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A Nonsense Mutation in PDE6H Causes
Autosomal-Recessive Incomplete Achromatopsia

Susanne Kohl,1,* Frauke Coppieters,2 Françoise Meire,3 Simone Schaich,1 Susanne Roosing,4

Christina Brennenstuhl,5 Sylvia Bolz,6 Maria M. van Genderen,7 Frans C.C. Riemslag,7 the European
Retinal Disease Consortium,9 Robert Lukowski,5 Anneke I. den Hollander,4,8 Frans P.M. Cremers,4

Elfride De Baere,2 Carel B. Hoyng,8 and Bernd Wissinger1,*

Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and

severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C,

CNGA3, and CNGB3, have been implicated in ACHM, and all encode functional components of the phototransduction cascade in

cone photoreceptors. Applying a functional-candidate-gene approach that focused on screening additional genes involved in this

process in a cohort of 611 index cases with ACHM or other cone photoreceptor disorders, we detected a homozygous single base change

(c.35C>G) resulting in a nonsense mutation (p.Ser12*) in PDE6H, encoding the inhibitory g subunit of the cone photoreceptor cyclic

guanosine monophosphate phosphodiesterase. The c.35C>Gmutation was present in three individuals from two independent families

with a clinical diagnosis of incomplete ACHM and preserved short-wavelength-sensitive cone function. Moreover, we show through

immunohistochemical colocalization studies in mouse retina that Pde6h is evenly present in all retinal cone photoreceptors, a fact

that had been under debate in the past. These findings add PDE6H to the set of genes involved in autosomal-recessive cone disorders

and demonstrate the importance of the inhibitory g subunit in cone phototransduction.
Achromatopsia (ACHM; synonyms: rod monochroma-

tism, total color blindness; ACHM2 [MIM 216900],

ACHM3 [MIM 262300], ACHM4 [MIM 613856], and

ACHM5/COD4 [MIM 613093]) is an autosomal-recessively

inherited disorder characterized by the inability to discrim-

inate colors due to the loss of cone photoreceptor func-

tion. Affected individuals suffer from severely reduced

visual acuity (<0.1 or 20/200) in daylight, nystagmus,

and severe photophobia. Most affected individuals present

with complete ACHM, but sometimes the phenotype is

described as incomplete ACHM with milder symptoms

and residual cone function. ACHM was thought to be

a congenital and stationary disorder, but macular changes

can appear with time, and recent retinal-imaging data

provide evidence that a progressive degenerative process

can occur.1 To date, four genes have been shown to be asso-

ciated with ACHM: CNGA3 (cyclic nucleotide-gated cation

channel alpha-3 [MIM 600053]),2 CNGB3 (cyclic nucleo-

tide-gated cation channel beta-3 [MIM 605080]),3,4

GNAT2 (guanine nucleotide-binding protein G(t) subunit

alpha-2 [MIM 139340]),5,6 and PDE6C (cone 30,50-cyclic
cyclic guanosine monophosphate [cGMP]-specific phos-

phodiesterase [PDE] subunit alpha’ [MIM 600827]).7,8

The four encoded proteins are all crucial components of

the phototransduction cascade in cone photoreceptors:

light-excited cone visual-pigment molecules induce the
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exchange of guanosine diphosphate (GDP) to guanosine

