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When viewing a human face, people often look toward the eyes.
Maintaining good eye contact carries significant social value and
allows for the extraction of information about gaze direction.When
identifying faces, humans also look toward the eyes, but it is unclear
whether this behavior is solely a byproduct of the socially important
eye movement behavior or whether it has functional importance in
basic perceptual tasks. Here, we propose that gaze behavior while
determining a person’s identity, emotional state, or gender can be
explained as an adaptive brain strategy to learn eye movement
plans that optimize performance in these evolutionarily important
perceptual tasks. We show that humans move their eyes to loca-
tions that maximize perceptual performance determining the iden-
tity, gender, and emotional state of a face. These optimal fixation
points, which differ moderately across tasks, are predicted correctly
by a Bayesian ideal observer that integrates information optimally
across the face but is constrained by the decrease in resolution and
sensitivity from the fovea toward the visual periphery (foveated
ideal observer). Neither a model that disregards the foveated nature
of the visual system and makes fixations on the local region with
maximal information, nor a model that makes center-of-gravity fix-
ations correctly predict human eye movements. Extension of the
foveated ideal observer framework to a large database of real-world
faces shows that the optimality of these strategies generalizes across
the population. These results suggest that the human visual system
optimizes face recognition performance through guidance of eye
movements not only toward but, more precisely, just below
the eyes.

natural systems analysis | face processing | saccades

Determining a person’s identity, emotional state, and gender is
an inherently complex computational problem that has rep-

resented a formidable challenge for computer vision systems (1).
However, humans demonstrate an impressive ability to perform
these tasks (2) accurately within one or two fixations (3) over a
large range of spatial scales, head orientations, and lighting. Not
surprisingly, the human brain contains areas specialized for the
detection and identification of faces (4), as well as for processing
their emotional valence (5). While recognizing faces, identifying
emotions, or discriminating gender, humans also use a consistent
selective sampling of visual information from the eye region and,
to a lesser extent, the mouth region through both overt (eye
movements) and covert attention mechanisms (6–10). For exam-
ple, Schyns et al. (8) found that the visual information from the eye
region is the main factor determining decisions about a face’s
identity and gender, whereas Smith et al. (11) found that decisions
about a face’s emotional valence are driven by both the eye and
mouth regions. Furthermore, eye movements have been shown to
target the upper face area predominantly. Several studies using
long viewing conditions have shown that the eye region attracts the
vast majority of fixation time (6, 12), at least for Western Cauca-
sian observers. However, a study focusing on fast face recognition
resulted in eye movements toward the upper center part of the
face but displaced slightly downward from the eyes (3).
Why do humans look close to the eyes when encountering an-

other person? For many cultures, this is a socially normative be-
havior (13–16). From a young age, infants progressively learn from

the behavior of others to look at specific features when encoun-
tering other human faces, with the learned behavior imparting
positive social value and gaining possibly important information,
such as gaze and head direction (17–19). However, the functional
role these viewing strategies may play in basic perceptual tasks,
such as identification, remains unclear. Here, we propose the hy-
pothesis that in addition to these social functions, directing the
high-resolution fovea toward the eye region has functional im-
portance for the sensory processing of the face and optimizes basic
perceptual tasks that are relevant to survival, such as determining
the identity, emotional state, and gender of the person. In this
perspective, the behavior is a consequence of the distribution of
task-relevant information in naturally occurring faces, the varying
spatial resolution of visual processing across the retina, and the
brain’s ability to learn eye movement plans with the aim of opti-
mizing perceptual performance.
We first evaluated the functional importance for sensory pro-

cessing of humans’ points of fixation during a suite of common
important face-related tasks: identification, emotion recognition,
and gender discrimination. We found that forcing humans to
maintain gaze at points away from their preferred point of fixation
(as determined by a free eye movement task) substantially degrades
perceptual performance in each of the three face tasks. We then
sought to explain the eye movement behavior of humans in terms
of natural systems analysis (NSA) (20): the interaction between
the distribution of task-related information in the faces, the
foveated nature of the human visual system, and ideal observer
analysis. We first considered a model that makes fixations to fea-
tures with maximal discriminating information, but this could not
explain the behavioral eye movement results. Similarly, models
that target the center of the stimulus, computer display, or head
could not predict the observed fixations. A model that simulates
the effects of decreasing contrast sensitivity in the periphery com-
bined with ideal spatial integration and a Bayesian decision rule
that chooses the points of fixation that maximize perceptual per-
formance accurately predicted eye movement behavior across the
three tasks. These model results were found to generalize to a large
set of 1,000, suggesting an optimization for the natural statistics of
faces found in the population at large. Finally, humans were able to
maximize performance by switching to a unique optimal fixation
strategy for a separate task with a different spatial distribution of
visual information.

