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RTTN Mutations Link Primary Cilia Function
to Organization of the Human Cerebral Cortex

Sima Kheradmand Kia,1 Elly Verbeek,1,8 Erik Engelen,2 Rachel Schot,1 Raymond A. Poot,2

Irenaeus F.M. de Coo,3,7 Maarten H. Lequin,4,7 Cathryn J. Poulton,1 Farzin Pourfarzad,2

Frank G. Grosveld,2 António Brehm,5 Marie Claire Y. de Wit,3,7 Renske Oegema,1 William B. Dobyns,6

Frans W. Verheijen,1 and Grazia M.S. Mancini1,7,*

Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small

gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individ-

uals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as ante-

roposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein.

The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance

of sensory neurons.We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected indi-

viduals have structural abnormalities of the cilia and exhibit downregulation of BMP4,WNT5A, andWNT2B, which are key regulators of

cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Inter-

estingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown exper-

iments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTNmutations therefore link

aberrant ciliary function to abnormal development and organization of the cortex in human individuals.
Malformations of the developing brain cortex are a hetero-

geneous group of disorders and a major cause of in-

tellectual disability, epilepsy, and neurological symptoms,

often requiring life-long support and treatment.1–3 Polymi-

crogyria (PMG) is in general appearance and distribution a

heterogeneous disorder, considered to be the result of post-

migratory abnormal cortical organization. PMG is charac-

terized in brain imaging by many irregular small gyri and

in microscopic examination by fusion of the molecular

layer over multiple small gyri, which gives a festooned

appearance to the cortical surface, without abnormal neu-

ronal migration.4 The causes are also very heterogeneous,

including nongenetic causes such as prenatal insufficient

vascular supply (e.g., twin-twin transfusion syndrome),

intoxication (e.g., fetal alcohol spectrum disorder), and

viral infections (e.g., cytomegalovirus) (for review, see

Leventer et al.).1

More than 100 syndromes are annotated that in-

clude PMG (London Medical Database [LMD], see Web

Resources). Conversely, mutations in only a few genes,

such as TUBB2B (MIM 612850), TUBA8 (MIM 605742),

TUBB3 (MIM 602661), and WDR62 (MIM 613583), have

been associated with isolated nonsyndromic PMG,

accounting for only a minority of affected individuals.2,3

Originally, a recognizable distribution was linked to muta-

tions in specific genes; however, subsequent observations

had shown a heterogeneity of distribution and even type
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of cortical malformation, thus making the choice of a

targeted diagnostic test more difficult.2,3 For example,

mutations in GPR56 (MIM 604110) were originally

described in individuals with an MRI diagnosis of PMG,

but later studies of brain pathology classified the cortical

abnormalities as cobblestone malformations.3 Autosomal-

recessive isolated nonsyndromic PMG is extremely rare

and only sporadically reported.3

Here, we report homozygous recessive mutations in

RTTN (MIM 610436) in individuals from two unrelated

consanguineous families presenting with bilateral PMG

diagnosed via MRI of the cerebral cortex and without other

major malformations.

Written informed consent for the study was obtained

from the families according to the Erasmus University

Medical Center (Erasmus MC) institutional review board

requirement. Family 1 originates from Turkey and includes

three individuals. The clinical presentation is summarized

in Table 1. MRI of the brains of two individuals revealed a

diffuse asymmetric PMG extending from the frontal to the

temporal, parietal, and occipital areas (Figures 1A–1G).

In view of the multiple consanguineous loops, we assumed

that the cause would be a homozygous autosomal-

recessive mutation.

We used Affymetrix Human GeneChip SNP 6.0 arrays to

perform autozygosity mapping on the basis of a whole-

genome search from the three affected members of the
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Table 1. Clinical Presentation of Individuals with RTTN Mutations

Clinical Findings Family 1, Individual 1 Family 1, Individual 2 Family 1, Individual 3 Family 2, Individual 1

Sex male male female male

Birth weight (gestational
week)

�2 SD (38 weeks) NK NK 0 SD (40 weeks)

Age at observation 12 years 14 years 18 years 16 years

Height (age) �2 SD (12 years) �1 SD (24 years) NK �2.5 SD (16 years)

