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Abstract
Delta opioid receptors represent a promising target for the development of novel analgesics. A
number of tools have been developed recently that have significantly improved our knowledge of
delta receptor function in pain control. These include several novel delta agonists with potent
analgesic properties, as well as genetic mouse models with targeted mutations in the delta opioid
receptor gene. Also, recent findings have further documented the regulation of delta receptor
function at cellular level, which impacts on the pain-reducing activity of the receptor. These
regulatory mechanisms occur at transcriptional and post-translational levels, along agonist-
induced receptor activation, signaling and trafficking, or in interaction with other receptors and
neuromodulatory systems. All these tools for in vivo research, as well as proposed mechanisms at
molecular level, have tremendously increased our understanding of delta receptor physiology, and
contribute to designing innovative strategies for the treatment of chronic pain and other diseases
such as mood disorders.
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Introduction
Morphine and other related opiates are potent analgesics widely used for pain treatment.
These compounds act on opioid receptors to inhibit pain transmission and perception. The
three opioid receptors, mu, delta and kappa receptors, are transmembrane G-proteins
coupled receptors encoded by Oprm1, Oprd1 and Oprk1 genes, respectively (Kieffer &
Gaveriaux-Ruff, 2002; Stevens, 2009). Opioid receptors are activated endogenously by the
opioid peptides enkephalins, beta-endorphin and dynorphins processed from large precursor
proteins encoded by Penk, Pomc and Pdyn genes (Akil et al., 1998). The opioid system
plays a central role in pain control, as well as in reward (Mendez & Morales-Mulia, 2008;
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Rodriguez-Arias et al., 2010; Shippenberg et al., 2008) and neuroptoection (Chao & Xia,
2010; Johnson & Turner, 2010). In addition this system regulates a number of physiological
functions that include respiration and gastrointestinal transit, as well as endocrine and
immune systems (Kieffer & Gaveriaux-Ruff, 2002; Sauriyal et al., 2010).

Since the initial molecular cloning (Evans et al., 1992; Kieffer et al., 1992), a number of
tools have been developed enabling better understanding of delta receptor function in
nociception and pain. Research on delta opioid analgesia has benefited from a series of
novel agonists that extend the panel of pharmacological tools available to study delta
receptors in pain control. Mouse genetic models have been created, that harbor targeted
mutations of the receptor. These mice represent unique tools for assessing both the
endogenous pain-reducing delta tone and the implication of delta receptors in the actions of
opioid as well as non-opioid analgesics. These tools will be presented here, together with
novel mechanisms for the development of therapeutics strategies targeting the delta opioid
receptor.

In addition, there was tremendous progress in understanding how delta receptor expression
and activity are regulated, and these mechanisms heavily contribute to delta analgesia.
Receptor regulation takes place at different levels, including genomic and transcriptional
controls in the nucleus, post-translational events in the cytoplasm and endoplasmic
reticulum, interaction of delta receptors with other receptors at the cell membrane, and
processes that follow delta receptor activation within the cell, and these aspects will be
discussed.

Altogether, delta opioid receptor research represents a very active field of investigation, with
about 1000 publications within the last five years. This review therefore cannot be
exhaustive and only recent reviews or publications are cited.

Delta opioid analgesia: from early pharmacology to novel agonists
In early opioid pharmacology, two peptidic agonists DPDPE ([2-D-penicillamin, 5-D-
penicillamin]-enkephalin) (Mosberg et al., 1983) and deltorphin (Kreil et al., 1989) were
most frequently used to study delta receptor function in pain control (Chang et al., 2004).
However, their peptidic nature prevented their use by systemic administration in vivo. Later,
the non-peptidic agonists BW373U86 and SNC80 (Bilsky et al., 1995; Chang et al., 2004),
and the antagonist naltrindole (Portoghese et al., 1988) (Chang et al., 2004) proved to be
more stable ligands in vivo to investigate delta receptor-mediated analgesia.

