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Prioritizing Genetic Variants for Causality
on the Basis of Preferential Linkage Disequilibrium

Qianqian Zhu,1,2,* Dongliang Ge,1,3 Erin L. Heinzen,1 Samuel P. Dickson,1,4 Thomas J. Urban,1

Mingfu Zhu,1 Jessica M. Maia,1 Min He,1 Qian Zhao,1 Kevin V. Shianna,1 and David B. Goldstein1,*

To date, the widely used genome-wide association studies (GWASs) of the human genome have reported thousands of variants that are

significantly associated with various human traits. However, in the vast majority of these cases, the causal variants responsible for the

observed associations remain unknown. In order to facilitate the identification of causal variants, we designed a simple computational

method called the ‘‘preferential linkage disequilibrium (LD)’’ approach, which follows the variants discovered by GWASs to pinpoint the

causal variants, even if they are rare compared with the discovery variants. The approach is based on the hypothesis that the GWAS-

discovered variant is better at tagging the causal variants than are most other variants evaluated in the original GWAS. Applying the

preferential LD approach to the GWAS signals of five human traits for which the causal variants are already known, we successfully

placed the known causal variants among the top ten candidates in the majority of these cases. Application of this method to additional

GWASs, including those of hepatitis C virus treatment response, plasma levels of clotting factors, and late-onset Alzheimer disease, has

led to the identification of a number of promising candidate causal variants. This method represents a useful tool for delineating causal

variants by bringing together GWAS signals and the rapidly accumulating variant data from next-generation sequencing.
Introduction

After the first wave of genome-wide association studies

(GWASs), thousands of common variants associated with

hundreds of human traits have been identified.1 Although

these findings shed light on the genetic architectures of

human traits, the variants reaching genome-wide signifi-

cance for any particular phenotype cumulatively explain

only a small portion of the phenotypic variation.2 More-

over, in most cases the variants identified by GWASs are

proxies of the causal variants that still remain to be discov-

ered.3 Under the ‘‘common disease, common variant’’

hypothesis, one frequently used approach for causal-

variant discovery is to look for the variants in the genomic

region showing strong linkage disequilibrium (LD) (e.g., r2

> 0.8) with the variant discovered by the GWAS. However,

this approach will not work well when the allelic frequen-

cies of the causal variants are below the frequencies of the

common variants used for describing ‘‘blocks’’ of LD. For

example, the well-documented causal variants of Crohn

disease (MIM 266600) in NOD2 (MIM 605956)4 and the

causal variants of anemia in individuals treated for chronic

hepatitis C in ITPA (MIM 147520)5 are in both cases

considerablymore rare than the disease-associated variants

identified by GWASs. As a result, their LD with the GWAS-

discovered variants is, at best, moderate (r2 < 0.5). In fact,

there are a number of examples where the signals identi-

fied in GWASs are caused or contributed by variants with

substantially lower allele frequencies than the GWAS-

discovered variants4–8 (Table 1). These experiences suggest

that it would be valuable to establish efficient algorithms
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for systematically searching for variants that contribute

to GWAS signals but are substantially rarer than the

discovery variants from GWASs. This effort should be

viewed as complementary to widely performed discovery

efforts that assume that the causal variant is similar in

frequency to the GWAS-discovered variant12–18 and as an

addition to the recently increasing screens for rare causal

variants.6–8,19–23 We also note that the effort to make effec-

tive use of GWAS signals to look for causal variants makes

no assumptions or claims about the collective importance

of synthetic associations to GWAS signals.24,25 Rather, we

recognize that some GWAS signals will be synthetic, and

for this reason, discovery strategies well suited to this possi-

bility are needed.26 It is also worth noting that even in

cases where a given genomic region carries both common

and rare causal variants, the approach described here

might be especially helpful for identifying any rare causal

variants that contribute to the original GWAS signal. In

theory, our approach can also be applied to the situation

where the causal variant has a similar frequency to the

GWAS-discovered variant. In this case, however, we antic-

ipate little benefit from our approach because the fact that

variants in the same frequency range and their LD proper-

ties with the discovery variant will mostly already be

known makes it possible to directly consider all variants

in high LD with the discovery variant.

To prioritize candidate causal variants in genomic

regions surrounding GWAS signals, especially when the

LD between the causal variants and the GWAS-discovered

variant is relatively weak, we designed a computational

method called the ‘‘preferential LD’’ approach. This
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Table 1. Variants Responsible for the Associations Detected by GWASs

Phenotype Gene

Causal Variants GWAS Variants

ReferencesName MAF Name MAF

Crohn disease NOD2 rs2066844 4.1% rs17221417 28.7% Wang et al.4

rs2066845 1.5%

rs2066847 1.9%

Ribavirin-induced
hemolytic anemia

ITPA rs1127354 7.6% rs6051702 19.4% Fellay et al.5

rs7270101 12.3%

Therapeutic warfarin
dose

CYP2C9 rs1799853 11% rs4917639 18% Takeuchi et al.9

and Wadelius et al.10

rs1057910 7%

Bladder cancer UGT1A6 rs17863783 2.5% rs11892031 8.5% Tang et al.11

Low-density lipoprotein
cholesterol

PCSK9 rs11591147 3.7% rs11206510 24.3% Sanna et al.8

Sick sinus syndrome MYH6 c.2161C>Ta 0.38% rs28730774 1% Holm et al.6

Ovarian cancer BRIP1 c.2040_2041insTTb 0.41% rs34289250 0.89% Rafnar et al.7

The following abbreviations are used: GWAS, genome-wide association study; and MAF, minor allele frequency.
aRefSeq NM_002471.3; reference genome build 36.
bRefSeq NM_032043.2; reference genome build 36.
approach is based upon the idea that when the allelic