Results
Preferred Points of Fixation During Person, Gender, and Emotion
Identification. We first measured the preferred points of fixation
for our stimuli and perceptual tasks. Separate groups of 20Western
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Caucasian observers participated in one of three face-related tasks:
identification, emotion recognition, or gender discrimination.
Observers were briefly shown frontal view, noisy grayscale images
with background, hair, and clothing removed and scaled to repre-
sent the visual size of a face at normal conversational distance (6°
visual angle measured vertically from the center of the eyes to the
center of the mouth). In an identification task, observers were
asked to identify 1 of 10 faces. An emotion task displayed 1 of 140
faces (20 per expression), and observers were asked to categorize
the perceived emotion. In a gender task, observers were shown 1 of
80 faces (40 female) and responded with the perceived gender. To
assess preferred points of fixation, we allowed observers 350 ms to
move their eyes freely from one of eight randomly selected starting
locations positioned, on average, 13.95° visual angle from the
center of the face stimulus (Fig. 1). Peripheral starting locations
were used to remove the confound introduced by the common
practice of beginning trials with observers fixating the center of the
stimulus, whereby task information can be accrued before the ex-
ecution of any eye movement behavior.
The short display time allowed for the execution of a single

saccade into the face stimulus. Observers in the identification
task showed some variability in the landing point of the first eye
movement (Fig. 2 A and B), with the average end position
ranging from the eyes to the tip of the nose (a spread of 4.32°
visual angle with a mean landing point of 1.06° below the mid-
point of the eyes and an SD of 1.03°). In the emotion task,
observers showed a significant downward shift in saccadic be-
havior, along with greater individual variability compared with
the identification task [1.94° ± 1.45° below the eyes; t(34.2) =
2.21, P = 0.034, two-tailed unequal variances; Fig. 2 A and B].
The gender condition resulted in a pattern of results reminiscent
of the identification condition, with saccades closer to the eyes
and reduced variability (1.09° ± 0.86° below the eyes; Fig. 2 A and
B). Average perceptual performance, in proportion correct (PC),
for the three tasks was 0.457 ± 0.030, 0.542 ± 0.015, and 0.714 ±
0.011 for identification, emotion recognition, and gender dis-
crimination, respectively. Although difficult, performance was
significantly above chance for each task [identification: PCchance =
0.10, t(19) = 11.47, P = 2.8e-10, one-tailed; emotion: PCchance =

0.14, t(19) = 25.74, P = 1.6e-16, one-tailed; gender: PCchance =
0.50, t(19) = 20.57, P = 9.5e-15, one-tailed].
To determine whether the strategy varied with viewing time, we

repeated the identification task with a 1,500-ms presentation and
found no significant difference in the preferred location of the first
saccade compared with the 350-ms viewing time [1.09° ± 1.13°
below the eyes: t(19) = 0.25, P = 0.80, paired, two-tailed]. In ad-
dition, we assessed whether the eye movement strategy was altered
by the presence of image noise or absence of color by measuring
eye movements for a group of 50 additional participants identifying
color images of famous people with no image noise. Again, pat-
terns of fixation did not significantly differ from those observed
with the noisy grayscale image set [1.12° ± 1.18° below the eyes:
t(68) = 0.20, P = 0.84, two-tailed; Fig. 2C]. However, there still
exists the possibility that the observed eye movement patterns do
not reflect natural behavior but are a result of learning this specific,
relatively small stimulus set through trial and error as well as
feedback. Three pieces of evidence argue against this explanation.
First, we compared each individual’s mean saccade landing point
from the first 50 trials of the Short identification condition with the
mean landing location from the last 50 trials. We found no signif-
icant difference between these distributions [t(19) = 0.61, P=0.52,
two-tailed; Fig. S1A]. Second, the famous faces condition did not
involve feedback and used familiar people, yet the saccade dis-
tributions were extremely similar to those from the Short condition.
Finally, we had six separate observers identify the same 10 gray-
scale faces; however, unlike our original study, feedback was not
provided. After completing the no-feedback condition, the same
observers also ran through the original study. The eye movement
results show no significant difference in fixation behavior between
the two conditions, indicating the use of preexisting strategy [mean
distance between saccade distributions for the two conditions was
0.17° ± 0.12°: t(5) = 1.43, P = 0.21, two-tailed, paired; Fig. S1B].
Together, the results confirm that the strategy remains largely
unaltered, and thus reflects natural behavior.

Functional Importance and Perceptual Performance of Preferred Points
of Fixation. To evaluate whether these preferred points of gaze
had functional importance, we conducted a second condition that

Free eye movements
(1 of 8 locations)

Forced fixation
(1 of 4 locations)