The identification of several novel delta agonists has further broadened the repertoire of
molecules available to study delta receptors in vivo (Pradhan et al., 2011; Vanderah, 2010).
Over the past decade, SB-235863 (Petrillo et al., 2003), DValAla-Enk (Brainin-Mattos et al.,
2006), NIH 11082 (Aceto et al., 2007), AR-M100390 (Pradhan et al., 2009), ADL5859 (Le
Bourdonnec et al., 2008), ADL5747 (Le Bourdonnec et al., 2009), JNJ-20788560 (Codd et
al., 2009), compound 8e (Jones et al., 2009) and KNT-127 (Saitoh et al., 2011) have been
developed as analgesics in preclinical models. Table 1 summarizes the analgesic effects of
these novel agonists in several pain models, as well as analgesic effects of previously
described reference molecules such as DPDPE, DSLET, deltorphin, SNC80 or Tan-67.
Altogether, the data cited in Table 1 indicate that delta receptor activation diminishes
chronic pain in the three mouse, rat and monkey species. Table 1 also shows that several
distinct chronic pain models are sensitive to delta agonists, including inflammatory,
neuropathic, cancer and diabetic pain. Moreover, delta receptor activation reduces
hypersensitivity in heat, cold and mechanical modalities. Altogether, delta opioid agonists
efficiently decrease chronic pain in many preclinical models and clinical trials will validate
their translational potential to patients.
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Mouse genetic models to study delta receptor function in vivo
Delta opioid receptor knockout mice

A major step for understanding delta receptor function was the generation of mice with a
targeted inactivation of the Oprd1 gene, or delta receptor knockout mice (Filliol et al., 2000)
(Zhu et al., 1999). A prime finding with these mutant mice was the discovery that delta
receptors plays a critical role in the control of emotional responses (Filliol et al., 2000),
revealing anxiolytic and antidepressant activities of the receptor that were further confirmed
by the pharmacology (Pradhan et al., 2011) (Jutkiewicz, 2006; Noble & Roques, 2007)
(Javelot et al., 2010). This mouse line represents a unique genetic tool to assess both the
influence of endogenous delta receptor tone on pain physiology, and the in vivo selectivity
of known or new delta agonists.

Delta receptor knockout mice showed no change or only subtle alterations in their sensitivity
to acute pain (Contet et al., 2006; Filliol et al., 2000; Gaveriaux-Ruff et al., 2008; Martin et
al., 2003; Nadal et al., 2006; Pradhan et al., 2011) and stress-induced analgesia developed
normally (Contet et al., 2006). Interestingly however, delta receptor knockout mice showed
augmented neuropathic and inflammatory pain (Gaveriaux-Ruff et al., 2008; Nadal et al.,
2006), suggesting that endogenous delta opioid activity alleviates chronic pain. Altogether,
data from the genetic approach are in agreement with the notion that delta agonists barely
modulate acute nociception, but are most efficient under conditions of persistent pain (see
below). SNC80-induced analgesia was abolished in delta receptor knockout animals in a
model of inflammatory hyperalgesia induced by Complete Freund’s Adjuvant (Gaveriaux-
Ruff et al., 2008). These data confirmed the in vivo selectivity of the compound previously
proposed by the pharmacology (Chang et al., 2004).

Interestingly, chronic treatment with tricyclic antidepressants, which produce anti-allodynic
effects in a neuropathic pain model, was ineffective in delta receptor knockout mice
(Benbouzid et al., 2008). These data revealed the implication of delta receptors in the
analgesic effects of tricyclic anti-depressants, likely downstream from aminergic transporter
systems. The implication of endogenous opioid mechanisms in this particular activity of
anti-depressant drugs was specifically mediated by delta receptors, since the compounds
were fully effective in mu receptor knockout animals (Bohren et al., 2010). Along this line,
anti-allodynia induced by chronic beta2-agonists was blocked by the delta receptor
antagonist naltrindole (Yalcin et al., 2010) suggesting an interaction between beta2-
adrenergic and delta receptor systems. In the future, delta receptor knockout mice may help
to reveal the interaction of delta receptor with other receptor systems in pain control.