frequency of a causal variant is lower than that of the

GWAS-discovered variant, the LD between them, although

relatively weak, will be larger than the LD values between

the causal variant and most other variants interrogated

in the GWAS. Thus, instead of simply looking for any

candidate causal variants in high LD with the GWAS-

discovered variant, as is typical, we focus on those variants

that show the strongest preferential LD with the GWAS-

discovered variant, regardless of the absolute magnitude

of the LD. We calculated the LD values by using genotypes

from 479 individuals of European ancestry; these geno-

types included a combination of those that were from

whole-genome sequencing, whole-exome sequencing,

chip genotyping, and imputation. Starting with a variant

discovered by the GWAS (this variant is called here the

‘‘discovery’’ variant), we first applied our approach to

several examples where the causal variants are known.

All the cases we considered had the property that the iden-

tified causal variants were rarer than the discovery variant.

Our approach successfully identified the known causal

variants of Crohn disease, hemolytic anemia following

treatment for hepatitis C virus (HCV), therapeutic warfarin

dose (MIM 122700), bladder cancer (MIM 109800), and

hearing loss. This proof of concept strongly suggests that

our approach will succeed in identifying unknown cases

in which the causal variants are rarer than discovery

ones, regardless of how often they might occur overall in

GWAS signals. We applied this approach to 33 indepen-

dent GWAS discovery variants across three different traits

and report the leading candidate causal variants from the

analysis. Included in this list of possible causal variants

are a number of suggestive candidates that might

contribute to the identified GWAS signals. The results
The American
and scripts of the preferential LD approach are available

at our website (Web Resources).
Material and Methods

Study Subjects
All samples collected at Duke were approved by the local institu-

tional review board (IRB) so they could be used as controls. All

samples from outside institutions were received in a deidentified

state. All deidentified samples were received under a Duke IRB

exemption and were therefore classified as nonhuman subjects.
Sequencing
The genomic DNA of 75 individuals was directly sequenced with

the Illumina Genome Analyzer IIx or the HiSeq 2000, whereas

the genomic DNA of the other 282 and 122 individuals was

captured on the Agilent SureSelect Human All Exon 37 Mb Kit

and 50 Mb Kit, respectively, before Illumina sequencing. The

average coverage of whole-genome- and whole-exome-sequenced

samples was 343 and 783, respectively. The sequence reads were

aligned to the reference genome (NCBI build 36, release 50) with

the Burrows-Wheeler Aligner.27 SAMtools28 was used for calling

genotypes and identifying single-nucleotide variants (SNVs). For

quality control, SNVswere required to pass four filters: a consensus

quality score of no less than 20, a SNP quality score of no less than

20, no fewer than three reads supporting the variant allele, and

a maximum read depth of 500. For exome-sequencing samples,

we further required at least 90% of the capture regions in each

sample to be sequenced with R53 coverage. When no variant

call was made at a particular position of a sample, we assumed

that the genotype was a homozygous reference if the position

was covered by no fewer than eight reads; otherwise, we consid-

ered the genotype to be missing at that position. For each of the

three sequencing platforms, SNVs with a missing rate > 10%

were removed.
Journal of Human Genetics 91, 422–434, September 7, 2012 423



Genotyping and Imputation
In order to expand the number of variants in exome-sequencing

samples, we performed microarray genotyping and computa-

tional imputation in these samples. Specifically, a total of 298

and 106 exome-sequencing samples were genotyped with the Illu-

mina Human610-Quad BeadChip and Illumina Human1M-Duo

BeadChip, respectively. For each genotyping platform, SNPs

with a missing rate > 10% were removed and the set of the geno-

types satisfying a minor allele frequency (MAF) R 1%, a Hardy-

Weinberg equilibrium (HWE) p value > 1 3 10�6, and a SNP

missing rate % 5% were used for imputation with MACH29,30

(50 rounds; all other parameters were kept at their default values).

We used two reference panels in the imputation: HapMap II

phased CEU (Utah residents with ancestry from northern and

western Europe from the CEPH collection) chromosomes and

HapMap III phased European-ancestry chromosomes (CEU þ
TSI [Toscans in Italy]). After filtering out SNVs that were not reli-

ably imputed (MACH-estimated r2 < 0.3), we merged the imputed

genotypes from the two reference panels by using PLINK.31 If

a SNV was imputed from both panels, the genotypes from the

HapMap III haplotypes overwrote the genotypes from the

HapMap II haplotypes. The imputed genotypes were then inte-

grated with chip genotypes from genotyping arrays. The chip

genotypes were overwritten by imputed genotypes only when

they were missing. Next, the integrated genotypes of the 298

samples genotyped with the Illumina Human610-Quad BeadChip

were combined with the integrated genotypes of the 106 samples

genotyped with the Illumina Human1M-Duo BeadChip. Plat-

form-specific SNPs were removed. Finally, we merged the geno-

types obtained from sequencing in all 479 samples with the geno-

types integrated from chip genotyping and imputation in the 404

exome-sequencing samples. The sequencing genotypes were over-

written only when they were missing. After removing SNVs with

a MAF equal to zero, we obtained a total of 13,418,055 autosomal

SNVs in the 479 samples.
The Preferential LD Approach
Step 1. Collecting Candidate SNVs around the Discovery SNP

