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Understanding, predicting, and controlling outbreaks of waterborne
diseases are crucial goals of public health policies, but pose challeng-
ing problems because infection patterns are influenced by spatial
structure and temporal asynchrony. Although explicit spatial model-
ing is made possible by widespread data mapping of hydrology,
transportation infrastructure, population distribution, and sanitation,
the precise condition underwhich awaterborne disease epidemic can
start in a spatially explicit setting is still lacking. Here we show that
the requirement that all the local reproduction numbers R0 be larger
than unity is neither necessary nor sufficient for outbreaks to occur
when local settlements are connected by networks of primary and
secondary infection mechanisms. To determine onset conditions, we
derive general analytical expressions for a reproduction matrix G0,
explicitly accounting for spatial distributions of human settlements
and pathogen transmission via hydrological and humanmobility net-
works. At disease onset, a generalized reproduction number Λ0 (the
dominant eigenvalue ofG0) must be larger than unity. We also show
that geographical outbreak patterns in complex environments are
linked to the dominant eigenvector and to spectral properties of
G0. Tests against data and computations for the 2010 Haiti and
2000 KwaZulu-Natal cholera outbreaks, as well as against computa-
tions for metapopulation networks, demonstrate that eigenvectors
of G0 provide a synthetic and effective tool for predicting the disease
course in space and time. Networked connectivity models, describing
the interplay between hydrology, epidemiology, and social behavior
sustaining humanmobility, thus prove to be key tools for emergency
management of waterborne infections.
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Waterborne diseases, mainly due to protozoa or bacteria and
often resulting in profuse diarrhea (cholera is a prominent

example), are one of the leading causes of death and especially
strike infants and children in low-income countries (1). Therefore,
it is fundamental to develop realistic dynamical models that can
provide insights into the course of past and ongoing epidemics,
assist in emergency management, and allocate health-care re-
sources via an assessment of alternative intervention strategies (2–
7). These models must properly account for the relevant disease
and transport timescales (8–10). Whereas some diarrheal infec-
tions, like Rotavirus, have basically a fecal–oral transmission and
their spread can thus bemodeled as susceptible-infected-recovered
(SIR) systems (11), traditional waterborne disease models (12,
13) include, in addition to susceptibles (S) and infectives (I) (14),
the population dynamics of bacteria (B) in water reservoirs. More
recent modeling has considered hyperinfectivity of newly excreted
vibrios (15), prey–predator interactions with phages (16), and
seasonal and climate forcings (17–22). All these models, however,
have not considered explicitly the spatial spread that, in water-
borne diseases, occurs primarily along hydrological pathways,
from coastal to inland regions or vice versa and from inland ep-
idemic sites to neighboring areas. Integrating hydrology into ep-
idemiological models is clearly of paramount importance and
represents a recent accomplishment (5, 6, 9, 10). Moreover,
infected individuals are often asymptomatic—as much as 75% for
cholera (23) and 80% for amoebiasis caused by Entamoeba

histolytica (24)—and thus can move and spread the disease to
communities other than those where they were infected. There-
fore, including human mobility—via either diffusion-based (25)
or gravity-like models (2–6, 26)—is mandatory. The widespread
availability of georeferenced data regarding hydrological and
transportation networks, human demography, water sanitation,
and treatment centers distribution has facilitated the introduction
of explicitly spatial models (3, 5). However, a systematic analysis
of the conditions under which a waterborne disease epidemic can
start within a specific territory is not yet available. Here, we de-
termine the onset conditions and link them to explicit geographic
descriptions of demographic, epidemiological, climatic, and socio-
economic characteristics. From these conditions, spatiotemporal
patterns of the infection are derived in a predictive manner.

Model and the Onset Conditions
The basis of our analysis is a spatially explicit nonlinear differ-
ential model (Materials and Methods) that accounts for both the
hydrological and the human mobility network (3, 6). The hy-
drological networks can be those of river basins, extracted from
landscape topography (27), or those of human-made water dis-
tribution and sewage systems (or both). Depending on spatial
resolution, network nodes can be cities, towns, or villages. In the
ith community of size Hi, with i= 1; n (n is the number of nodes)
the state variables at time t are the local abundances of suscep-
tibles, SiðtÞ, infected/infective individuals, IiðtÞ, and the concen-
tration of pathogens BiðtÞ in water reservoirs of volume Wi.
Infectives release pathogens at a site-dependent rate pi. Sus-
ceptibles are exposed to contaminated water at a rate βi and
become infected according to a saturating function of Bi (K =
half-saturation constant). Connections between communities are
described by two matrices (3, 6), P= ½Pij� (hydrologic network)
and Q= ½Qij� (human mobility) with i; j= 1; n. Pathogens die at
a rate μB and move in water from node i to node j with a prob-
ability Pij at a rate l depending on downstream advection and
other water-mediated transport pathways (e.g, attachment to
plankton). They are also spread by human mobility: individuals
leave their home node i with probability mS for susceptibles and
mI for infectives (usually mS ≥mI), reach their target j with
probability Qij, and then come back to i. Consistency requiresPn