Conditional knockout mice lacking delta opioid receptors in Nav1.8 nociceptive neurons
Under chronic pain, delta receptor activation produces analgesia at different sites within
nociceptive circuits. Delta agonists are effective when administered systemically,
intrathecally, intracerebroventricularly, or into the rostral ventromedial medulla or Nucleus
Raphe Magnus (Figure 1). A potent analgesia was also obtained at the periphery where
nociceptive processing is initiated, and opioid receptors of the peripheral nervous system are
proposed as therapeutic targets to limit the centrally-mediated adverse effects of opiates.
First trials have been promising (Stein et al., 1990) and the field of peripheral opioid
receptors has gained importance lately (Hua & Cabot, 2010; Stein et al., 2009).

To inactivate genes specifically in nociceptive primary afferents, a conditional knockout
strategy has been reported for the cannabinoid CB1 receptor (Agarwal et al., 2007) and
Nav1.7 channel (Nassar et al., 2004). The approach was based on the Cre-Lox system and
used a mouse line expressing Cre recombinase in Nav1.8+ sensory neurons that include
unmyelinated C and thinly myelinated Ad nociceptive neurons. The same driver Cre line
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was used recently to inactivate Oprd1 in these neurons and examine whether peripheral delta
receptors contribute to pain control (Gaveriaux-Ruff et al., 2011). In conditional knockout
mutants, analgesia induced by intraperitoneal SNC80 treatment was abolished under both
inflammatory and neuropathic conditions, revealing the essential role of peripheral delta
receptors in systemic delta opioid analgesia. These peripheral receptors are not necessarily
sufficient to produce the full analgesic response, since delta receptors expressed in
peripheral non-Nav1.8 DRG neurons, at the level of spinal cord or in the brain (Ossipov et
al., 2010) may also participate in systemic delta analgesia. The results nevertheless support
the notion that developing peripherally-acting delta agonists is a feasible strategy for the
design of novel effective analgesics devoid of centrally-mediated side effects.

Knock-in mice expressing a functional green fluorescent delta opioid receptor
A unique genetic mouse model was developed, in order to investigate the distribution of
delta receptors throughout the nervous system, and the link between receptor localization at
a subcellular level and receptor function in vivo. In these mice, endogenous delta receptors
are replaced by delta receptors in fusion with green fluorescent protein (DOR-eGFP) using a
knock-in strategy (Scherrer et al., 2006). DOR-eGFP mice express fully functional delta
receptors, which are directly visible in vivo. Fluorescent delta receptors are expressed in
DRGs, spinal cord and brain (Scherrer et al., 2006, 2009,), with profiles in accordance with
results from in situ hybridization (Mansour et al., 1995; Mennicken et al., 2003) and ligand
binding autoradiography (Goody et al., 2002). In models of inflammatory pain, DOR-eGFP
mice respond to delta agonist-induced analgesia as control wild-type mice (Pradhan et al.,
2009., 2010). These animals have been instrumental in deciphering differential internalizing
properties of the two delta agonists SNC80 and AR-M100390 throughout the nervous
system in vivo, and elucidating short-and long-term consequences of ligand-biased receptor
trafficking on analgesic responses (see details below and (Pradhan et al., 2009., 2010).

Delta receptor expression and function are regulated at different levels
within the cell

A major factor contributing to delta opioid analgesia is the expression level of the receptor
protein at the cell surface of neurons, and at the different sites of the pain-processing
pathways. Variations in receptor density may result from sequence variations within the
Oprd1 gene, transcriptional regulation, post-translational events or receptor trafficking to
and from the plasma membrane.