triphosphate (GTP) at the guanosine binding site of the

transducin a subunit (GNAT2 ¼ Ga) and its subsequent

release from the inhibitory bg subunits, thus constituting

the activated form of the G protein (GaGTP). GaGTP

induces a dramatic increase in PDE activity by seques-

tering the inhibitory g subunit (PDE6H) of the PDE com-

plex in cone photoreceptor outer segments. The catalytic

core of the cone PDE is a homodimer composed of two

a’ subunits (PDE6C) that hydrolyzes cGMP and effectively

reduces its concentration in the outer segment. This results

in the closure of the heterotetrameric cGMP-gated cation

channels (CNGA3/CNGB3) and, subsequently, membrane

hyperpolarization.9 Mutations in CNGB3 represent the

most common cause of autosomal-recessive ACHM, ac-

counting for ~40% of all cases, followed by CNGA3, which

is mutated in about 25% of the achromats. Mutations

in GNAT2 and PDE6C are rare and are found in fewer

than 2% of all achromats.10 We report here the iden-

tification of the fifth gene implicated in ACHM, PDE6H,

encoding the inhibitory g subunit of the cone photore-

ceptor PDE (MIM 601190), as another rare cause of this

condition.

On the basis of its role in cone phototransduction, we

reasoned that PDE6H, encoding a small 83 amino acid

protein, represents a prime candidate gene for cone
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Figure 1. Genetic Analysis
(A) Genomic organization of PDE6H on chromosome 12q13.
(B) Sequence electropherograms displaying wild-type and
c.35C>G (p.Ser12*) mutant sequences of exon 2 in PDE6H.
(C) Amino acid sequence of PDE6H. The shortened polypeptide
that is predicted to result from the stop mutation is indicated in
bold, black letters. However, the transcript is expected to undergo
nonsense-mediated decay rather than translation into a truncated
PDE6H polypeptide.
disorders, and we thus analyzed a cohort of 197 individuals

with a clinical diagnosis of autosomal-recessive ACHM

that had already been excluded for the known ACHM

genes. The study was approved by the institutional review

boards and followed the tenets of the Declaration of

Helsinki. All genomic DNA samples underwent PCR

amplification and Sanger sequencing of the three coding

exons and flanking intron boundaries of PDE6H, followed

by capillary electrophoresis on an automated sequencer

(Figure 1A, Table S1 available online). Trace files were

analyzed with Sequencing Analysis 5.2 (Applied Bio-

systems, Life Technologies, Carlsbad, CA, USA), and

sequence variants were called with the use of SeqPilot

(JSI Medical Systems, Kippenheim, Germany) software.

Using this approach, we identified a male person (NL-

II:1) with a homozygous nonsense mutation c.35C>G

(p.Ser12*) (RefSeq NM_006205.2) who originated from

the Netherlands (Figure 1B). The mutation was not

observed in any database query (i.e., Exome Variant Server,

1000 Genomes project) and is predicted to result in a trun-

cated protein of only 11 amino acid residues (Figure 1C),

lacking all conserved domains relevant for transducin

binding and inhibition of the catalytic activity of PDE.

Thus, this mutation would produce a protein that is inac-

tive, possibly representing a functional null allele.

However, it is more likely that there will be a loss of this

polypeptide, because the mutant transcript is predicted

to undergo nonsense-mediated decay (Alamut version

2.0, Interactive Biosoftware, San Diego, CA, USA).

We then proceeded to analyze another 20 individuals

with a clinical diagnosis of ACHM and 394 individuals

with a clinical diagnosis of cone dystrophy. In this sample,

we identified two siblings with the same homozygous

mutation c.35C>G (p.Ser12*) in PDE6H. Segregation anal-
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ysis showed heterozygosity for this mutation in both

parents.

Apart from this clear-cut mutation, we observed three

unpublished and three annotated sequence variants com-

pared to the reference sequence NM_006205.2 (Table S2).

To define whether the occurrence of the nonsense muta-

tion c.35C>G (p.Ser12*) in the Dutch and Belgian families

arose independently or by a common founder, we per-

formed haplotype reconstruction using microsatellite

markers and SNPs flanking the PDE6H locus on chromo-

some 12p13. This identified a common haplotype of 301

kb flanked by rs111596034 (¼ D12S2210) and rs2430621

(Figure S1), supporting the hypothesis that the c.35C>G

(p.Ser12*) mutation results from a common ancestral

mutational event.