j=1Pij = 1 and
Pn

j=1Qij = 1 for any i. We assume that the union
of P - and Q -associated graphs is strongly connected; namely the
infection can spread to any community along either network.
Disease onset is determined by the instability of the disease-

free equilibrium X0 (Si =Hi; Ii = 0, Bi = 0 for all i). If the com-
munities were isolated (no hydrological or mobility connections),
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the onset condition in each community (13) would require that
the local basic reproduction number

R0i =
piHiβi

WiKμBðγ + μ+ αÞ > 1;

where γ is the recovery rate, and μ and α are, respectively, human
baseline and disease-induced mortality rates. The connection with
more traditional derivations of local values of R0 for classic SIR
models is reported in SI Text. Note that various versions of SIR-like
local models would command different expressions of R0i, account-
ing for parameters of the relevant mechanisms (e.g., ref. 28). For the
spatially connected system, instead, onset in the metacommunity
does not correspond to one ormore local reproduction numbers>1.
Technically, our approach is similar to that of the next-gener-

ation matrix (NGM) (29–31), which has been used for compart-
mental models rather than spatially explicit ones. Both methods
are based on dominant eigenvalue analysis (32). More specifi-
cally, however, we use a bifurcation analysis (33) to determine
how the eigenvalues of the Jacobian at X0 vary with the model
parameters (Materials and Methods). As the system is positive and
X0 is characterized by null values of Ii and Bi, the bifurcation can
occur only via an exchange of stability; i.e., the disease-free
equilibrium switches from stable node to saddle through a tran-
scritical bifurcation (the Jacobian has one zero eigenvalue).
Define ϕ= γ + μ+ α and introduce the diagonal matrices β, H,

p, W , and R0 (whose diagonals consist of parameters βi, Hi, pi,
Wi, and R0i with i= 1; n, respectively). W−1 is also diagonal with
elements equal to 1=Wi; thus, R0 = pHβW−1=ðKμBϕÞ. The bi-
furcation corresponds to

det
�
Un −

l
μB + l

PT −
μB

μB + l
T0

�
= 0; [1]

where Un is the (n-dimensional) identity matrix and

T0 = ð1−mIÞð1−mSÞR0 +mIð1−mSÞRI
0 +

+ ð1−mIÞmSRS
0 +mSmIRIS

0

is a transmission matrix accounting for different probabilities of
movement. RI

0, R
S
0 , and RIS

0 are matrices that correspond, re-
spectively, to metacommunities with (i) infectives only, (ii) sus-
ceptibles only, or (iii) both infectives and susceptibles being
mobile. T0 thus depends on mobility Q through the terms HQ
(movement to a community), QTH (movement from a commu-
nity), and QTHQ (movement to and from) (Materials and Methods).
Equivalent to Eq. 1 is that the dominant eigenvalue λmaxðG0Þ

of the generalized reproduction matrix

G0 =
l

μB + l
PT +

μB
μB + l

T0 [2]

equals unity. Our main result is therefore that the onset of the
disease can be triggered whenever λmaxðG0Þ switches from being
less than to being larger than 1; namely

Λ0 = λmaxðG0Þ> 1: [3]

G0 is the sum of two matrices, one depending (linearly) on the
hydrological matrix P and the other (nonlinearly) on the human
mobility matrix Q. Therefore, the two networks interplay in
a complex manner to determine disease insurgence and spread.
The geographical distribution of disease insurgence can be

linked to the dominant eigenvector of G0 (SI Text). When Λ0 is
slightly larger than unity and no other eigenvalue has modulus >1,
X0 is a saddle and the dominant eigenvector corresponds to the
unique unstable direction in the state space alongwhich the system
orbit will diverge from the equilibrium. Once the eigenvector is
suitably projected onto the subspace of infectives and normalized,

its n components are the relative proportions of the infectives in
the n communities (SI Text).Whenever the dominant eigenvalue is
sufficiently larger than one, there may be other eigenvalues of G0
with modulus >1 and more than one unstable direction of X0.
However, after a short-term transient due to initial conditions, the
disease will mainly propagate to the nodes corresponding to the
largest components of the dominant eigenvector. These commu-
nities are those where the number of infectives will be highest
during the onset and will thus act as the main foci of the disease.