Fixation
500 - 1500 ms

Stimulus
free: 350 ms

fixed: 200 ms

Mask
250 ms

Response +
feedback

Fig. 1. Task time line. The free eye movement condition allowed observers to make a saccade from initial fixations surrounding the image into the centrally
presented face image with time for one fixation. The forced fixation task was identical, except the possible initial fixations were situated along the vertical
midline and eye movements were prohibited.
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forced observers tomaintain one of four fixation locations along the
midline of the face (equally spaced 3° apart, same locations for all
participants) while the stimulus was displayed for 200 ms (Fig. 1).
For all tasks, fixating away from the preferred gaze location (e.g.,
forehead, mouth) led to appreciable performance degradation in
terms of PC [identification: PC(eyes-forehead) = 0.143, t(19) =
11.05, P = 5.2e-10 and PC(nose-mouth) = 0.148, t(19) = 13.42,
P = 1.9e-11; emotion: PC(eyes-forehead) = 0.057, t(19) = 4.52,
P= 1.2e-4 and PC(nose-mouth) = 0.067, t(19) = 5.62, P= 1.0e-5;
gender: PC(eyes-forehead) = 0.056, t(19) = 5.23, P = 2.4e-5 and
PC(nose-mouth) = 0.055, t(19) = 4.55, P = 1.1e-4; all tests one-
tailed; Fig. 3].
The behavioral results show that humans guide eye movements

to locations on the face that lead to high perceptual accuracy.
However, these results do not necessarily show that humans enact

gaze patterns that are optimized for the statistical distribution of
discriminating information present in the human face combined
with the foveated nature of the human visual system [sensory
optimization hypothesis (21)]. For example, the correspondence
between saccade selection and task performance could be ex-
plained if we hypothesized the following: (i) Humans adopt a be-
havior of fixating near the eye region to maximize the value of
social interactions, optimally evaluate gaze and head direction,
fixate highly salient regions, or any number of unrelated tasks, and
(ii) this long-term behavior has led to the adaptation of a fixation-
specific sensory coding neural system that leads to a performance
cost when humans fixate at a location different from the norm. In
this framework, eye movements toward preferred points of fixa-
tion and their associated perceptual performance advantages
would not arise due to the statistical visual properties of the hu-

Identification Emotion Gender

A

B

Famous identification

C

Fig. 2. Eye movement behavior. (A) Representative fixations from 3 observers for the free eye movement condition. Each red dot indicates a single saccade
of the 500 total fixations per observer, whereas the black dot represents the mean landing point across all saccades. (B) Each green dot indicates the mean
landing point for 1 observer, whereas the white dot is the mean landing point across the 20 observers. (C) Eye movement behavior for observers identifying
full-color, noise-free images mirrors the results from the main identification task.
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Fig. 3. Forced fixation performance and foveated ideal face discriminator performance. Black dots are the average performance in the forced fixation
condition across observers (error bars represent 1 SEM). The blue rectangles represent the saccade distribution at the group level, centered at the mean of the
landing point of the first saccade with a width of 1 SD. Humans fixated between the eyes and nose but closer to the eyes. The red line indicates the model
predictions of the FIO.
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man face and the foveated nature of the visual system but rather as
a byproduct of the adoption of a long-term overpracticed behav-
ior. However, if the sensory optimization hypothesis holds, we
reasoned that it should be possible to predict the performance-
maximizing locations of human fixations using a rational model of
eye movements that takes into account the distribution of dis-
criminating information across faces for the various perceptual
tasks. We used constrained ideal observer methodology (22) and
NSA (20) to test this second hypothesis.

NSA: Spatial Distribution of Discriminating Information. To quantify
and localize the amount of discriminating visual information avail-
able in an image of a human face, we systematically extracted small
corresponding regions from each face in the current stimulus set
and ran a traditional white noise ideal observer [region of interest
(ROI) ideal observer; Fig. 4A and SI Text], which makes trial-to-
trial decisions by calculating the posterior probabilities of each
possible stimulus class, given the observed data, and choosing the
maximum (23, 24). Here, each class, i, is equally likely to be
present on any given trial (i.e., the prior probabilities are the
same), which reduces the Bayesian decision rule to choosing the

maximum class likelihood, Li, itself a sum of the within-class
likelihoods for each exemplar, j. When the additive noise is white
and normally distributed, the sum of likelihoods, Li = ∑ℓi;j, is
given by (derivation is provided in SI Text):

Li ¼
X
j

ℓi;j ¼
X
j

exp

 
2sTi;jg − sTi;jsi;j

2σ2

!
; [1]

where si;j and g represent vectors of the 2D noiseless face images
and noisy stimulus observation (face and additive noise), respec-
tively, T is the transpose operator, and σ is the SD of the spatially
independent pixel noise.
Analyzing the same faces used in the human study resulted in

a spatial map of the local concentration of task-relevant information
in which higher ideal observer performance corresponds to greater
discriminating information content (Fig. 5A). For all tasks, the eye
region contained the most information, with the mouth also show-
ing up as being informative, especially for emotion discrimination.
A remaining question is whether our results are specific to the

chosen subset of faces. To assess whether the distribution of dis-
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filtered images