Genetic variability
Sequence variants within the Oprd1 gene may influence delta receptor expression across
individuals, and may contribute to inter-individual differences in responses to delta drugs
(Lotsch & Geisslinger, 2011). In the human gene, several single nucleotide polymorphisms
(SNP) have been identified (Kim et al., 2006). The T80G variant in exon 1, occurring at an
allele frequency of 0.08, leads to a Phe27Cys substitution in the extracellular N-terminal
domain, and has been associated with pain sensitivity (Kim et al., 2006). In heterologous
expression systems, the Cys27 variant showed lower maturation efficiency, increased
accumulation of receptor precursors in pre-Golgi compartment and faster constitutive
internalization (Leskela et al., 2009). Other human SNP variants showed no association with
pain sensitivity (Huang et al., 2008; Kim et al., 2006; Zhang et al., 2010). In the mouse
Oprd1 gene, polymorphism was identified in mice selectively bred for high and low stress-
induced analgesia, and later shown to differ also in basal nociception and opioid analgesia.
In this study, three polymorphic sites were detected in the Oprd1 coding region (Sacharczuk
et al., 2010). Among these, the C320T transition resulted in an A107V substitution in the
first extracellular loop of the delta receptor protein. The C320T decreased SNC80-induced
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analgesia in thermal pain tests. Altogether, the identification of natural genetic variants
affecting extracellular domains of the delta receptor and altering pain perception, opens the
possibility of inter-individual variability in responses to delta agonists.

Transcriptional regulation
Pathological situations like chronic pain, inflammation and nerve damage were shown to
induce transcriptional regulation of the delta receptor that may impact on receptor activity.
Transcription factors binding to Oprd1 promoter sequences and regulating gene expression,
as well as epigenetic aspects, have recently been reviewed extensively (Wei & Loh, 2011).
Regulation at the transcriptional level of delta receptor expression was investigated in
several models of chronic pain and appears highly variable depending on a series of factors
including (i) the pain model, (ii) the receptor localization (brain, spinal cord, DRG, sciatic
nerve or skin), (iii) time points considered after pain initiation, (iv) the animal strain
(Herradon et al., 2008) and (v) the technique used for detecting receptor expression. Data are
summarized in Table 2. In the different models of inflammatory pain, no change, up-
regulation or down-regulation of delta receptor mRNA levels were reported. In models of
neuropathic pain also, several regulation patterns were observed and together the data
indicate that regulation at transcriptional level may be detectable in specific pain situations,
and likely impact on delta receptor protein levels (Table 2). Most expression studies were
performed at the level of DRG and spinal cord. Delta receptor activity, as measured by
agonist-induced G protein activation, was also altered in the cingulate cortex and amygdala
under conditions of inflammatory and neuropathic pain (Narita et al., 2006a,b). This
particular regulation in the central nervous system was suggested to contribute to chronic
pain-induced emotional dysfunction (Narita et al., 2006a,b). Finally, delta receptor
expression was highly increased under two clinical pain conditions, in the skin of
fibromyalgia patients (Salemi et al., 2007) as well as in hypertrophic scars (Cheng et al.,
2008). Collectively the data show that delta receptor expression is regulated under
experimental chronic pain, and more investigations in pain patients are needed to correlate
findings in animal models with clinical situations.

Post-translation regulation
A third level of regulation occurs post-translationally in receptor protein maturation and
transport. Mechanisms for delta receptor folding and integration into membranes were
investigated using heterologous expression systems. Tuusa et al. (2010) recently showed that
delta receptor biogenesis is regulated early after translation at the level of endoplasmic
reticulum by the molecular chaperone calnexin and the sarcoendoplasmic reticulum calcium
ATPase SERCA2b in a calcium and ATP dependent manner. Delta receptor targeting from
the endoplasmic reticulum to the cell surface was further proposed to require the golgi
chaperone receptor transport protein 4 RTP4. In vitro experiments showed that this protein
participates in folding of delta-mu receptor heterodimers, enhancing the trafficking of delta-
mu receptor complexes from the Golgi apparatus to the cell surface and decreasing the
expression of delta monomers (Decaillot et al., 2008). Future experiments will determine
whether these processes occur in vivo.