Case Studies
Our approach is applied to the cholera epidemic that struck Haiti
in 2010 and is still ongoing (details in SI Text). We use Haiti ep-
idemiological data from November 2010 to May 2011 (Fig. 1 A
and B) and a model (based on a network of 366 hydrologic/de-
mographic entities, SI Text) derived from the reassessment (6) of
the disease unfolding. Attractivity of a certain destination site is
supposed to be given by a constrained gravity model (34),

Qij =
Hjexp

�
−dij=D

�Pn
k≠i Hkexpð−dik=DÞ;

where dij is the distance between node i and node j and D is the
average travel distance. Results of the analysis are reported in
Fig. 1 C–F. In the Haitian case Λ0 = 1:08 is practically insensitive
to changes in pathogen movement rate l and average mobility
distance D and to increases of the human mobility rate m (Fig.
1D), whereas it is quite sensitive to variations of the exposure
and contamination rates β and p, of the pathogen mortality rate
μB, and of the recovery rate (which is the largest component of
parameter ϕ). Therefore, an effective way to prevent the onset of
cholera would have been to implement sanitation measures to
decrease the exposure (or contamination) rate by more than 40%.
The alternative would have been to increase the rate of recovery
by more than 50% via, e.g., the use of antibiotics, a measure that
is not recommended, however, on a massive scale (35). The
dominant eigenvector is a good indicator of the spatial distribu-
tion of recorded cases at both the coarse administrative level
(10 departments, Fig. 1C) and the fine-grained scale (1-km2

population pixels, Fig. 1E), as demonstrated by the corre-
sponding coefficients of determination R2 (Fig. 1 legend). A
sensitivity analysis has been run to determine how the predictive
ability of the dominant eigenvector and the value of Λ0 change
with parameter variations. The coefficients of determination
(Fig. 1F) exceed 75% even for variations as high as 50%, thus
indicating robustness in the prediction of the spatial pattern.
The Haitian study was purely retrospective. We attempt a real-

time predictive use for another monitored case of cholera epi-
demic (Thukela river basin in KwaZulu-Natal, South Africa,
which was struck by cholera in 2000) (Fig. 2 A and B). The
structure of the water network (287 nodes) is borrowed from a
previous work (9). Model parameters have been estimated via
Markov chain Monte Carlo sampling (36), using only the first
weeks of epidemiological records as calibration data (Fig. 2A and
SI Text). The results are reported in Fig. 2 C–F. The dominant
eigenvector (associated to Λ0 = 1:47) is a good indicator of the
spatial patterns of disease spread (Fig. 2C), with coefficients of
determination R2

O = 0:86 for disease onset (gray area in Fig. 2A)
and R2

T = 0:89 for the epidemic course in 2000–2001. On the
contrary, the local reproduction number in excess of one is
neither necessary nor sufficient to pinpoint the ensuing epidemic
in a spatially connected system. Fig. 2D, in fact, shows a map of
the local reproduction numbers R0i at the onset of the epidemic
that can be contrasted with the spatial distribution of infection
cases in excess of 10 (Fig. 2E). Strikingly, the comparison shows
that several regions where R0i ≤ 1 still have disease because they
are connected to other infected areas. Furthermore, a correla-
tion analysis (details in SI Text) between the number of cases and
the local reproduction numbers reveals that the distribution of
R0i has a much lower explanatory power than the dominant
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eigenvector of G0. Similar results hold for the correlation with
the local population sizes Hi and the fraction of households
without piped water or toilet facilities, as well as for the related
model parameters (exposure probabilities βi and contamination
rates pi; SI Text). Their coefficients of determination cannot
compete with those resulting from the eigenvector analysis, thus
suggesting that not only local living conditions but also pathogen
transport (along waterways and induced by human mobility) must
be properly taken into account to understand the formation of
the spatial patterns of disease spread.
A sensitivity analysis of the Thukela model (Fig. 2F) shows that

the dominant eigenvector is quite a robust spatial indicator of
disease incidence. Performances are lower than for the Haiti case
study, in which, however, model parameters were calibrated using
the whole epidemiological dataset. The dominant eigenvector of
G0, as calculated at the end of initial calibration, is not only a
good indicator, but also a satisfactory predictor of the disease
spatial distribution in the months following the calibration’s end.
In fact, R2 of the eigenvector components vs. the fractions of
cumulative cases from the end of the calibration window to the
epidemic peak is 0.91, whereas it is 0.84 if calculated against the
cases from the end of calibration to epidemic fading.