Spatially reconstructed
“foveated” image
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Fig. 4. ROI ideal observer and FIO methodology. (A) ROI ideal observer, a technique for localizing and quantifying information content, is an adaptation of
classic white noise ideal observer theory. Small regions of the stimulus are extracted and embedded in white Gaussian noise. The likelihoods for the presence
of each possible stimulus are computed in a Bayesian manner, and the maximum likelihood is taken as the decision. A single signal contrast is chosen and held
constant across regions. Thus, the performance of the ideal observer for each region is a measurement of the total task-relevant information content. (B) Flow
chart for the FIO simulations. For any given fixation (here, center of the image), the image is divided into spatial bins, each with its own contrast sensitivity
function (CSF) depending on retinal eccentricity and direction from fixation. The image is filtered in the frequency domain and then reassembled in the
spatial domain, resulting in a spatially variant filtered image. FFT, fast Fourier transform; IFFT, inverse FFT.
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criminating information generalizes to more natural situations,
we adopted an NSA methodology (20) by evaluating the same
ROI analysis for the identification task on a large, representative
sample of 1,000 faces (100 groups of 10 faces each). Of these
1,000 faces, 150 were from our in-house database with stan-
dardized pose and lighting conditions. The remaining images
were gathered from the Internet from many diverse sources. All
faces were chosen to have a close to frontal view pose, close to
neutral expression, Caucasian ethnicity, and no distinguishing
marks (e.g., jewelry, glasses). Lighting was left uncontrolled. The
results show that the information across faces is highly regular,
with the ROI maps displaying a strong similarity to the results
from the experimental stimuli (distance between the NSA and
human study maximum performance locations was 0.17°; Fig. 6B;
a comparison of results between datasets is provided in Fig. S2).

Fixate the Most Informative Feature Strategy. The first possible eye
movement strategy we tested is one that fixates the most in-
formative feature for each face task. This model posits that
humans simply direct their eyes to the region with the most local
information, Rmax, as defined by the ROI ideal observer’s per-
formance in terms of PC for each region, PCR, calculated using
Eq. 1:

Rmax ¼ arg max
R

ðPCRÞ: [2]

The overlaid group saccade distributions show that this was not
the case; instead, fixations were clustered closer to the vertical
midline and displaced downward (Fig. 5A). Observers’ first fixations
differed significantly from this model’s predictions for each task,

with the average errors measuring 2.17° for the identification
task [t(19) = 12.36, P = 1.6e-10, two-tailed], 2.05° for the gender
task [t(19) = 19.02, P = 8.0e-14, two-tailed], and 2.54° for the
emotion task [t(19) = 12.01, P = 2.6e-10, two-tailed].

Optimal Foveated Strategy. The ROI ideal observer integrates in-
formation perfectly within the extracted region while ignoring the
surrounding area. The human visual system, however, integrates
information across the visual field, with the quality of information
degrading toward the periphery. To take into account the foveated
nature of visual processing, we implemented a foveated ideal ob-
server (FIO) (25) (Fig. 4B). To simulate the effects of eccentricity
on sensitivity to different spatial frequencies, we used a spatially
variant contrast sensitivity function (SVCSF) linear filtering
function (Eq. 3 and SI Text) that took points of fixation, eccen-
tricity, and direction away from fixation as variables (26, 27):

SVCSFðf ; r; θÞ ¼ c0f a0expð− b0f − d0ðθÞrn0 f Þ; [3]

where f is spatial frequency in cycles per degree of visual angle.
The terms a0, b0, and c0 are constants set to 1.2, 0.3, and 0.625,
respectively, to set the maximum contrast at 1 and the peak at
four cycles per degree of visual angle at fixation. Distance in
terms of visual angle and direction from fixation are specified
in polar coordinates by r and θ, respectively, with d0 representing
the eccentricity factor as a function of direction (i.e., how quickly
information degrades with peripheral distance) and n0 represent-
ing a steep eccentricity roll-off factor.
For any given fixation point, k, the input image (with the same

contrast and additive white noise as viewed by the humans) is fil-
tered by the SVCSF. This filtered image is then corrupted by ad-

Identification Emotion Gender

P r o p o r t i o n  c o r r e c t

A

B

0.55 0.850.65 0.750.25 0.750.5

0.1 0.70.3 0.5 0.5 0.80.6 0.70.2 0.70.45

0.25 0.750.5

Fig. 5. ROI and FIO predictions. (A) ROI ideal observer shows heavy concentrations of information in the eye region, with smaller peaks around the nose tip
and mouth. Overlaid are the mean saccade landing points for each individual (in green) and the group (in white). Saccades were not directed toward the most
information regions. (B) FIO predictions show a peak in the center of the face just below the eyes, where information is optimally integrated across the visual
field. The overlaid saccade distributions show a strong tendency for observers to target regions of maximal information gain.
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ditive, zero-mean white Gaussian internal noise with SD, σ (al-
ternative models that use signal contrast attenuation for human
performance matching alongside or instead of internal noise are
discussed in SI Text and Fig. S3). The FIO compares this filtered
noisy input with similarly filtered noise-free templates of each
possible face, resulting in a set of template responses, rk, drawn
from a multivariate normal distribution with mean vector μ0 and
covariance

P
k. Multivariate normal likelihoods of all template

responses for each possible face are calculated and summed
within each class, resulting in a collection of summed likelihood
terms, Li;k:

Li;k ¼
X
j

ℓi;j;k ¼
X
j

exp

 
−
1
2
�
rk −μi;j;k

�TX−1
k

�
rk −μi;j;k

�!
: [4]

