galactokinase activity of yeast Gal1p and its ability to activate transcription. J Biol
Chem 284(1):229–236.

14. Thoden JB, Sellick CA, Timson DJ, Reece RJ, Holden HM (2005) Molecular structure of
Saccharomyces cerevisiae Gal1p, a bifunctional galactokinase and transcriptional
inducer. J Biol Chem 280(44):36905–36911.

15. Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of
a classic genetic switch. Nature 449(7163):677–681.

16. Johnston M (1987) A model fungal gene regulatory mechanism: The GAL genes of
Saccharomyces cerevisiae. Microbiol Rev 51(4):458–476.

17. Zacharioudakis I, Gligoris T, Tzamarias D (2007) A yeast catabolic enzyme controls
transcriptional memory. Curr Biol 17(23):2041–2046.

18. Abramczyk D, Holden S, Page CJ, Reece RJ (2012) Interplay of a ligand sensor and an
enzyme in controlling expression of the Saccharomyces cerevisiae GAL genes.
Eukaryot Cell 11(3):334–342.

19. Artyomov MN, Das J, Kardar M, Chakraborty AK (2007) Purely stochastic binary
decisions in cell signaling models without underlying deterministic bistabilities. Proc
Natl Acad Sci USA 104(48):18958–18963.

20. Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplification and signaling in
enzymatic futile cycles through noise-induced bistability with oscillations. Proc Natl
Acad Sci USA 102(7):2310–2315.

21. Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: Origins,
consequences, and mathematical representations. Biophys J 81(6):3116–3136.

22. Lestas I, Paulsson J, Ross N, Vinnicombe G (2008) Noise in gene regulatory networks.
IEEE Trans Automat Contr 53(Special Issue):189–200.

23. Guidi G, Goldbeter A (1997) Bistability without hysteresis in chemical reaction
systems: A theoretical analysis of irreversible transitions between multiple steady
states. J Phys Chem 101(49):9367–9376.

24. Nagai T, et al. (2002) A variant of yellow fluorescent protein with fast and efficient
maturation for cell-biological applications. Nat Biotechnol 20(1):87–90.

25. Douglas HC, Hawthorne DC (1964) Enzymatic expression and genetic linkage of genes
controlling galactose utilization in Saccharomyces. Genetics 49:837–844.

26. Riley MI, Dickson RC (1984) Genetic and biochemical characterization of the galactose
gene cluster in Kluyveromyces lactis. J Bacteriol 158(2):705–712.

27. Urlinger S, et al. (2000) Exploring the sequence space for tetracycline-dependent
transcriptional activators: Novel mutations yield expanded range and sensitivity. Proc
Natl Acad Sci USA 97(14):7963–7968.

28. Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by
reducing stochastic transitions. Nature 435(7039):228–232.

29. Angeli D, Ferrell JE, Jr., Sontag ED (2004) Detection of multistability, bifurcations, and
hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci
USA 101(7):1822–1827.

30. Iman R, Davenport J, Zeigler D (1980) Latin Hypercube Sampling Program Users Guide
(Sandia Labs, Albuquerque, NM).

31. Ferrell JE, Jr. (1996) Tripping the switch fantastic: How a protein kinase cascade can
convert graded inputs into switch-like outputs. Trends Biochem Sci 21(12):460–466.

32. Buchler NE, Louis M (2008) Molecular titration and ultrasensitivity in regulatory
networks. J Mol Biol 384(5):1106–1119.

33. Buchler NE, Cross FR (2009) Protein sequestration generates a flexible ultrasensitive
response in a genetic network. Mol Syst Biol 5:272.

34. Kim SY, Ferrell JE, Jr. (2007) Substrate competition as a source of ultrasensitivity in the
inactivation of Wee1. Cell 128(6):1133–1145.

35. Ferrell JE, Jr. (2008) Feedback regulation of opposing enzymes generates robust, all-
or-none bistable responses. Curr Biol 18(6):R244–R245.

36. Dunlop MJ, Cox RS, 3rd, Levine JH, Murray RM, Elowitz MB (2008) Regulatory activity
revealed by dynamic correlations in gene expression noise. Nat Genet 40(12):
1493–1498.

37. Thron CD (1996) A model for a bistable biochemical trigger of mitosis. Biophys Chem
57(2-3):239–251.

38. Ferrell JE, Jr. (2002) Self-perpetuating states in signal transduction: Positive feedback,
double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148.

39. Cabrera CV, Alonso MC, Huikeshoven H (1994) Regulation of scute function by
extramacrochaete in vitro and in vivo. Development 120(12):3595–3603.

40. Bhattacharya A, Baker NE (2011) A network of broadly expressed HLH genes
regulates tissue-specific cell fates. Cell 147(4):881–892.

41. Van Doren M, Ellis HM, Posakony JW (1991) The Drosophila extramacrochaetae
protein antagonizes sequence-specific DNA binding by daughterless/achaete-scute
protein complexes. Development 113(1):245–255.

42. Veening JW, et al. (2008) Bet-hedging and epigenetic inheritance in bacterial cell
development. Proc Natl Acad Sci USA 105(11):4393–4398.

43. Veening JW, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in
bacteria. Annu Rev Microbiol 62:193–210.

44. Pfeiffer T, Bonhoeffer S (2004) Evolution of cross-feeding in microbial populations.
Am Nat 163(6):E126–E135.

45. Nevoigt E, et al. (2006) Engineering of promoter replacement cassettes for fine-
tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72(8):
5266–5273.

46. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in
Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic
Acids Res 25(6):1203–1210.

47. Bishop C (2006) Pattern Recognition and Machine Learning (Springer, New York).
48. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-

time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408.
49. Teste MA, Duquenne M, François JM, Parrou JL (2009) Validation of reference genes

for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae.
BMC Mol Biol 10:99.

50. Dickenstein A, Emiris I (2005) Solving Polynomial Equations: Foundations, Algorithms,
and Applications (Algorithms and Computation in Mathematics) (Springer, Berlin).

51. Timson DJ, Ross HC, Reece RJ (2002) Gal3p and Gal1p interact with the transcriptional
repressor Gal80p to form a complex of 1:1 stoichiometry. Biochem J 363(Pt 3):
515–520.

Venturelli et al. PNAS | Published online November 12, 2012 | E3333

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S