Metapopulation Networks
More insight derives from exploring complex theoretical land-
scapes with different characteristics of river basin network, pop-
ulation distribution, and humanmobility. To this end, we construct
abstract hydrological networks endowed with a realistic topology,
the Peano networks (37–39), which are deterministic fractals (40)
whose scaling topology and metrics have been solved analytically
(41) (SI Text). We study both the spatially homogeneous case (all
the site-dependent parameters are identical and so are all the R0i)
and the more realistic one in which the population Hi of different
communities is distributed according to Zipf’s law (42) (SI Text),
mobility is gravity-like, and water volumes Wi are proportional to
Hi. Fig. 3 A and B shows the parameter combinations corre-
sponding to disease onset for the homogeneous case. The higher
the values are of either l (1=l is the average residence time of
pathogens in each node) or the downstream transport bias b
(proportional to stream velocity; SI Text), the higher the local

reproduction number must be for an epidemic to be possibly trig-
gered (or triggered with high probability in the case of inho-
mogeneous population distributions, Fig. 3C). Conversely, for low
values of l and b the disease can start even if all the R0i are smaller
than unity. We term this phenomenon a locally subthreshold epi-
demic as was done for compartmental models (43). In fact, when l,
mS,mI ≠ 0, the local onset conditions (R0i > 1) are neither necessary
nor sufficient for disease outbreak. Human mobility can remarkably
favor disease onset, especially if large population shares move (high
m) over either intermediate (homogeneous population, Fig. 3B) or
short (Zipf-like distribution, Fig. 3D) distances D. The analysis can
be extended to different mobility models based on small-world and
scale-free graphs (SI Text). The predictive ability of the dominant
eigenvector against the spatial distribution of cases for both homo-
geneous and Zipf-like population distributions is shown in SI Text.
It is very good at disease emergence and during the onset phase,
whereas it usually decreases as the epidemic outbreak unfolds (ho-
mogeneous population distribution, R2

E = 0:93 for disease emer-
gence; R2

O = 0:83 for the onset phase; R2
T = 0:68 for the whole

epidemic course; and Zipf-like population distribution, R2
E = 0:96,

R2
O = 0:92, R2

T = 0:88). This negative trend is especially apparent for
the homogeneous case, whereas it is much less evident for Zipf-like
population distributions, suggesting that population heterogeneity
may play an important role in the definition of long-term spatial
patterns of epidemic spread.

Conclusion
We have derived an epidemiological matrix G0 accounting for both
hydrological transport and humanmobility. Its dominant eigenvalue
Λ0 is the generalized reproduction number controlling the onset of
waterborne disease whereas the dominant eigenvector well char-
acterizes the geography of disease insurgence. Despite the simplicity
of the model, the method not only is successful from a theoretical
viewpoint, but also proves valid as a tool for analyzing real
epidemics (Haiti and KwaZulu-Natal) and inspiring appropriate
control measures and sanitation actions, which are the subject
of ongoing debate (44, 45). In particular, the model is a good
compromise between traditional space-homogeneous approaches
(13) and individual-based simulation (5), thus coupling realism
with a sufficiently simple structure that allows statistically significant
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which the disease cannot start. (E) Fine-grained spatial distribution as predicted by dominant eigenvector (SI Text). R2
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tuning of a few relevant parameters. Spatially explicit data, now
widely available, can be easily incorporated into the transmission
matrices to describe real landscapes as networks of any complexity,
ranging from a few to hundreds of nodes. Obviously, it should be
remarked that the approach is valid to study just the onset conditions
and cannot be extrapolated to draw conclusions about the long-term
fate of waterborne disease. This requires the further inclusion of
other fundamental determinants such as immunity loss (6) and
seasonal and interannual variations of hydrological conditions (46).
The model can be generalized in many important ways. In-

cluding different age classes of human hosts (47), spatial het-
erogeneity of pathogen ecology (48, 49), and competition between
pathogen strains (50) can add further realism to the methodology.
Although not easy, expressions for the reproduction matrix can
be obtained even for these cases. Our methodology, based on
dominant eigenvalue and eigenvector analysis (32) coupled
with georeferenced data assimilation, will provide, in our opin-
ion, a valuable and reasonably simple approach for predicting
the spatiotemporal epidemic course of waterborne disease
outbreaks.