The FIO then takes the maximum of these summed like-
lihoods as the decision [a full derivation is provided in SI Text; we
also implemented an ideal observer in white noise, a common
model in the vision literature, and incorporated simulated
spatial uncertainty, a known property of the human visual system,
with both models producing very similar results (28–30) (SI Text
and Figs. S4 and S5)]. We kept the direction-dependent eccen-
tricity terms [d0(θ) and n0] and internal noise SD (σ) as free
parameters to fit the performance profile from the forced fixation
condition of the identification task. We then used the same ec-
centricity parameters for the SVCSF while leaving the internal
noise SD free to generate the FIO predictions for each possible
fixation across the face for the three tasks (a discussion on dif-
ferences between previously reported contrast sensitivity function
parameters measured using isolated gratings and those used here
is provided in SI Text).
Generally, an optimal eye movement model selects a fixation,

kopt, from all possible fixations, such that task performance is
maximized (31):

kopt ¼ arg max
k

 X
i

πiPr

 X
j

P
�
fi;jjrk

�
>
X
j

P
�
fi′;jjrk

�
; ∀i′≠ i

!!
;

[5]

where πi is the prior probability of each class and Pðfi;jjrkÞ is the
posterior probability of the hypothesis of face (i,j) being present,
given the observed responses (a complete derivation is provided in
SI Text). The FIO did not use peripheral information about the
identity or class of the stimuli from the initial fixation as prior
information to influence the location of the first saccade. The un-

derlying assumption here is that any evidence about face identity
or category gathered during the initial fixation will not alter the
saccade strategy. In the present study, all initial fixations were
outside the presented image at an average distance of 15.3° from
the center of the face. Two findings support our assumption that
peripheral processing at the initial point of fixation does not alter
the eye movement strategy of the first saccade: (i) Human fixation
points did not depend on which face was displayed, suggesting
a similar strategy across identities, and (ii) the FIO predictions
conditional on which face was present show a similar cluster of
maximum performance fixation locations (Fig. S6).
Fig. 3 presents the FIO performance down the vertical midline

for each task. Results show that the FIO predicts the preferred
gaze for the emotion and gender tasks, even though the SVCSF
eccentricity parameters were fit only to the identification condi-
tion. At the group level, observers fixated the area of the face that
led to maximum predicted performance, with the mean saccade
landing point not significantly deviating from the optimal pre-
diction by 0.22° [t(19) = 0.048, P= 0.96, two-tailed], 0.23° [t(19) =
0.035, P = 0.97, two-tailed], and 0.14° [t(19) = 0.036, P = 0.97,
two-tailed] for the identity, emotion, and gender tasks, respectively
(Fig. 3). This can also be seen in the full 2D performance pre-
dictions (Fig. 5B). Although the FIO was able to account for
observers’ location-dependent performance and preferred point
of fixation, there was no relationship between the variance of
observer fixations (taken across all saccades) for each individual
task and the “flatness” of each task’s FIO performance map, de-
fined here as the distance from the peak performance location and
the point nearest the peak where performance fell by 0.10 in PC [r
(3) = −0.11, P = 0.89]. Finally, we ran the same analysis on our
1,000-face database, resulting in consistent findings across differ-
ent face image sources (Fig. 6 A and C).

Flexible or Fixed Optimal Strategies for Other Tasks? If fixating the
eye region is indeed a strategy that aims at maximizing perceptual
performance, humans might adopt a different fixation strategy for
a task in which the optimal strategy is to fixate away from the eye
region. Alternatively, humans might adopt a general eye move-
ment plan that directs saccades close to the eyes as a heuristic that
renders quasioptimal performance for a large variety of tasks but
that might be suboptimal for some specific situations. To test these
two possibilities, we sought a task that did not contain most of the
discriminating information in the eyes and for which the FIO
strategy departed from the optimal strategy in the identification
task. One such task is discriminating between happy and neutral
expressions. We ran a separate group of 20 observers in the same
paradigms, except they now had to discriminate between neutral
and happy expressions (80 faces in each class). The ROI ideal
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Fig. 6. NSA. (A) FIO results along the vertical midline for 100 groups of 10 faces each are shown, with dark gray representing the mean performance across
groups plus or minus 1 SEM. Light gray represents the SD. (B and C) ROI and FIO results, respectively, show a strong correspondence to the results using images
from the human study.
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observer shows that the bulk of the information for this task is now
concentrated in the mouth, with a significant amount still present
in the eyes (Fig. 7B). The FIO predictions show that the optimal
strategy is to fixate the nose tip (Fig. 7 A and C), probably due to
the high visibility of the mouth region in the periphery (a large
white smile vs. a closed mouth). Consistent with this prediction,
observers showed a shift downward in saccade behavior from the
identification condition [2.72°± 1.11° below the eyes; t(37) = 4.90,
P = 9.5e-6, one-tailed; model fits are discussed in SI Text]. Thus,
humans are able to adapt their eyemovement strategies to changing
task demands.