From our SNV collection described above, we first extracted the

genotypes of SNVs that had been evaluated in the original

GWAS, which included all SNVs in the genotyping platform(s)

of the GWAS and SNVs in the imputation reference panel if the

GWAS was a meta-analysis. The extracted SNVs that were not on

the same chromosome as the discovery SNP were removed. The re-

maining SNVs were also filtered byMAF and a HWE test. For meta-

GWASs and GWASs for which the cutoff values were not reported

in their publications, we applied the commonly used cutoffs

(MAF R 1% and HWE p value > 1 3 10�6); otherwise, the cutoff

values reported in the publications were used.We called this group

of SNVs ‘‘GWAS SNVs.’’ We then collected a group of ‘‘candidate

SNVs’’ from our SNV collection by using the following criteria:

500 kb upstream and downstream of the discovery SNP, MAF %

the MAF of the discovery SNP, MAF % 15%, HWE p value > 1 3

10�6, r2 with the discovery SNP > 0.005, and absence from the

GWAS SNV group. The pairwise LD was calculated with Haplo-

view.32 Similar results were obtained when we extended the

distance to 1 Mb around the discovery SNP (data not shown).

We observed little effect on the approach’s ability to identify

causal variants when we changed the MAF cutoff of the candidate

SNVs, even when the candidate SNVs were not required to be as

common as the discovery SNP (Table S1, available online).
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Step 2. Identifying Candidate SNVs in Preferential LD with the Discovery

SNP

For each candidate SNV, we calculated the statistic ‘‘preferential

LD’’ (PLD) and filtered out the candidate SNVs that could not be

specifically tagged by the discovery SNP by requiring the value of

PLD to be %0.05. Specifically, for the ith candidate SNV, PLD;i ¼PN
j¼1Iðr2ijRr2i Þ=N, where I is an indicator function, N is the number

of SNVs in the GWAS SNV group, rij
2 is the r2 between the ith

candidate SNV and the jth GWAS SNV, and ri
2 is the r2 between

the ith candidate SNV and the discovery SNP. PLD,i assesses the

proportion of GWAS SNVs that have equal or higher r2 with the

ith SNV than the r2 between the ith SNV and the discovery SNP.

Step 3. Identifying Candidate SNVs Whose LD with the Discovery SNP Is

Not Random

For each of the remaining candidate SNVs from step 2, we per-

formed a permutation test to determine whether its r2 with the

discovery SNP was due to chance. Specifically, we permuted the

genotypes of the candidate SNV and the discovery SNP 2,000

times and calculated the empirical p value as the fraction of

permutations for which the r2 calculated from the permuted geno-

types was equal to or greater than the observed r2. The empirical p

value estimates the probability of observing the same or better r2

value for two random variants with the same frequencies as the

two particular variants. Only the candidate SNVs with an empir-

ical p value % 0.1 were kept. We used a less stringent cutoff here

to compensate for the smaller sample size of SNVs observed only

in whole-genome samples.

Step 4. Prioritizing Candidate SNVs

Finally, we prioritized the candidate SNVs that were preferen-

tially tagged by the discovery SNP and functionally important

by using a sorting score (S). For the ith candidate SNV, Si ¼
w 3 PhastConsi þ ð1�wÞ 3 ð1� ðPLD;i=0:05ÞÞ, where PhastConsi
is the PhastCons score33 for primates at the corresponding

genomic position, w is the weight for the PhastCons score (by

default, w ¼ 0.3), and PLD,i is the corresponding preferential LD

value described above. We noticed that as long as the PhastCons

score is incorporated into the sorting score, changing the weight

of the PhastCons score only marginally affects the ranking of the

known causal variants, except for one case in which the causal

variant is very rare (Table S2). The PhastCons scores were down-

loaded from the UCSC Genome Browser (Web Resources), and

a larger value corresponds to greater selective constraint. Using

PhyloP34 score instead of PhastCons score was found to generate

overall similar results in ranking the known causal variants (Table

S3). Candidate SNVs were ranked in descending order of the sort-

ing score. In order to estimate the statistical significance of the

sorting scores, we randomly drew 2,000 SNVs in the 500 kb neigh-

borhood of the discovery SNP and calculated their sorting scores.

Because the majority of these randomly selected SNVs are not

causal variants, the distribution of their sorting scores can be

used for estimating the null distribution of S. Therefore, the

p value of the sorting score corresponding to the ith candidate

SNV is calculated as the fraction of randomly selected SNVs with

a sorting score equal to or greater than Si. We considered the candi-

date SNVs with p values % 0.05 as the candidate causal variants.

Preferential LD Application on the 1000 Genomes

Project Data
We obtained the phased genotypes from the 1000 Genomes

Project35 phase I integrated variant release (March 2012 release)

(Web Resources) and extracted SNVs from 379 individuals of Euro-

pean ancestry. SNVs with MAFs equal to zero were removed, and
er 7, 2012



Figure 1. Flow Chart of Integrating SNV
Genotypes from 479 Samples
the coordinates of the remaining SNVs were converted from hg19

to hg18 with liftOver (Web Resources). At the end, we obtained

a total of 15,845,467 autosomal SNVs. We applied the preferential

LD approach to this data set by using the same parameters as indi-

cated above.