Materials and Methods
Local Epidemic Model. Epidemiological dynamics of susceptibles Si and
infected/infectives Ii in the ith community, with i=1;n, and transport of
pathogens (represented by their concentrations Bi) over the networks are
described by the following set of ordinary differential equations (t is time):

dSi
dt

= μðHi − SiÞ −

"
ð1−mSÞβi fðBiÞ+mS

Xn
j =1

Qijβj f
�
Bj
�#

Si

dIi
dt

=

"
ð1−mSÞβi fðBiÞ+mS

Xn
j= 1

Qijβj f
�
Bj
�#

Si − ðγ + μ+ αÞIi

dBi

dt
= − μBBi − l

 
Bi −

Xn
j = 1

Pji
Wj

Wi
Bj

!
+

pi

Wi

"
ð1−mIÞIi +

Xn
j= 1

mIQji Ij

#
:

The evolution of susceptibles (first equation) is a balance between popula-
tion demography and infections due to contact with a pathogen. The host
population, if uninfected, is at demographic equilibrium Hi (the size of
the ith local community), with μ being the baseline mortality rate of
humans. The parameter βi is the site-dependent rate of exposure to
contaminated water, and fðBiÞ (dose-response function) is the probability

of becoming infected due to exposure to concentration Bi of pathogens.
In accordance with much literature on cholera (13), we use the hyperbolic and
saturating function fðBiÞ=Bi=ðK +BiÞ (K is the half-saturation constant). The
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between the relevant isolines. (B) Same as A for human mobility parameters.
Epidemics can start for combinations lying on the right of the isolines. (C) As in
A, withR0i =0:95 andZipf-likepopulationdistribution.Different colors code the
fraction of realizations (different population distributions) for which onset
conditions are met (SI Text). (D) As in C, with reference to mobility parameters.
Other parameter values: β= 1, α= μ= 0, μB = 0:23, mS =mI = 0:5 (A and C),
D= 0:1 (A and C), l= 0:5 (B and D), and b= 0:2 (B and D).
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dynamics of infectives (second equation) are a balance between newly infec-
ted individuals and losses due to recovery or natural/pathogen-induced mor-
tality, with γ and α being recovery and disease-induced mortality rates, re-
spectively. The dynamics of recovered individuals are neglected, because
waterborne diseases confer at least temporary immunity and its loss neither
determines conditions for disease onset nor affects its evolution in the im-
mediate development following the epidemic peak. The dynamics of free-
living pathogens concentration (third equation) assume that bacteria or pro-
tozoa are released in water (e.g., excreted) by infective individuals and im-
mediately diluted in a well-mixed local water reservoir of volume Wi at a site-
dependent rate pi . Free-living pathogens are also assumed to die at a con-
stant, site-independent rate μB. Regarding the hydrological transport, the
spread of pathogens over the river network is described as a biased random-
walk process on an oriented graph (9). Here, we assume that pathogens can
move at a rate l from node i to node j of the hydrological network with
a probability Pij . The rate depends on both downstream advection and other
possible pathogen transport pathways along the hydrological network, e.g.,
short-range distribution of water for consumption or irrigation or bacterial
attachment to phyto- and zooplankton. Possible topological structures for the
hydrological network range from simple one-dimensional lattices to realistic
mathematical characterizations of existing river networks. The nodes of the
human mobility network are assumed to correspond to those of the hydro-
logical layer, whereas edges are defined by connections among communities.
We also assume that susceptible and infective individuals can undertake short-
term trips from the communities where they live toward other settlements.
While traveling or commuting, susceptible individuals can be exposed to
pathogens and return as infected carriers to the settlement where they usually
live. Similarly, infected hosts can disseminate the disease away from their
home community. In many cases infected individuals are asymptomatic and
thus are not barred, or are only partially barred, from their usual activities by
the presence of the pathogen in their intestine. Human mobility patterns are
defined according to a connection matrix in which individuals leave their
original node (say i) with an infection-dependent probability (respectively mS

for susceptibles and mI for infectives, usually with mS ≥mI), reach their target
location (say j) with a probability Qij , and then come back to node i. Topo-
logical and transition probability structures for human mobility networks used
in epidemiology can be based on suitable measures of node-to-node distance
like in gravity models (34); on the actual transportation network; or on models
based on conceptually different interactions, such as Erd}os–Rényi random
graphs (51), scale-free networks (52), small-world–like graphs (53), and radia-
tion models (54).