The clinical diagnosis was established via standard

ophthalmologic examinations and electroretinographic

testing (Figure 2). Two of the individuals were originally

diagnosed with cone-rod dystrophy and one with incom-

plete achromatopsia. The Dutch individual NL-II:1 has

been clinically evaluated in 1979, at the age of 45. He

had reduced, but stable visual acuity and nystagmus since

birth (Table 1). Slit-lamp biomicroscopy and funduscopy

results showed no abnormalities at that time. Electroreti-

nographic (ERG) recordings showed normal rod, severely

reduced cone, and absent 30 Hz flicker responses. Color

vision tests (pseudoisochromatic test and 100Hue) showed

a severe red-green color vision defect with relatively

normal blue-yellow vision. The diagnosis was incomplete

achromatopsia, however, with atypical features. We per-

formed additional molecular genetic analyses to test for

mutations and rearrangements in the red and green opsin

gene cluster (OPN1MW, OPN1LW), excluding a differential

diagnosis of X-linked blue cone monochromatism.

Both siblings of the Belgian family (BE-II:1 and BE-II:2)

are affected children of nonconsanguineous parents and

presented with moderate photophobia and normal night

vision (Table 1). Only BE-II:2 presented with nystagmus.

Myopia was diagnosed at 3 years of age. ERG was per-

formed under anesthesia in both children at the ages of 3

years and 5 years, respectively, and the results were sugges-

tive of cone dysfunction with absent photopic 30 Hz

flicker responses. There has been no deterioration in vision

in either sibling over the last 15 years, suggesting that the

cone dysfunction is stationary. Color-vision testing via

Hardy-Rand-Rittler plates, the Farnsworth 100 Hue test,

and the Panel D-15 test in both siblings at the ages of 22

years and 20 years, respectively, showed mainly deutan

color defects with normal tritan color discrimination

(Figure S2). Visual fields in both siblings showed normal

peripheral limits, and funduscopy revealed optic discs of

normal color with large temporal myopic crescents

(Figure 2A). The retinae presented with irregular atrophic

depigmentation in the posterior pole with sparing of the

macula (Figures 2A and 2B). Autofluorescence (AF) fundus

imaging revealed normal diffuse and homogeneous AF in

the posterior pole and a normalmacular region (Figure 2C).
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Figure 2. Clinical Presentations of the Siblings in Family BE
(A–D) Proband BE-II:2.
(A) Fundus photography showed depigmentation of the posterior pole with sparing of themacula and large myopic crescent of the optic
disc.
(B) Red-free fundus photography.
(C) Autofluorescence imaging revealed normal diffuse and homogeneous AF in the posterior pole and macula.
(D) In OCT of the right eye, all retinal layers could be identified and appeared to be continuous, but IS/OS junction of the cone photo-
receptors could not be clearly distinguished.
(E) Photopic ERG of both siblings, BE-II:2 and BE-II:1, in comparison to a normal control. Note the absence of photopic response to 30Hz
flicker, white, and amber light stimulation. Stimulation with blue light with amber background elicited a blue cone response in both
siblings.
(F) Single-flash mixed rod-cone ERG responses in BE-II:2 and in a normal subject. Normal rod responses were recorded in both siblings.
ERG was performed according to the ISCEV extended protocol for the full-field ERG (ERG, rod- and cone b-wave series). Stimuli were
produced with a Ganzfeld stimulator (Standalone ColorDome system, Diagnosys, Impington, UK). In addition, a red-flash ERG was
measured under scotopic conditions. Furthermore, S cone-specific ERG testing was performed with an amber stimulus of 2 cd.s/m2 after
adaptation to a blue background of 15 cd/m2 andwith a blue stimulus of 2 cd.s/m2 after adaptation to an amber background of 15 cd/m2.
All ERG responses were recorded with Dawson Trick Litzkow (DTL) fiber electrodes.
Upon optical coherence tomography (OCT) (Spectralis,