Association Test of Candidate SNVs with HCV

Treatment Response
We merged the SNV genotypes from whole-genome sequencing,

whole-exome sequencing, and chip genotyping for all 479

samples (missing rate per SNV % 0.1, and HWE p value > 1 3

10�6). MACH29,30 was then used for phasing the 2 Mb region

centered on rs12979860 in these samples and for imputing the

SNVs from the phased haplotypes to the GWAS cohort (missing

rate per SNP % 0.05, MAF R 1%, and HWE p value > 1 3 10�6).

Default MACH parameters were used, but the number of rounds

was set to 50. At the step of estimating model parameters during

imputation, 400 individuals randomly selected from the GWAS

cohort were used. We also performed phasing and imputation by

using SNVs from the whole-genome sequencing of 75 samples

to impute SNVs only available through whole-genome

sequencing. The association test between the imputed candidate

SNVs and HCV treatment response in the GWAS cohort was per-

formed with PLINK31 on the basis of the dosage data.
Results

In order to have the largest sample size possible with our

data, we integrated the genotypes from 75 whole-genome-

sequenced individuals with the genotypes from 404 whole-

exome-sequenced individuals. Because most of the SNPs

analyzed in GWASs are missing in exome-sequenced

samples, we genotyped these samples by using Illumina

high-density arrays and imputed SNPs from HapMap II and

HapMap III haplotypes. We obtained a total of 13,418,055

autosomal SNVs after integrating genotypes fromall of these

sources (Figure 1, seeMaterial andMethods). For SNVs found

inbothwhole-genomeandwhole-exome samples, their esti-

mated MAF can be as low as 0.10% and we have more than

80% power to detect alleles with a population frequency R

0.17%. For SNVs only observed in the whole-genome

samples, the lowest estimated MAF is 0.67% and we have

greater than 80% power to detect alleles with a frequency

R 1.07% (Figure S1).
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The Preferential LD Approach

Our approach to identifying candi-

date causal variants consists of four

major steps (Figure 2, see Material

and Methods). The input to this

approach includes a SNP reported to

be significantly associated with the

trait of interest (discovery SNP) in

a GWAS and the genotyping plat-
form(s) used in the GWAS, as well as the reference panel

used for imputation if the GWAS is a meta-analysis. First,

we identified SNVs that were in a 1 Mb interval centered

on the discovery SNP, had not been evaluated in the

GWAS of interest, were rarer than the discovery SNP, and

were not more common than 15% (given that variants

more common than this frequency range probably do

not have important functions36). Second, we identified

the candidate SNVs that were preferentially tagged by the

discovery SNP by calculating the PLD statistic. This statistic

estimates the percentage of GWAS SNPs that can tag the

candidate SNV better than or as well as the discovery

SNP. Third, we performed permutation tests and kept the

candidate SNVs whose LD with the discovery SNP was

not due to chance. Finally, we prioritized the candidate

SNVs that were preferentially tagged by the discovery

SNP and functionally important on the basis of a sorting

score that incorporates both the preferential LD statistic

and evolutionary conservation. Candidate SNVs with

statistically significant sorting scores were considered to

be the candidates for causal variants driving the associa-

tion between the discovery SNP and the phenotype of

interest.

Proof of Concept: The Preferential LD Approach

Identifies Known Causal Variants

In order to evaluate the effectiveness of our approach, we

applied it to the GWAS of five different human traits for

which the causal variants have been reported and are

present in our samples. It is important to appreciate that

in all but one case, the known causal variants not only

are identified as candidates out of all identified SNVs in

the relevant intervals but also receive very high priority

scores—they always rank among the top ten SNVs. For

the only exception where the causal variant is not

conserved according to the PhastCons score, the particular

variant is still among the top 25 candidates.

Crohn Disease

Crohn disease is one of the few cases for which the causal

variants for GWAS signals are known; these include two

nonsynonymous variants (rs2066844 and rs2066845)

and one frameshift variant (rs2066847) caused by a cyto-

sine insertion in NOD2.37–41 The GWAS carried out by
tics 91, 422–434, September 7, 2012 425



Figure 2. Flow Chart of the Preferential LD Approach
the Wellcome Trust Case Control Consortium (WTCCC)

detected a common SNP (rs17221417) that is significantly

associated with Crohn disease at the NOD2 locus.42

However, the effect size of this discovery SNP is smaller

than the effect size of any one of the three causal variants,

and the genetic risk explained by this discovery SNP is

significantly lower than the genetic risk explained by the

three causal variants.4 We applied our preferential LD

approach to search for candidate causal variants in the

1 Mb interval centered on rs17221417, which was identi-

fied by the WTCCC GWAS with the Affymetrix GeneChip

Human Mapping 500K Array Set for genotyping. Because

our variant collection only contained SNVs, we were not

able to evaluate the causal insertion variant rs2066847.