Receptor activity at the cell surface
Receptor activity is also modulated at the plasma membrane, via interactions with other
membrane proteins. In particular, delta receptors may associate with other GPCRs to form
heterodimers or larger heteromers at the cell surface. Based on several approaches and
criteria used to define potential GPCR heterodimers (see (Massotte, 2010), delta receptors
have been proposed to interact with GPCRs implicated in pain control, including mu and
kappa opioid receptors (Gupta et al., 2010; Kabli et al., 2010; van Rijn et al., 2010), CB1
cannabinoid receptors (see Bushlin et al., 2010) and alpha2-adrenergic receptors (see van
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Rijn et al., 2010). Delta receptors may also interact with chemokine receptors (Parenty et al.,
2008; Pello et al., 2008) with potential consequences on inflammation, including
inflammatory pain (Chen et al., 2007). These studies, mainly performed in heterologous cell
recombinant systems, show new pharmacological properties for delta receptor-GPCR
heterodimers (reviews (Bushlin et al., 2010; Rozenfeld & Devi, 2010; van Rijn et al., 2010).
Opioid receptor heterodimers may also be involved in the activities of bi-functional opioid
drugs investigated as novel classes of analgesics (Ansonoff et al., 2010; Schiller, 2010).

Receptor activation and intracellular effectors
Finally, receptor density and activity at the cell surface is tightly regulated by intracellular
effectors, which engage the receptor into both signaling and trafficking processes upon
activation. The best-known signaling effectors of the delta receptor are inhibitory
heterotrimeric Gi/o proteins, which further modulate ion channels and second messengers
leading ultimately to reduced neuronal activity (Williams et al., 2001). In addition to
signaling, agonist binding to the receptor also induces phosphorylation, internalization,
trafficking and redistribution of the receptor, and these events represent key mechanisms for
the regulation of receptor activity (Cahill et al., 2007; Ritter & Hall, 2009). Unlike the mu
opioid receptor, which rapidly recycles to the cell surface, delta receptors are targeted
towards lysosomal degradation (Pradhan et al., 2009) via the Endosomal Sorting Complex
Required for Transport (ESCRT) machinery, using ubiquitination-dependent or independent
mechanisms (Henry et al., 2010). Other factors upstream of the ESCRT pathway also
contribute to delta receptor proteolysis, including G protein-coupled receptor Associated
Sorting Proteins (GASPs) shown to interact with the delta receptor (Abu-Helo & Simonin,
2010; Moser et al., 2010).

The link between agonist-induced internalization, downregulation and in vivo function of
delta receptors was investigated using the DOR-eGFP mouse model (Pradhan et al., 2009.,
2010). Data indicated that a single injection of a high- (SNC80) and a low (AR-M100390)-
internalizing compound to DOR-eGFP mice produced equally efficient analgesia in a model
of inflammatory pain. SNC80 also concomitantly induced receptor internalization
throughout the nervous system, accompanied by G-protein uncoupling and acute behavioral
desensitization, such that a second drug injection was inefficient. Receptor desensitization
was transient and receptor responsiveness returned to basal levels after one day. In contrast,
AR-M100390 induced none of the regulatory responses, since no internalization, G-protein
uncoupling or acute desensitization were detectable (Pradhan et al., 2009). Interestingly
further chronic treatment with the two agonists both induced the development of tolerance,
but the expression of tolerance differed. The high-internalizing agonist (SNC80) induced
generalized tolerance, so that all agonist effects were blunted in chronically-treated mice,
and the low-internalizing agonist (AR-M100390) produced a partial tolerance that was
restricted to analgesic responses, while anxiolytic or locomotor effects of delta agonists
remained intact (Pradhan et al., 2010). This set of data is in accordance with previous in
vitro studies showing ligand-specific conformational changes of the delta receptor (Audet et
al., 2008) and definitely establish the in vivo relevance of delta receptor ligand-biased
agonism in drug efficacy. The critical consequences of biased agonism at the delta receptor
add further physiological support to the rapidly growing field of functional selectivity at
GPCRs (Bosier & Hermans, 2007; Galandrin et al., 2007; Mailman, 2007; Vaidehi &
Kenakin 2010; Zheng et al., 2010) and may be considered for the development of effective
therapeutic drugs.