Head circumference (age) �2.5 SD (12 years) �2 SD (24 years) NK 0 SD (16 years)

Cognitive development severe ID moderate ID moderate ID severe ID

Behavior and communication
skills

temper tantrums friendly friendly friendly

Speech few words, dysarthria few words, dysarthria NK no speech, drooling

Seizures yes yes yes yes

Findings at neurological
exam

pyramidal signs,
unassisted deambulation

NK NK spastic tetraparesis, no
deambulation

EEG intermittent fast activity
in left centro-parietal
and temporal areas;
slow waves in bilateral
frontal areas

NK NK clusters of peak waves in
left fronto-central and
temporal areas

Brain MRI (age) þ (1 year) þ (14 years) – (permission denied) þ (7 years)

Polymicrogyria, distribution
and cerebral findings

asymmetric R > L irregular
gyral pattern that involves
the posterior frontal-
perisylvian and parietal
regions, reduced-volume
white matter beneath
cortical malformation,
normal third and mildly
enlarged lateral ventricles,
thin corpus callosum

extensive asymmetric R > L
irregular gyral pattern
that involves posterior
frontal-perisylvian and
parietal regions and
possibly the occipital
lobes, most severe in
posterior frontal-
perisylvian regions;
mildly enlarged lateral
ventricles; mildly short
corpus callosum

– irregular gyral pattern
with microgyri in
perisylvian, parietal, and
superior occipital regions,
most severe in parietal
regions; posterior to
posterior sulcus region;
reduced-volume white
matter in parietal and
occipital regions with
dysplastic infolding only;
normal to mildly thick
corpus callosum

Cerebellum normal mild cerebellar atrophy
with reduced volume
and mildly enlarged
fourth ventricle

– normal

Abdominal and renal
ultrasound (age)

normal, situs solitus,
small kidney volume
(12 years)

NK NK normal, situs solitus
(16 years)

Heart examination normal (12 years) NK NK normal (16 years)

Ophthalmological
examination

normal NK NK normal

BAEP normal NK NK normal

CPK normal NK NK NK

The following abbreviations are used: NK, not known; ID, intellectual disability; EEG, electroencephalogram; R, right: L, left; BAEP, brainstem auditory evoked
potentials; CPK, creatine phosphokinase.
family.5 This technique has been used with great success

for identification of regions containing the gene of interest

in autosomal-recessive disorders. By this method, areas

larger than 2 Mb containing high-density homozygous

SNPs can confidently be considered to be identical by

descent and can be explored for recessive mutations. The

Affymetrix Genotyping Console (GTC4.1.1) was used for

genotyping with the Birdseed v.2 algorithm and copy

number and region of homozygosity analysis with the
534 The American Journal of Human Genetics 91, 533–540, Septemb
Regional GC Correction algorithm as well as a reference

model file containing 12 in-house reference samples.

In the three affected individuals, we found two shared

homozygous regions larger than 2 Mb on chromosomes

14q24.3-31.1, containing 25 genes, and 18q22, containing

5 genes (Figures S1 and S2 available online). We sequenced

all the candidate protein-coding genes in both regions

(Tables S1 and S2). We found only one homozygous non-

synonymous change in the three affected individuals in
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Figure 1. Brain Imaging of Individuals with PMG from Two Consanguineous Families
MRI of individuals 1 (A–D, at age 1 year) from family 1 shows a diffuse and asymmetric abnormality of the cortex with the thickened and
irregular surface typical of PMG, most pronounced in the perisylvian (A and C), parietal (A, C, and D), and occipital (C and D) areas and
moderate dilatation of lateral ventricles (C and D). Bilateral temporal arachnoidal cysts and normal cerebellum are visible (B). TheMRI of
individual 2 from family 1 (E–G, at age 14 years) shows small cerebellar vermis (E) and hemispheres (F) and diffuse bilateral, slightly
asymmetric PMG (G). The MRI of the individual from family 2 (H–J, at age 7 years) shows a bilaterally polymicrogyric cortex in the
temporal areas around the sylvian fissure (H), in the parietal (J) and occipital (I) areas, with reduced occipital white matter and thin sple-
nium of corpus callosum (I, arrow). Age-matched control of 13 years (K).
a highly conserved residue of exon 22 of RTTN, mis-