In step 1, we collected a total of 1,658 candidate SNVs

in the neighborhood (500 kb in each direction) of

rs17221417. Among them, 152 were found to be in prefer-

ential LD with rs17221417 in step 2. After filtering out

SNVs in nonsignificant LD with rs17221417, we obtained

141 candidate SNVs in step 3. Fifty-six of these SNVs

have significant sorting scores, which mean that no more

than 5% of 2,000 randomly selected SNVs in the same

1 Mb neighborhood have equal or better scores. The two

known causal variants, rs2066844 and rs2066845, were

ranked as the top two candidates by our sorting score in

the final step (Table 2). Therefore, starting from the

discovery SNP (rs17221417) identified by the WTCCC

GWAS, we successfully identified two causal variants of
426 The American Journal of Human Genetics 91, 422–434, Septemb
Crohn disease by using this preferential LD approach.

When we applied our approach to a different discovery

SNP (rs2076756) in the same locus, which was reported

to be significantly associated (p value < 5 3 10�8) with

Crohn disease by another GWAS,43 we also identified the

two known causal variants as the top two candidates

(Table 2).

Ribavirin-Induced Anemia

Previously, we performed a GWAS on ribavirin-induced

hemolytic anemia in individuals treated for chronic HCV

infection by using the Illumina Human610-Quad Bead-

Chip, and we identified rs6051702 to be strongly associ-

ated with treatment-induced reduction in hemoglobin

levels.5 The causal variants are two nonsynonymous ITPA

variants (rs1127354 and rs7270101) that cause the accu-

mulation of inosine triphosphate, which is used in place

of guanosine triphosphate during adenosine triphosphate

(ATP) biosynthesis, and that therefore protect individuals

from erythrocyte ATP reduction and anemia during treat-

ment.44 By using our preferential LD approach to follow

the GWAS discovery SNP, we identified a final set of 53

candidate SNVs from a total of 1,289 SNVs around the

associated locus; the two causal variants, rs1127354 and

rs7270101, were ranked first and second, respectively

(Table 2).

Therapeutic Warfarin Dose

In a GWAS of therapeutic warfarin dose with the Illumina

HumanCNV370 BeadChip, rs4917639 is observed as the
er 7, 2012
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The American
strongest phenotype-associated SNP at the CYP2C9 (MIM

601130) locus.9 This association is found to be driven by

two rarer nonsynonymous variants (rs1799853 and

rs1057910) that impair warfarin metabolism.9,10,26 We

applied the preferential LD approach to this case. Starting

from 1,966 SNVs in the 1 Mb interval centered on

rs4917639, we identified 154 candidates in the end, and

the known causal variant, rs1799853, was the second

best candidate (Table 2). The other causal variant,

rs1057910, was not considered by the preferential LD

approach because it is present in the HumanCNV370

chip and was tested in the original GWAS.

Bladder Cancer

Recently, Tang et al. found a rare synonymous UGT1A6

(MIM 606431) variant (rs17863783) that completely

explains the association between bladder cancer and the

GWAS-discovered SNP (rs11892031).11 The rare variant,

rs17863783, was suggested to change UGT1A6 mRNA

expression and affect the removal of carcinogens from

the bladder.11 We used the preferential LD approach to

follow the discovery SNP, rs11892031, identified by the

bladder cancer GWAS, which used the SNPs found in

both the Illumina Human1M-Duo and Human610-Quad

BeadChips.45 In the end, 131 out of 516 SNVs found

around the discovery SNP were identified as candidates.

The causal variant, rs17863783, was ranked as the 23rd

best candidate as a result of the low PhastCons score at

the corresponding genomic position.

Hearing Loss

Hearing loss is a complex human disease that is largely

caused by rare mutations in the GJB2 (MIM 121011)-

GJB6 (MIM 604418) locus.46,47 For example, the most

common causal variant in GJB2 (rs80338939; c.35delG

[p.Gly12Valfs]) occurs with an allele frequency of only

1.25% in European Americans.48 In a recent hearing-loss

GWAS with the Illumina HumanHap550 BeadChip, two

independent common SNPs (rs870729 and rs7329467) in

the GJB2-GJB6 locus were found to be significantly associ-

ated with the phenotype.24 The discovery SNP rs870729

has been found to be in high LD (D0 R 0.95) with a number

of known causal GJB2 variants, including c.35delG

(p.Gly12Valfs), c.167delT (p.Leu56Argfs), c.109G>A

(p.Val37Ile), c.269T>C (p.Leu90Pro), and c.101T>C

(p.Met34Thr).4 Because c.35delG (p.Gly12Valfs) and

c.167delT (p.Leu56Argfs) are deletion variants and

c.109G>A (p.Val37Ile) was not observed in the 479

samples we used, they were not included in our analysis.

Interestingly, when we used the preferential LD approach

to follow rs870729, known causal variant c.269T>C

(p.Leu90Pro) (rs80338945)49–51 was ranked as fifth out of

the final 162 candidate SNVs. On the other hand, when

we followed the other discovery SNP rs7329467, another

causal variant, c.101T>C (p.Met34Thr) (rs35887622),51–54

was found to be the sixth best candidate among a final

set of 82. Therefore, our approach has identified the

hearing-loss causal variants that contribute to the reported

genome-wide associations. Our results also suggest that in
Journal of Human Genetics 91, 422–434, September 7, 2012 427