Evaluation of Central Bias Strategies. There is a well-documented
tendency for observers to fixate the center of images (natural and
synthetic) when they are displayed on a computer screen (32,
33). Could the eye movements reported here be explained simply
by observers’ propensity to saccade toward the middle of the
stimulus? The saccade distributions certainly cluster toward the
horizontal center of the face images, although they are signifi-
cantly displaced to the left [identification: 0.66° ± 0.10°, t(19) =
6.48, P = 1.6e-6, one-tailed; emotion: 0.48° ± 0.11°, t(19) = 4.50,
P = 1.2e-4, one-tailed; gender: 0.45° ± 0.10°, t(19) = 4.25, P =
2.2e-4, one-tailed]. We consider three possible central bias
strategies in the vertical dimension.
Center of visible face. The geometric center of the visible portion of
the face images (within the black cropping mask) corresponds to
a point just below the nose tip (0.26°), a considerable and statistically
significant distance from the center of the human saccade dis-
tributions for each task [identification: 2.15° ± 0.24°, t(19) = 8.92,
P=3.2e-8, two-tailed; emotion: 1.27°± 0.30°, t(19)= 4.17,P=5.2e-
4, two-tailed; gender: 2.02° ± 0.22°, t(19) = 9.19, P = 2.0e-8, two-
tailed; Fig. 8A], suggesting that humans are not using a simple
strategy of targeting the middle of the image within the high-
contrast frame.
Center of frame. A second strategy observers might have adopted is
to target the center of the black cropping box, which also corre-
sponds to the center of themonitor. This point is located above the
visible face center (1.04° above the nose tip), but results were still
well below the eye movement results for the identification and
gender tasks [identification: 0.86°± 0.24°, t(19) = 3.55, P= 2.1e-3,
two-tailed; gender: 0.73° ± 0.22°, t(19) =3.30, P = 3.7e-3, two-
tailed; Fig. 8A]. The emotion condition yielded saccades that were
not significantly displaced from this location [0.03° ± 0.30°, t(19) =
0.08, P = 0.93, two-tailed; Fig. 8A]. The ability of this center bias
strategy to account for just one of the three tasks makes it an
unlikely candidate to explain human behavior. Nevertheless, to
rule out this possibility completely, we developed a task that

moved the geometric center a large distance down the face by
moving the face image upward and expanding the black cropping
box and visible face area greatly downward (Extended Frame
condition; Fig. 8B). If observers are targeting the center of the
stimulus, we should see a large divergence in looking behavior
between this task and the original Short condition. Six separate
observers participated in these two conditions (counterbalanced
so that three completed the Short task first followed by the Ex-
tended Frame condition, and vice versa; Fig. 8B). The new frame
moved the center of both the visible area and the entire surrounding
box downward to 1.84° below the nose tip. The results show that
observers do not look toward the center of this new extended frame
but rather much further up the face [mean saccade distance from
center = 3.07° ± 0.38°, t(5) = 7.94, P= 5.1e-4, two-tailed; Fig. 8B].
Furthermore, observers looked at the same place on the face in-
dependent of the frame position [mean distance between saccade
distributions for the two conditions = 0.10° ± 0.13°, t(5) = 0.78, P=
0.47, two-tailed, paired; Fig. 8B], suggesting that saccades are
planned relative to the inner features of the face itself.
Center of entire head. Finally, it is possible that observers fixate the
center of the entire head region (i.e., from the tip of the chin to the
top of the skull/hair). Although the entire head was never shown to
observers, they could have applied a real-world strategy of fixating
the center of peoples’ heads. We measured the average geometric
center for all faces in our 150-image in-house database by taking
the halfway point between the top of the hair and the bottom of
the chin for the full, uncropped images. The head center coincides
with a point directly between the eyes, which is significantly dis-
placed upward from each task’s saccade distribution [identifica-
tion: 1.07° ± 0.24°, t(19) = 4.41, P = 3.0e-4, two-tailed; emotion:
1.95° ± 0.30°, t(19) = 6.41, P = 3.8e-6, two-tailed; gender: 1.20° ±
0.22°, t(19) = 5.44, P = 3.0e-5, two-tailed]. Again, this strategy
cannot account for the observed eye movements.

Summary of Results. A summary of results for each task and model
is presented in Fig. 8C. For all conditions tested, observers di-
rected their saccades to locations significantly below the eyes. The
ROI ideal observer, which predicts fixations on the eyes or mouth
depending on the task, fails to capture human behavior. Simple
alternatives, such as the center-of-mass models, are also poor
predictors of behavior. Furthermore, it is clear that humans enact
distinct eye movement plans depending on the task, with saccades
directed significantly lower on the face for judgments about emo-
tion compared with identity and gender, and lower still when de-
termining happiness. The ROI and center-of-mass models do not
predict these task-dependent differences. The FIO model, how-
ever, is able to account for both the guidance of saccades to just
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Fig. 7. Happy vs. neutral behavioral and ideal observer results. (A) Humansmove their saccades downward toward the nose tip. Human saccadedistributionmeans
for the identification and emotion tasks are indicatedby the red andblack arrows, respectively. (B) ROI ideal observer shows a heavy concentrationof information in
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below the eye region and the sensitivity of eye movements to task
due to the task’s specific layout of visual information and the
simulated spatial inhomogeneity of the human visual system. In-
deed, across the four tasks, the average error for the FIO (defined
as the distance from the model’s peak performance location to the
mean of the human saccade distribution, Δd) was significantly less
than for each other model [ROI:Δd= 1.70° ± 0.13°, t(79) = 13.00,
P = 1.3e-21, one-tailed; visible face center: Δd = 0.71° ± 0.11°,
t(79) = 6.34, P = 6.6e-9, one-tailed; frame center: Δd = 0.16° ±
0.05°, t(79) = 3.50, P = 3.9e-4, one-tailed; head center: Δd =
0.80° ± 0.12°, t(79) = 6.43, P = 4.4e-9, one-tailed; comparisons
within a single task are provided in Table S1]. Finally, a condition