Functional interactions between delta and other neuromodulatory systems
An active research field is the elucidation of respective contributions of mu and delta
receptors in nociceptive processing, particularly to control heat and mechanical pain
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modalities (Basbaum et al., 2009; Scherrer et al., 2009; Woolf, 2009), and the identification
of molecular and cellular mechanisms underlying functional interactions between the two
receptors. Interactions may occur either at cellular or systems levels within nociceptive
pathways. This has been extensively discussed in the past (Kieffer, 1999; Smith & Lee,
2003; Zaki et al., 1996) and more recent anatomical analysis has provided evidence for
potential interactions at the cellular level in vivo. Data from in situ mRNA hybridization
(Mansour et al., 1995; Mennicken et al., 2003; Wang & Wessendorf, 2001), the analysis of
DOR-eGFP mice (Scherrer et al., 2009), and local pharmacology in peripheral neurons
(Joseph & Levine, 2010) suggest that mu and delta receptors may be co-localized in a
limited number of peripheral nociceptor neurons. This co-expression opens the possibility
for within-cell functional interactions in primary nociceptive processing, which may occur
between receptors or their downstream signaling pathways. Delta and mu receptor co-
localization in the dorsal spinal cord remains debated (Overland et al., 2009; Scherrer et al.,
2009; Wang et al., 2010).

A large array of evidence indicates that delta receptor function is increased either after
chronic morphine or under conditions of chronic pain. A suggested common basis for this
phenomenon lies in the observation of increased delta receptor density at the cell surface in
both cases, leading to higher number of receptors available for activation (Bie & Pan, 2007;
Cahill et al., 2007; Morgan et al., 2009; Schramm & Honda, 2010). In the case of chronic
morphine, the enhancement of delta receptor function likely involves a functional link
between mu receptor activation and delta receptors, whose mechanism remains open (see
above). In situations of persistent pain, other mechanisms involving bradykinin (Patwardhan
et al., 2005), protease activated receptor-2 (Patwardhan et al., 2006), arachidonic acid
(Rowan et al., 2009) and nerve growth Factor (Bie et al., 2010) have been shown to augment
delta receptor activity. Collectively, interactions between delta receptors and several other
opioid or non-opioid receptor systems have been reported to influence delta opioid
analgesia, and a great diversityof GPCRs involved pain control (Pan et al., 2008; Stone &
Molliver, 2009) may potentially interact with, or modulate, delta receptor analgesic activity.

Conclusion
The field of delta opioid receptor analgesia has benefited from recent contributions in
pharmacology, molecular and cellular approaches. Novel selective delta agonists with potent
in vivo activities are now available to strengthen approaches targeting delta receptors. The
field of delta receptors and pain control may also benefit from the development of animal
models more closely related to clinical pain (Finley et al., 2008). In particular the evaluation
of delta receptor activity in spontaneous pain and in the emotional or affective dimensions of
pain (King et al., 2009; Minami, 2009) may provide new elements for the development of
delta receptor-based therapeutic strategies.
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Figure 1.
Sites for delta opioid analgesia. This scheme summarizes sites where delta agonist
administration induces analgesia in animal models of chronic pain (see table1).
*Abbreviations: DPDPE, (D-Pen2, D-Pen5)-enkephalin; DSLET, (D-Ser2,Leu5)-
enkephalin; NRM, Nucleus Raphe Magnus ; RVM, Rostroventral medulla

Gavériaux-Ruff and Kieffer Page 17

Behav Pharmacol. Author manuscript; available in PMC 2012 December 02.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Gavériaux-Ruff and Kieffer Page 18

Table 1

Analgesic effects of delta opioid agonists

Agonist Pain model# Species Pain Modality Reference

DPDPE*/ DSLET Formalin Rat (Obara et al., 2009)

Capsaicin Rat (Saloman et al., 2011)