Table 3. The Ranking of the Causal Variants via Different Statistics

Phenotype
Discovery
SNP

Number of
Candidate SNVsa Causal SNV MAF

Rank of the Causal SNVb

D0 r2 PLD PhastCons Sorting Score

Crohn disease rs17221417 1,658 rs2066844 0.048 1,306 26 34 42 1

rs2066845 0.023 1,306 89 38 35 2

Crohn disease rs2076756 1,523 rs2066845 0.023 1,195 68 27 31 1

rs2066844 0.048 1,195 13 19 37 2

Ribavirin-induced
hemolytic anemia

rs6051702 1,289 rs1127354 0.081 829 86 49 1 1

rs7270101 0.128 776 22 39 10 2

Therapeutic warfarin
dose

rs4917639 1,966 rs1799853 0.134 1,586 7 26 10 2

Bladder cancer rs11892031 516 rs17863783 0.015 256 102 20 73 37c

Hearing loss rs870729 1,477 rs80338945 0.002 964 1145 150 7 5

Hearing loss rs7329467 999 rs35887622 0.015 574 55 12 70 6

The following abbreviations are used: SNV, single-nucleotide variant; MAF, minor allele frequency; and PLD, preferential linkage disequilibrium.
aCandidate SNVs are the ones obtained at step 1 of the preferential LD approach.
bThe rank of the causal variant is the number of candidate SNVs with an equal or better value of the corresponding statistic than the causal variant.
cThe rank of rs17863783 shown here is different from the rank shown on Table 2 because the 14 candidate SNVs with larger sorting scores than rs17863783 did
not pass the permutation test at step 3.
addition to themost significant phenotype-associated SNP,

the other independent phenotype-associated SNPs are also

worth investigating for the identification of additional

causal variants.

We also applied the preferential LD approach to the SNV

genotypes in 379 European-ancestry samples from the

1000 Genomes Project and found that the results are

highly consistent for five of the eight known causal vari-

ants (Table S4). The causal variant (rs80338945) of hearing

loss was absent from the 1000 Genomes Project data,

whereas the causal variants of bladder cancer and hearing

loss, rs17863783 and rs35887622, were ranked as 40 and

60, respectively, as opposed to 23 and 6, respectively,

with our own samples. We speculated that the discrepancy

might be due to the lower sample size of the 1000

Genomes Project data. The causal variant (rs80338945)

not available from the 1000 Genomes Project data is the

most rare (MAF¼ 0.2% on the basis of our samples) among

all eight known causal variants, whereas the other two

causal variants that showed decreased performance with

the 1000 Genomes Project data are the second and third

most rare (MAF % 2%).

The Contribution of LD Measures

To compare the performance of different weighting

schemes in identifying causal variants, we evaluated rank-

ings of known causal variants on the basis of the magni-

tude of two different LD measures (D0 and r2) and

compared these with PLD (Table 3). We found that D0 was

the worst measure in terms of prioritizing the causal vari-

ants. PLD overall performs better than r2, especially when

the causal variant is rare (e.g., MAF < 3%). For the three

most rare causal variants evaluated here (rs80338945,
428 The American Journal of Human Genetics 91, 422–434, Septemb
rs35887622, and rs17863783), their rankings improved

from 1,145, 55, and 102 to 150, 12, and 20, respectively,

when we used PLD instead of r2. Presumably, the key reason

for the superiority of PLD is that it not only identifies SNVs

whose LD is the highest with the discovery variant

compared to other variants interrogated in the GWAS but

also excludes from consideration SNVs that are in nonspe-

cific LD with many GWAS variants. The combination of

the conservation score with the preferential LD statistic

further boosted the known causal variants to the very

top of the candidate list in most cases, which highlights

the importance of incorporating conservation score into

the discovery of causal variants.55

Identifying New Candidate Causal Variants

We have so far applied the preferential LD approach to 33

independent discovery variants reported in the GWAS of

three different human traits: HCV treatment response

(MIM 609532), plasma level of coagulation factors, and

Alzheimer disease (AD [MIM 104300]). The results of the

candidate causal variants are tabulated and available at

our website (Web Resources) for the community to investi-

gate. We summarized the candidate causal variants of

particular interest in Table 4 and describe them below.

HCV Treatment Response

Ge et al. previously performed a GWAS on individuals

chronically infected by genotype 1 HCV by using the Illu-

mina Human610-Quad BeadChips and observed

a common SNP (rs12979860) near IL28B (MIM 607402)

to be significantly associated with treatment response.56

In order to look for the causal variants driving this associ-

ation signal, we followed rs12979860 by using our prefer-

ential LD approach and obtained a final set of 73
er 7, 2012



Table 4. Promising Candidate Causal Variants Identified by the Preferential LD Approach