sense change c.2796A>T, which predicts an amino acid

substitution, p.Leu932Phe (RefSeq accession number

NM_173630.3) (Figure 2A). The change was analyzed in

additional family members; it cosegregated with the

phenotype in the pedigree (Figure 2A) and was heterozy-

gous in the parents. In our cohort including 70 isolated

cases of PMG,6 we identified a second consanguineous

family from Cape Verde (family 2) with one affected indi-

vidual showing a >2 Mb homozygous area on chromo-

some 18q22, overlapping the RTTN locus (Table 1). His

brain MRI showed a bilateral PMG that was more pro-

nounced in the temporal, parietal, and occipital areas

(Figures 1H–1J). This proband (Figure 2B, subject 4) had

a homozygous c.80G>A change in exon 2 of RTTN,

causing a p.Cys27Tyr amino acid substitution (Figure 2C),

whereas both parents were heterozygous for the change.

The extremely low allele frequencies and the algorithm

predictions point to the RTTN mutation as the cause of

the disease (Figure 2).

RTTN encodes Rotatin (UniProt Knowledgebase

[UniProtKB], see Web Resources), a large (2,226 amino

acid) protein of unknown function containing two
The American
Armadillo-like domains, highly conserved among species

(Figure 2D).7,8 Armadillo domains are repeat-rich areas

that mediate protein-protein interaction, as seen in pro-

teins transducing signals of cell adhesion molecules to

the cytoskeleton and wingless-type MMTV integration

site family members (WNTs). The p.Cys27Tyr substitution

is located in the first Armadillo domain; the p.Leu932Phe

substitution is in a region of unknown function.

Rttn knockout mice, missing the murine ortholog of

RTTN, show embryonic lethality, with deficient axial rota-

tion, notochord degeneration, abnormal differentiation

of the neural tube, loss of the left-right specification of

the heart, and severe hydrocephalus.7 These phenotypic

abnormalities are often also encountered in disorders

affecting both primary and motile cilia.9–11 The no turning

Rttn spontaneous mouse mutant has anteroposterior and

dorsoventral patterning defects identical to Kif3a and

Kif3bmutants, which lack the kinesin-II motor subunits of

ciliary intraflagellar transport.8,12,13 Kif3a knockout

embryos show rotational defects, lack nodal cilia, and

show aberrant sonic hedgehog signaling. Cilia are com-

plex microtubular organelles derived from centrioles,

important for their role in embryonic development, signal
Journal of Human Genetics 91, 533–540, September 7, 2012 535



Figure 2. Identification of the RTTN Mutations in Families with PMG
(A) Left, pedigree of family 1. Affected subjects have black symbols, and below, the RTTN genotype is indicated, which illustrates cose-
gregation of the c.2796A>T change with the phenotype. Middle, electropherogram showing the homozygous mutation (subject V-4),
the heterozygous father (IV-4), and the normal sequence (healthy sibling V-1). PCR products were purified with ExoSAP-IT (USB),
and direct sequencing of both strands was performed with BigDye Terminator chemistry v.3.1 on an ABI PRISM 3130xl Genetic Analyzer
(Applied Biosystems). Sequences were aligned and compared with consensus sequences obtained from the human genome databases
(SeqScape v.2.5 software, Applied Biosystems). For annotation of DNA and protein changes, the mutation nomenclature guidelines
from the Human Genome Variation Society were followed. Right, conservation of leucine 932 among species.
(B) Visualization with the Genotyping Console browser of Affymetrix SNP 6.0 Array data, showing the overlapping areas of homozy-
gosity among individuals from family 1 (upper three) and family 2 (lowest lane).
(C) Left, pedigree of family 2. The affected subject has a black symbol, and below, the RTTN genotype at position c.80 is indicated.
Middle, electropherogram showing the homozygous mutation (subject IV-2), the heterozygous father (III-2), and the normal sequence
(control). Right, conservation of cysteine 27 among species.
(D) Schematic representation of Rotatin, including the position of the amino acid change, Armadillo-like domains, and posttranslational
modification sites.
The c.2796A>T change was not present in 100 ethnically matched, healthy Turkish individuals and 165 individuals of European
descent. The c.80G>A change was absent in 98 Cape Verdean ethnically matched individuals and 166 healthy individuals of European
descent. Both the c.2796A>T and the c.80G>A changes were not annotated as polymorphic in dbSNP130, nor were they present in 679
control individuals of the 1000Genomes database and the ExomeVariant Sever (University ofWashington), indicating an extremely low
allele frequency in the healthy population. Algorithms PolyPhen-2, SNAP, and Mutation Taster predicted the changes as probably being
deleterious (see Web Resources).
transduction, cell-cell interaction, and human disorders,