that offered no feedback resulted in extremely similar eye move-
ments, suggesting that these strategies are not learned for the
unique sample of face images used in this study but are rather
preexisting optimal adaptations for real-world face recognition
tasks learned outside the laboratory.

Discussion
One notable aspect of our FIO model is that it not only predicts
saccades toward the eyes but, more precisely, just below the eyes.
This is a consequence of the model’s integration of visual in-
formation across the entire face stimulus. Although the eyes con-
tain the highest concentration of task-relevant visual evidence of
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Fig. 8. Evaluation of central bias strategies and summary of results. (A) Strategy that targets the geometric centers for either the visible face area (purple), the
cropping black box (orange), or theuncropped entirehead region (cyan) cannot account for humaneyemovement results (blue, identification; red, emotion; green,
gender). (B) New condition, whichmoves the center drastically downward on the face (orange), yields nearly identical results (black) to the original Short condition
(white) while providing even poorer eye movement predictions. (C) Compilation of eye movement results and corresponding model predictions for all conditions.
Inspection shows that the FIO is the only model that correctly predicts human fixation locations and tracks the systematic modulation of behavior with task.
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any single region or feature, spatially disjunct areas may also con-
tribute valuable information. Other large features, such as the
mouth and nose, show up as information concentration hot spots
(Fig. 5A), whereas diffuse information is present across all areas of
the face. Direct foveation of the eyes leaves the mouth and nose tip
well into the periphery, where sensitivity is greatly attenuated,
causing degradation in these features’ information. Foveating
a more central region allows for greater amounts of diffuse in-
formation to fall in less peripheral regions of the visual field.
However, not every study has found that saccades are directed

just below the eyes. Observers commonly follow a triangular pat-
tern of eye movements with alternating saccadic transitions be-
tween the two eyes and the mouth [commonly referred to as the
“T” pattern (9, 12, 34–36)]. Two potential differences across
studies may help explain these discrepancies: stimulus display time
and location of the initial fixation. In these previous studies, faces
were shown for a relatively long time, on the order of 2 to 10 s. This
allowed for a large number of saccades during any single stimulus
presentation. Given that face identification performance saturates
after two fixations (3), the vast majority of these saccades did not
contribute to a final perceptual decision. The T pattern may thus
reflect normal social behavior, a default mode that observers revert
to after gathering and processing sufficient information for the task
at hand. Additionally, these studies placed the initial fixation near
the center of the face, making future saccades to this region un-
necessary because that information had already been gathered,
and possibly drastically altering saccade strategy (37). Indeed,
a study by Hsiao and Cottrell (3) that found results similar to ours,
with fixations clustering around the midline of the face and dis-
placed down from the eyes, used a brief presentation time and an
initial fixation outside the face image. Our current results suggest
that saccades toward the region just below the eye are a conse-
quence of observers optimizing their eye movement plans for rapid
identification during the first fixation into the face. This would
seem to be especially true after observers have developed a strong
representation of the faces in memory, because previous studies
have shown amigration of eye movements from amore distributed
pattern during early familiarization toward concentrated gaze
around the eyes during recall in a learned state (12, 38).
When and how might these optimal strategies arise? The gaze

of newborns is attracted to eyes that are directed at them (18).
Infant contrast sensitivity is lower than that of the adult, espe-
cially in the high spatial frequencies (39). If infant peripheral
vision is not well-developed, the high-contrast eye region may
provide the best source of information for the nascent infant
visual system and fixating the eyes directly might be the optimal
strategy. As the infant grows, the development of greater con-
trast sensitivity across the visual field may allow for more efficient
integration of spatially diffuse information in the parafoveal and
peripheral regions. This broadening of visibility would cause
a change in the optimal fixation predictions from a targeting of
regions with locally high information density, such as given by the
ROI ideal observer (Fig. 5), to the FIO predictions driven by
a mature visual system (Fig. 6). This migration of eye movements
could mirror the development of the ability to recognize con-
specifics over the first few years of life (17, 40).
Human fixations and the FIO performance peaks were both