Phenotype
Discovery
SNP

Number of
Final
Candidates

Candidate
SNV Rank MAF D0 r2 PLD PhastCons

Sorting
Score

Sorting
Score
p Value

HCV treatment
response

rs12979860 73 rs4803221 2 0.145 0.914 0.347 3.26 3 10�4 0.678 0.899 0

rs12971396 19 0.144 0.923 0.379 3.26 3 10�4 0.004 0.697 1.20 3 10�2

Plasma vWF
level

rs687621 72 rs34054981 2 0.082 0.747 0.028 3.58 3 10�3 0.748 0.874 1.00 3 10�3

rs28503257 6 0.037 0.501 0.017 1.04 3 10�2 0.915 0.829 1.50 3 10�3

rs28647808 7 0.085 0.751 0.029 3.37 3 10�3 0.532 0.812 2.50 3 10�3

rs28641026 8 0.037 0.582 0.023 5.77 3 10�3 0.619 0.805 3.50 3 10�3

Plasma vWF
level

rs4981022 10 rs6615 1 0.127 0.950 0.058 3.15 3 10�3 0.998 0.955 5.00 3 10�4

rs117801489 3 0.015 0.848 0.024 1.92 3 10�3 0.862 0.932 1.50 3 10�3

Plasma fibrinogen
level

rs511154 21 rs34901937 1 0.093 0.764 0.180 2.45 3 10�4 0.882 0.961 1.50 3 10�3

Late-onset
Alzheimer
disease

rs11767557 16 rs73154206 1 0.019 0.919 0.060 1.34 3 10�3 0.956 0.968 1.00 3 10�3

rs11552742 2 0.008 1.000 0.029 5.14 3 10�3 0.962 0.917 2.00 3 10�3

The following abbreviations are used: SNV, single-nucleotide variant; MAF, minor allele frequency; PLD, preferential linkage disequilibrium; and vWF, von Wille-
brand factor.
candidates (Table 4). We imputed their genotypes from our

sequenced samples to the same European-American GWAS

cohort used by Ge et al.,56 and we tested the association

between the candidates and the phenotype. Although

the second-best candidate, rs4803221 (MAF ¼ 14.49%),

was not well imputed in our GWAS cohort (MACH-esti-

mated r2 ¼ 0.43), it has been reported recently to predict

treatment response better than the discovery SNP,

rs1297986057 (MAF ¼ 28.57%). Fifteen candidate SNVs

can be well imputed (MACH-estimated r2 R 0.8), and the

candidate SNV, rs12971396, which was ranked 19th among

all 73 candidates, is much rarer than rs12979860 but has

a stronger association with the treatment response

(MAF ¼ 14.38%, p value ¼ 5.79 3 10�26, and OR ¼ 5.546

for rs12971396; MAF ¼ 28.57%, p value ¼ 1.07 3 10�25,

and OR ¼ 4.198 for rs12979860). Although rs12971396 is

only weakly linked to rs12979860 (r2 ¼ 0.38), it can

explain a large portion of the association between

rs12979860 and the treatment response (i.e., after

rs12971396 was accounted for, the association with

rs12979860 dropped from p ¼ 1.07 3 10�25 to p ¼
1.173 10�7). Two parallel GWASs in Australian58 and Japa-

nese59 populations have identified another SNP,

rs8099917, at the IL28B locus to be significantly associated

with the HCV treatment response. The candidate SNV,

rs12971396, was found to be strongly linked to

rs8099917 (r2¼ 0.84) and completely explained the associ-

ation between rs8099917 and treatment response (the

p value increased from 4.07 3 10�25 to 0.88 after

rs12971396 was accounted for in the GWAS cohort used

by Ge et al.56).

Plasma Level of Coagulation Factors

Smith et al. carried out a meta-GWAS on the plasma levels

of coagulation factors VII (FVII), VIII (FVIII), and von Wil-
The American
lebrand factor (vWF).60 They observed rs687621 in ABO

(MIM 110300) to be significantly associated with the

vWF level. By using our preferential LD approach to follow

this discovery SNP, we found a total of 72 candidate SNVs,

of which four coding SNVs in ADAMTS13 (MIM 604134)

fell within the top 10; these included two nonsynonymous

SNVs (rs28503257 and rs28647808) and two synonymous

SNVs (rs34054981 and rs28641026) (Table 4). The two

nonsynonymous SNVs were predicted to be probably

damaging by PolyPhen2.61,62 ADAMTS13 encodes a vWF-

cleaving protease, which cleaves vWF at the peptide

bond between Tyr842 and Met843. Such ADAMTS13-

dependent proteolysis decreases the size, as well as the pro-

thrombotic activity, of the vWF multimer. Deficiency of

ADAMTS13 leaves the uncleaved and highly thrombotic

vWF to accumulate in the plasma and results in thrombo-

embolism.63 These candidate coding causal variants in

ADAMTS13 might affect the efficiency of the enzyme

activity and might therefore cause changes in the plasma

vWF level. A common intronic SNP (rs4981022) in

STAB2 (MIM 608561) was also found to significantly asso-

ciate with the plasma vWF level by Smith et al. Application

of the preferential LD approach to this discovery SNP led to

the identification of ten candidate causal SNVs. The best

candidate, rs6615, is a synonymous SNV in HSP90B1

(MIM 191175) (also called GP96 or GRP94), which encodes

a chaperone in the endoplasmic reticulum (ER). Protein

interaction between HSP90B1 and vWF has been docu-

mented before.64,65 HSP90B1 is also known to chaperone

GPIX in the ER and is required for its proper folding and

the subsequent assembly of the GPIb-IX-IV complex,

which is the receptor of vWF and is essential for vWF-

mediated platelet activation.66 rs6615 might directly

modulate vWF levels by affecting its chaperone function
Journal of Human Genetics 91, 422–434, September 7, 2012 429



on vWF, or it might indirectly alter vWF levels by affecting

the assembly of the vWF receptor. The third candidate,

rs117801489, is a nonsynonymous SNV in GLT8D2, and

it is predicted to be probably damaging to GLT8D2 by

PolyPhen2. GLT8D2 encodes a glycosyltransferase

belonging to glycosyltransferase family 8. Two members

(GXYLT1 and GXYLT2) of the same family can transfer

xylose to O-linked glucose,67 and the O-linked glycosyla-

tion of vWF was reported to associate with plasma vWF

levels.68 It is possible that vWF is a target of GLT8D2 glyco-

syltransferase and that rs117801489 affects the glycosyla-

tion of vWF by GLT8D2 and therefore alters the plasma

vWF level.