which are collectively called ciliopathies.9–11,14–17 The

Drosophila melanogasterhomolog of Rotatin, Ana3, is neces-

sary for the structural integrity of centrioles andbasal bodies

and is essential for maintenance of sensory neurons.18

Rotatin has recently been localized to the mitotic centro-

somes in HeLa and KE37 cells.18,19 We raised polyclonal

antibodies against human Rotatin (rabbit anti-Rotatin,

SantaCruzBiotechnology, Sc-85129) andperformed immu-

nofluorescent staining of cilia and basal bodies in human

cultured skin fibroblasts (Figure 3A).21,22 Rotatin localized

at the ciliary basal bodies in control fibroblasts (Figure 3B).

Given Rotatin localization, we investigated whether the

RTTN mutations cause ciliary defects in the affected indi-
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vidual cells. Rotatin was detected at basal bodies in fibro-

blasts from an individual with c.2796A>T, suggesting

that the mutation does not affect synthesis and localiza-

tion of the protein (Figure 3C). However, we observed a

higher percentage of structural cilia abnormalities, includ-

ing short cilia, in c.2796A>T cells compared to control cell

lines (n ¼ 10). Up to 40% of the short cilia had a bulbous

tip (Figures 3D and 3E and Figures S3C and S3D). Cells

from the individual with c.80G>A did not show significant

structural or numeric cilia anomalies (Figures S3E and S3F).