lower on the face for the emotion task than for the identification
and gender tasks (Fig. 3). However, a simple strategy of fixating
a small region just below the eyes would result in maximal or ap-
proximately maximal performance for each task. This leads to the
possibility of a heuristic strategy that approaches optimality for the
collection of common face-related tasks. Only when less common
and more specific tasks are performed, where the spatial distri-
bution of information is dramatically altered, does a change in
strategy lead to appreciable performance advantages. In keeping
with our sensory optimization hypothesis, this adaptation in be-
havior can be seen when observers are asked to ascertain whether

somebody is smiling or not (Fig. 7), because the eyes are guided
further down on the face formore efficient processing of the highly
informative mouth region. This strategy adjustment to diverse,
task-specific distributions of information can also be seen with
other face-related tasks, such as speech recognition, especially
under difficult, noisy conditions (41).
Many years of research have shown the propensity for Western

observers to fixate near the eyes during face recognition. Here,
we have shown that this behavior can be explained through an
NSA, where fixations are chosen to maximize information gain,
with this strategy attaining optimal or approximately optimal
performance across face-related tasks. Deviations from this opti-
mal behavior show a substantial detriment to performance, espe-
cially with identification.With that said, it should be noted that our
methods minimize social effects on eye movements. In our study,
observers identified briefly viewed static images of faces rather
than interacting with actual people in a more natural, social set-
ting. In real life, the complexity of social interaction requires the
monitoring of many perceptual tasks. Furthermore, humans are
acutely sensitive to the gaze direction of others, with social costs
attached to the detection of nonstandard behavior (19, 42, 43).
Therefore, eye movements to faces in the real world might be
guided closer to the eyes through a strategy that aims to optimize
a collection of functions (e.g., social normalcy, gaze recognition)
while still preserving high perceptual performance for the im-
portant face-related tasks tested in this study.
Application of the developed tools to other ethnic populations

[e.g., East Asian (44, 45)] may reveal whether observed differences
in eye movement behavior across cultures are optimal adaptations
to the spatial layout of visual information in the faces of those
populations or cultural differences unrelated to sensory optimi-
zation. Furthermore, these techniques could be used to assess the
functional underpinnings of face recognition deficits in certain
clinical populations [e.g., autism spectrum disorder (46–48), pro-
sopagnosia (49–51), schizophrenia (52, 53)] and could be a useful
starting point for the development and continued assessment of
rehabilitation efforts.

Methods
Subjects. Each task in themain study was completed by a separate group of 20
undergraduate students for course credit. The famous faces study was com-
pleted by a separate group of 50 undergraduate students. Informed consent
was obtained for all subjects, and guidelines provided by the Institutional
Review Board at the University of California, Santa Barbara, were followed.

Eye Tracking. The left eye of each participant was tracked using an SR Re-
search Eyelink 1000 Tower Mount eye tracker sampling at 250 Hz. A nine-
point calibration and validation were run before each 125-trial session, with
a mean error of no more than 0.5° of visual angle. Saccades were classified as
events in which eye velocity was greater than 22° per second and eye ac-
celeration exceeded 4,000° per square second. If participants moved their
eyes more than 1° from the center of the fixation cross before the stimulus
was displayed or while the stimulus was present during the forced fixation
condition, the trial would abort and restart with a new stimulus.

Stimuli, Psychophysics.Onehundredfifty face imageswere taken in-housewith
constant diffuse lighting, distance, and camera settings. Graduate and un-
dergraduate students at the University of California, Santa Barbara, partici-
pated for course credit or pay. The images were normalized by scaling and
cropping, such that thebottomofthehairlinewas10pixelsbelowthetopof the
imageand thebottomof the chinwas10pixels above thebottomof the image.

Emotional Face Selection. On hundred forty images (20 per emotion) were
selected from the 1,050 in-house photographs (150 people demonstrating
seven emotions each). Nineteen naive participants rated each photograph on
the genuineness of the intended emotion on a scale from 1 to 7. Raters were
instructed that a score of 4 or greater meant the expression was a believable,
readily recognizable representationof the intendedemotionandwouldnotbe
mistaken for another expression. This was used as the threshold for catego-
rizing the imageaseither correctlyor incorrectlydisplaying theexpression.APC
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measure was calculated for each image, with values above 0.8 being taken as
sufficient label agreement (54). Only images that achieved this thresholdwere
considered for use in the study. We then selected the 10 males and 10 females
from the viable images in each emotion group that scored the highest on the
genuineness scale. The rating results are shown in Fig. S7.

NSA Images. The 150-image in-house database was supplemented with 850
face images culled from the Internet using Google image search. For rea-
sonable comparison between image sets, images were required to be ap-
proximately frontal view with a neutral expression, Caucasian ethnicity, and
no obvious occlusions or marks (e.g., glasses, jewelry). Because the in-house
database used constant lighting conditions, the Internet faces were selected

to have diverse sources and intensities of lighting tomimic natural conditions.
Slight rotation (less than 10°) from a frontal view was also allowed.

Famous Faces.One hundred twenty high-resolution, full-color images of well-
known celebrities were collected using Google image search and normalized
in the same manner as the main study’s stimuli. Participants followed the
same protocol as the free eye movement conditions of the main study, ex-
cept they had to type in the name of the celebrity.
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