In addition, we applied our approach to the discovery

SNP identified by a meta-GWAS on plasma fibrinogen

levels (rs511154),69 which is a noncoding SNP 18 kb

upstream of PCCB (MIM 232050), and 21 candidate causal

variants were identified. A nonsynonymous SNV

(rs34901937) in PPP2R3A (MIM 604944) was ranked as

the best candidate (Table 4). PPP2R3A encodes one of the

regulatory subunits of the protein phosphatase 2 (PP2),

which is known to regulate the platelet integrin aIIbb3

adhesion to fibrinogen.70 Although this nonsynonymous

SNV was predicted to be benign by PolyPhen2, it would

still be interesting to explore whether this SNV can disrupt

the regulatory PP2 subunit encoded by PPP2R3A and can

therefore affect the binding of fibrinogen with integrin

aIIbb3 and change the plasma fibrinogen level.

Alzheimer Disease

A recent GWAS of late-onset AD was carried out by the Alz-

heimer Disease Genetics Consortium and led to the identi-

fication of four new susceptibility loci, including EPHA1

(MIM 179610).71 We followed the most significant SNP

(rs11767557), which is about 3 kb upstream of EPHA1,

and identified two rare SNVs in ZYX (MIM 602002) as

the best two candidates (Table 4). These two candidate

causal variants include one nonsynonymous SNV

(rs73154206) predicted to be probably damaging by Poly-

Phen2 and one synonymous SNV (rs11552742). ZYX was

found to be deacetylated by SIRT1,72 which can protect

neurons from neurodegeneration in mouse models of

AD.73 It is possible that the identified candidate causal vari-

ants affect the onset of AD through the antiapoptotic

pathway involving both ZYX and SIRT1.
Discussion

We describe here a computational method, the preferential

LD approach, designed to identify candidate causal vari-

ants responsible for the association between phenotypes

and GWAS-discovered SNPs. Our approach seeks to make

effective the combined use of the existing GWAS signals

and the rapidly accumulating database of sequenced

genomes. One unique advantage of this approach is its

ability to identify causal variants that are rare in the popu-

lation and that are only in weak LD with the discovery
430 The American Journal of Human Genetics 91, 422–434, Septemb
SNP as measured by r2. Using this approach, we were able

to rediscover known causal variants for Crohn disease,

HCV-treatment-induced hemolytic anemia, therapeutic

warfarin dose, bladder cancer, and hearing loss. These

include both cases in which the causal variant is a single

rarer variant and in which multiple rarer variants

contribute to the GWAS signal. Because of our constraints

on the MAF of the candidate SNVs, we might miss the

causal variants that are very common but are in strong

LD with the GWAS discovery SNPs. Because this scenario

is amenable to more ‘‘straightforward’’ fine-mapping

efforts and the simple r2 can work quite well in prioritizing

the common causal variant (Table S5), we did not attempt

to address it here. Instead, we focused on the scenarios in

which the causal variants are rarer because methods for

detecting the causal variants in these scenarios are limited.

We found that the preferential LD approach was able to

identify common causal variants strongly linked with the

GWAS-discovered SNP when the MAF requirements of

candidate SNVs were relaxed (Table S5). Users can change

the parameters of the preferential LD approach according

to their specific cases.

The preferential LD approach utilized genotypes from

a general population of European ancestry and can be

easily applied to existing GWASs involving this popula-

tion. We showed that this approach has led to the identifi-

cation of a number of promising causal variant candidates,

upon which testable hypotheses could be formed.

The current implementation of the preferential LD

approach might fail to identify the causal variants if they

are not SNVs, if the variants are too rare to be represented

in our discovery samples, or if the LD structure in our

samples is significantly different from the LD structure in

the original GWAS cohort. The current genotype informa-

tion used by the preferential LD approach includes only

SNVs, and we plan to include the genotypes of insertions

and deletions (indels) in the future to be able to identify in-

del causal variants. Our current collection of genotypes

comes from 75 whole-genome-sequenced individuals and

404 whole-exome-sequenced individuals, plus additional

chip genotyping and in silico imputation. As next-genera-

tion sequencing becomes routine, more and more deep-

sequenced genomes will become available. We expect

that increasing the sample size of the population used by

the preferential LD approach will boost its power to iden-

tify rarer causal variants. For example, using 800 whole-

genome samples will give us about 80% power to detect

variants with MAF R 0.1% in the general population

(Figure S1). Currently, it is a common practice to utilize

a general population for the calculation of LD between

variants (e.g., the International HapMap Project and the

1000 Genomes Project).74 Therefore, we expect that the

LDmeasures for most variants will remain similar between

the general population that we used and the respective

GWAS cohorts of European ancestry.

As the number of sequenced samples grows, the prefer-

ential LD approachwill be able to provide a comprehensive
er 7, 2012



listing of candidate causal variants for all GWAS discovery

variants and represent a general tool for leveraging GWAS

signals in the interpretation of human sequence data.
Supplemental Data

Supplemental Data include one figure and five tables and can be

found with this article online at http://www.cell.com/AJHG.
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