Heidelberg Engineering, Heidelberg, Germany), all retinal

layers could be identified and appeared to be continuous,

but inner segment (IS)-outer segment (OS) junction of

the cone photoreceptors could not be clearly distinguished

(Figure 2D). Recent ERGs in both siblings that were in

accordance with the ISCEV (International Society for

Clinical Electrophysiology of Vision) extended protocol

showed absent photopic responses to a single bright, white

flash and absent 30 Hz flicker responses (Figure 2E). Short-

wavelength-sensitive (S) cone-specific testing showed

absent responses to the amber stimulus but recordable

responses to the blue stimulus (Figure 2E). In both siblings,
The American
the scotopic ERG was normal (Figure 2F). Responses to

a red flash under dark adaptation were reduced with long

implicit time, indicating contribution of the rod system

component only. Color vision testing, as well as the ERG

results of the siblings with the PDE6H mutation, indicates

severe L and M cone dysfunction but relatively preserved S

cone function. Upon reevaluation of the two cases, a clin-

ical diagnosis of incomplete achromatopsia with preserved

S cone function was finally established.

The cone photoreceptor PDE complex was initially

isolated from bovine retinal lysates, including the deduced

inhibitory g subunit with a molecular weight of 13 kDa.11

Subsequently, PDE6H was cloned from a bovine cDNA
Journal of Human Genetics 91, 527–532, September 7, 2012 529



Table 1. Clinical Characteristics of the Three Individuals with Homozygous PDE6H Mutation c.35C>G (p.Ser12*)

Proband
Year of
Birth Sex

Year and
Age at Last
Examination

Best-Corrected
Snellen Visual
Acuity Refraction Color Vision Photophobia Nystagmus Rod ERG Cone ERG

NL-II:1 1934 male 1979
45 years

OD 20/125
OS 20/125

OD �7.5
OS �6.5

severely disturbed
red/green axes,
normal blue/
yellow axes

since birth since birth scotopic
responses
normal

severely
reduced cone
ERG and
absent 30 Hz
flicker response

BE-II:1 1989 male 2012
22 years

OD 20/63
OS 20/63

OD �13.75
OS �14.25

D-15: sat: no
confusions; desat:
multiple confusions,
disturbed red/green
axes, normal
blue axes

moderate no scotopic
responses
normal

severely
reduced cone
ERG; 30 Hz
flicker absent

BE-II:2 1991 female 2012
20 years

OD 20/200
OS 20/100

OD �8.25
OS �8.25

D-15: sat: no
confusions; desat:
multiple confusions,
disturbed red/green
axes, normal
blue axes

moderate yes scotopic
responses
normal

severely
reduced cone
ERG; 30 Hz
flicker absent

The abbreviations used are as follows: ERG, electroretinography; OD, right eye; OS, left eye; D-15, Panel D-15 test; sat, saturated; desat, desaturated.
library12 and was also later identified through comparative

studies in other species, including humans.13 Although

PDE6H has already been cloned more than 20 years ago,

there is surprisingly little known about the spatial and

temporal distribution of the cone PDEg in the retina. Using

antibodies specific for the rod and cone g subunits, Hamil-

ton and Hurley provided evidence that PDE6H might only

be present in a subset of cones, notably S cones.12 To date,

this has neither been substantiated nor contradicted by

any further functional or immunohistochemical studies.

We therefore used a PDE6H-specific antibody that was

purified from rabbit antiserum raised against a amino

acid synthetic 20 amino acid peptide derived from the N

terminus of the murine protein. (C.B. and P. Ruth, unpub-

lished data) for immunohistochemistry on mouse retinal

sections. This antibody specifically stained all cone photo-

receptors, as indicated by colabeling with peanut hemag-

glutinin (Figure 3A) and anti-blue opsin antibodies

(Figure 3B). Appropriate negative controls are presented

in Figure S3. This confirmed that PDE6H is located in all

cone types, arguing against the above-mentioned finding

that PDE6H in mouse retina is restricted to S cones.