Derivation of Onset Conditions. To analyze stability, we consider the Jacobian
of the linearized system evaluated at the disease-free equilibrium X0

(Si =Hi ; Ii = 0, Bi = 0 for all i), which is given by

J=

2
4 j11 0 j13

0 j22 j23
0 j32 j33

3
5;

where

j11 = − μUn

j13 = −mSHQβ− ð1−mSÞHβ
j22 = −ϕUn

j23 =mSHQβ+ ð1−mSÞHβ
j32 =

mI

K
pW−1QT +

1−mI

K
pW−1

j33 = − ðμB + lÞUn + lW−1PTW :

Note that the variables for pathogen have been scaled as Bi*=Bi=K. Because
of its block-triangular structure, the Jacobian has obviously n eigenvalues
equal to −μ; therefore, instability is determined by the eigenvalues of the
block matrix

J*=
�
j22 j23
j32 j33

�
:

J* is a proper Metzler matrix (55); namely its off-diagonal entries are all
nonnegative and at least one diagonal entry is negative. Thus its eigen-
value with maximal real part (dominant eigenvalue) is real. If the union of
the graphs associated with matrices P and Q is strongly connected, then
the graph associated with J* is also strongly connected. Therefore one can
apply the Perron–Frobenius theorem (56) for irreducible matrices and

state that the dominant eigenvalue is a simple real root of the charac-
teristic polynomial. The condition for the transcritical bifurcation of the
disease-free equilibrium is that the dominant eigenvalue crosses the
imaginary axis at zero; namely, the determinant of J* is zero (33). Actually,
when the disease-free equilibrium is stable, all the eigenvalues have
negative real parts and detðJ*Þ is positive because J* is a matrix of order
2n. So the disease-free equilibrium becomes unstable when detðJ*Þ
switches from positive to negative or equivalently the dominant eigen-
value becomes zero.

As Un obviously commutes with any matrix, we have (ref. 57 and SI Text)

det
�
J*
	
 = det

h
ϕ
�
μB + l

	
Un −ϕlW−1PTW +

−
mSmI

K
pW−1QTHQβ −

mIð1−mSÞ
K

pW−1QTHβ+

−
ð1−mIÞmS

K
pW−1HQβ −

ð1−mIÞð1−mSÞ
K

pW−1Hβ
�
:

Because H, β, and W−1 are diagonal, thus commuting, matrices, we can
state that R0 =

p
KμBϕ

HβW−1 = p
KμBϕ

W−1Hβ and rework the determinant of J* (SI
Text). The condition detðJ*Þ= 0 is thus given by

det


Un −

l
μB + l

PT −
μB

μB + l

�
ð1−mIÞð1−mSÞR0 +

mSmI

KμBϕ
pQTHQβW−1 +

  +
mIð1−mSÞ

KμBϕ
pQTHβW−1 +

ð1−mIÞmS

KμBϕ
pHQβW−1

��
= 0:

In addition to the matrix R0 =
p

KμBϕ
HβW−1 we can now introduce three other

matrices of reproduction numbers; namely,

RI
0 =

pQTHβW−1

KμBϕ
; RS

0 =
pHQβW−1

KμBϕ
;     and        RIS

0 =
pQTHQβW−1

KμBϕ
;

corresponding to metacommunities with infectives only being mobile,
susceptibles only being mobile, and both infectives and susceptibles being
mobile, respectively. If we account for the different probabilities of
movement in the metacommunity, we can define a transmission matrix
averaged over nonmobile individuals, mobile infectives, and mobile sus-
ceptibles as

T0 = ð1−mIÞð1−mSÞR0 +mSmIR
IS
0  + mIð1−mSÞRI

0 + ð1−mIÞmSR
S
0:

Therefore, the bifurcation of the disease-free equilibrium corresponds to the
condition

det
�
Un −

l
μB + l

PT −
μB

μB + l
T0

�
= 0:

Equivalently, the dominant eigenvalue Λ0 of the matrix

G0 =
l

μB + l
PT +

μB
μB + l

T0;

which is a convex combination of PT and T0, must equal unity. Actually, the
disease-free equilibrium switches from being stable to being a saddle, thus
triggering the start of the disease, whenever the dominant eigenvalue of J*
switches from positive to negative and hence whenever Λ0 switches from
being less than 1 to being larger than 1.
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