Inflammatory Rat M* (Stein et al., 1989)

Mouse H* (Hervera et al., 2009)

Rat M (Zhou et al., 1998)

Neuropathic Mouse H, M, C* (Hervera et al., 2010)

Rat H, M (Obara et al., 2009)

Rat C (Mika et al., 2001)

Cancer Mouse H (Baamonde et al., 2005)

Deltorphin Formalin Mouse (Morinville et al., 2003)

Rat (Bilsky et al., 1996)

Rat (Cahill et al., 2001)

Rat (Pradhan et al., 2006)

Inflammatory Rat H (Fraser et al., 2000)

Rat H (Hurley & Hammond, 2000)

Rat H (Cahill et al., 2003)

Rat H (Gendron et al., 2007a)

Rat M (Otis et al., 2011)

Rat H (Beaudry et al., 2009)

Mouse H (Gendron et al., 2007b)

Mouse H (Dubois & Gendron)

Neuropathic Rat C (Mika et al., 2001)

Rat M, C (Holdridge & Cahill, 2007)

Rat M (Kabli & Cahill, 2007)

Cancer Rat M (Otis et al., 2011)

SNC80 Formalin Mouse (Barn et al., 2001)

Rat (Obara et al., 2009)

GDNF hyperalgesia Rat M (Joseph & Levine)

NGF hyperalgesia Rat M (Joseph & Levine)

PGE2 hyperalgesia Monkey H (Brandt et al., 2001)

Rat M (Pacheco & Duarte, 2005)

Dynorphin A allodynia Rat M (Kawaraguchi et al., 2004)

Inflammatory Monkey H (Brandt et al., 2001)

Rat H (Fraser et al., 2000)

Rat M (Cao et al., 2001)

Rat H (Gallantine & Meert, 2005)

Mouse H (Gendron et al., 2007b)

Mouse H, M (Gaveriaux-Ruff et al., 2008)
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Agonist Pain model# Species Pain Modality Reference

Mouse H, M (Pradhan et al., 2009;

Pradhan et al., 2010)

Neuropathic Mouse M (Scherrer et al., 2009)

Monkey H (Brandt et al., 2001)

Mouse M (Scherrer et al., 2009)

Mouse H, M (Gaveriaux-Ruff et al., 2011)

Rat H, M (Obara et al., 2009)

Tan-67 Formalin Mouse (Barn et al., 2001)

Diabetes Mouse H (Kamei et al., 1997)

SB-235863 Inflammatory Rat H (Petrillo et al., 2003)

Rat H (Beaudry et al., 2009)

Neuropathic Rat H (Petrillo et al., 2003)

DValAla-Enk Cancer Mouse M (Brainin-Mattos et al., 2006)

AR-M100390 Inflammatory Mouse H, M (Pradhan et al., 2009)

Mouse H, M (Pradhan et al., 2010)

NIH 11082 Inflammatory Rat M (Aceto et al., 2007)

ADL5859 Inflammatory Rat M (Le Bourdonnec et al., 2008)

ADL5747 Inflammatory Rat M (Le Bourdonnec et al., 2009)

JNJ-20788560 Inflammatory Rat H (Codd et al., 2010)

Compound 8e Inflammatory Rat n.i. (Jones et al., 2009)

KNT-127 Formalin Mouse (Saitoh et al., 2011)

#
Visceral pain was induced by intraperitoneal acetic acid injection; inflammatory pain by injection of Complete Freund’s Adjuvant (CFA) ,

zymosan, yeast, or carrageenan ; neuropathic pain was induced by sciatic nerve or spinal nerve ligation; cancer pain by injection of NCTC 2472
osteosarcoma cells,

*
Abbreviations: C, cold: DPDPE, (D-Pen2, D-Pen5)-enkephalin; DSLET, (D-Ser2,Leu5)-enkephalin; GDNF Glial cell line-derived neurotrophic

factor; H, heat; M mechanical; NGF, nerve growth factor; PGE2, prostaglandin-E2
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