In a prior publication, a heterozygous sequence variant

of unknown significance in the 50 untranslated region

(UTR) of PDE6H had been hypothesized as the cause of

autosomal-recessive cone dystrophy with supernormal

rod response (CDSRR).14 This finding could not be further

corroborated; instead, CDSRR was shown to be caused

by mutations in KCNV2.15,16 The identification of muta-

tions in PDE6H in individuals affected by incomplete

ACHM, as reported here, is in line with the function of

the known genes associated with ACHM—GNAT2,

PDE6C, CNGA3, and CNGB3—all of which encode crucial

components of the cone phototransduction cascade.

However, it has to be emphasized that the phenotype of

individuals with the PDE6H mutation is different, in that
530 The American Journal of Human Genetics 91, 527–532, Septemb
S cone function is more preserved than L and M cone

function. It remains to be elucidated how the inactivation

of the cone PDE holoenzyme takes place in the absence of

PDE6H—maybe by recruiting other inhibitory PDEg

subunits, such as the rod photoreceptor PDE6G or others.

The lack of PDE6H in cones would functionally imply

a constantly high PDE activity, low levels of cGMP in the

cone outer segment, and permanent closure of cGMP-

gated channels, a scenario analogous to permanent light

stimulation that has been described as the equivalent-light

hypothesis in retinal degeneration.17 However, studying

gene-targeted Pde6gtm1Goff knockout mice revealed that

the ablation of the inhibitory PDE6G subunit in rods

causes reduced rather than increased PDE6 activity.18

The clinical phenotype of individuals with ACHM

caused by mutations in PDE6H supports the clear distinc-

tion between the inhibitory PDE6G subunits in rod and

PDE6H in cone photoreceptors, as cone function is

severely impaired and essentially absent in standard phot-

opic and 30 Hz flicker ERG recordings, whereas rod func-

tion is within normal limits. This specificity of PDE6H

for cone function is explained by its exclusive presence

in cone photoreceptors, as shown by our immunohistolog-

ical staining in the murine retina. Prior reports about the

presence of PDE6H in only a subset of cones could not

be corroborated in our study. However, color vision testing

revealed residual color discrimination in all investigated

persons, along with more preserved S cone function,

implying that other mechanisms must exist to inactivate

PDE6C. In the inverse situation, a mutation in PDE6G,

the gene encoding the rod PDE6G subunit, results in

specific impairment of rod function that eventually

progresses into retinal degeneration. This has been ob-

served in mouse mutants and most recently in humans

diagnosed with autosomal-recessive retinitis pigmentosa

(MIM 180073 and MIM 613582).18,19
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Figure 3. Double Immunofluorescence Labeling of Mouse Retina with Antibodies Specifically Staining Cone Photoreceptors
(A) Colabeling with a Pde6h-specific antibody (red, 1:500) and peanut hemagglutinin (PNA, green, 1:50). An overview of a retina slice
and magnifications of the ventral and dorsal parts (single- and multichannel panels) are displayed.
(B) Colocalization with S opsin (green, 1:200) and Pde6h (red, 1:500) antibodies. Again, an overview of a retina slice and magnifications
of the ventral and dorsal parts are shown.
The colocalization experiments shown in (A) and (B) confirmed that Pde6h is exclusively located in cone photoreceptors, but is present
in all three cone types, including the S cone. DAPI (1:10,000) was used as a nucleus-staining fluorochrome. Scale bars represent 100 mm.
To summarize, we identified PDE6H as the fifth gene

associated with ACHM, with very low prevalence. Indeed,

extrapolating the frequency of PDE6H mutations in the

comprehensive Tuebingen ACHM cohort, comprising

over 680 independent families and 860 achromats in total,

we estimate that mutations in PDE6H account for only

~0.3% of all autosomal-recessive ACHM cases.
Supplemental Data

Supplemental Data include three figures and two tables and can be

found with this article online at http://www.cell.com/AJHG/.
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