To confirm the findings, we treated control fibroblast cell

lines with RTTN-specific small interfering RNAs (siRNAs),

which caused downregulation of RTTN mRNA and a

decreased protein level (Figures 3F and 3G). In 8% of
er 7, 2012



Figure 3. Immunofluorescent Staining of Rotatin and Cilia in Growth-Arrested Control Fibroblast, Affected-Individual Fibroblasts,
and siRNA-Treated Controls
A total of 13 105 cells were seeded on glass coverslips in six-well cell culture plates and cultured in Dulbecco’s modified Eagle’s medium
with 10% fetal calf serum (FCS) for 24 hr and for an additional 24 hr with 0.5% FCS (serum starvation), in order to arrest cell growth and
allow ciliogenesis. Cells were fixed in cytoskelfix-20 (Cytoskeleton) for 5–10 min at �20�C. Afterward, cells were treated for 10 min at
room temperature in blocking buffer (0.05 M Tris; 0.9 M NaCl; 0.25% gelatine; 0.5% Triton X-100; pH 7.4), then were incubated with
primary antibodies for 2 hr (mouse monoclonal anti- acetylated tubulin [Sigma-Aldrich T7451;1:8,000], rabbit anti-gamma-tubulin
[Sigma-Aldrich T7451;1:1,000], and rabbit anti-Rotatin [Santa Cruz Biotechnology, Sc-85129;1:200]). Cells were washed and incubated
withHoechst 33342 (Invitrogen;1:2,000), conjugated donkey anti-mouse-cy3 (Jackson ImmunoResearch; 1:200) and conjugated donkey
anti-rabbit-cy2 (Jackson ImmunoResearch;1:200) for 1 hr. Fluorescencewas visualized on an AXip-Axioplan2 imagingmicroscope (Zeiss)
with a COOLSNAP-Pro camera (Zeiss). A total of 200 cells per well were examined and scored. During siRNA treatment, the cells were
incubated for a longer time after trypsinization, which accounts for the higher percentage of control cells with normal cilia.
(A) Control fibroblasts show a normal cilium with basal bodies (green) and axoneme (red, arrow).
(B) Control fibroblasts stained with Rotatin antibodies (green) show localization of the protein to the basal bodies of the cilia; axoneme
in red.
(C) Fibroblasts from one individual with the c.2796A>T change (subject 1 in the pedigree) show normal Rotatin localization but abnor-
mally short and bulbous axoneme.
(D) Cell from the same individual shows normal basal bodies and abnormally short axoneme.
(E) Graphical representation of cilia abnormalities in c.2796A>T cells. The total percentage of ciliated cells is comparable with the
controls (n ¼ 10), but the percentage of structural abnormalities (in red) is significantly higher in c.2796A>T cells (35%) compared to
controls (10%) (Student’s t test; p < 0.01). All the experiments were blinded and performed in parallel cultures of affected individual
and controls; length and shape of the axoneme was visually scored.
(F and G) Control cells treated with RTTN-specific siRNA show downregulation of mRNA relative to housekeeping gene ACTB20 (F) and
decreased Rotatin levels on western blot (G). Predesigned siRNA pools targeting transcripts of the human RTTN (L-031139-01) (Si-RTTN)
and a nontarget control siRNA pool (D-001810-10-20, Dharmacon) (Si-Control) were used for knocking down RTTN in two separate
control fibroblast cell lines and hNSCs (see Figure S4). siRNA (15 nM) was delivered into fibroblasts and hNSCs (33 105 cells) with either
the siLentFect Lipid Reagent (BioRad) or nucleofectin reagent (Amaxa Nucleofector Kit V). Cells were harvested after 96 hr, seeded, and
transfected again. Protein levels were examined via western blot analysis 72 hr after a second transfection. Fifty mg of cell extracts was
prepared in RIPA buffer (10 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% Nonidet P-40, 1% NaDOC, and 0.1% SDS) and was resolved
with SDS-PAGE. Primary antibodies used for blotting were Rotatin (Santa Cruz Biotechnology; Sc-85129) and Nucleophosmin (B23)
(Abcam; ab37659) as a control. Blots were developed with the enhanced chemiluminescence detection kit (Pierce). The following abbre-
viations are used: anti-RTTN, human Rotatin antibodies; and anti-B23, Nucleophosmin antibodies.
(H) Control cell after downregulation of RTTN expression by siRNA, showing an abnormal number of basal bodies and a short axoneme.
Scale bars represent 5 mm; error bars represent SEM.
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RTTN-siRNA-treated fibroblasts, we observed abnormally

short cilia and multiple basal bodies, compared to 1% of

the same mock-transfected control cell line (Figure 3H),

indicating that Rotatin is involved in the maintenance of

a normal ciliary structure.

To understand whether the Rotatin amino acid substitu-

tions disrupt cilia-mediated signal transduction that flows

through the axoneme, we compared the expression

pattern of genes in c.2796A>T fibroblasts versus controls.

We tested a quantitative RT-PCR (qRT-PCR)-based array

containing 86 genes, whose functions are broadly associ-

ated with the sonic hedgehog signaling pathway, one of

the main signaling pathways regulated at the cilium. A

number of significantly deregulated genes were identified

and were individually tested again by qRT-PCR for confir-

mation (see Tables S3, S4, and S5; Figures S4A, S4B, S4D,

and S5). Among the genes with more than 2-fold deregula-

tion, besides SHH (MIM 600725) and hedgehog-related

HHIP (MIM 606178) and HHAT (MIM 605743), were

WNT5A (MIM 164975), WNT2B (MIM 601968), and

BMP4 (MIM 112262). Upregulation of WNT7B (MIM

601967) was also originally observed on the arrays but

could not be confirmed by qRT-PCR. WNT2B is an effector

of the canonicalWNT/beta catenin signaling pathway, and

WNT5A is a key regulator of the noncanonical WNT

signaling-planar cell polarity. BMP4 is a major bone mor-

phogenetic protein involved in patterning of mammalian

telencephalon. All these genes are involved in brain

development or neuronal migration in mammals and are

known to be regulated at the cilium.14–17,23–31 qRT-PCR

performed on c.80G>A fibroblasts confirmed downregula-

tion of the same genes (Figures S4A, S4B, and S4D). These

results indicate that even if the cilia of the c.80G>A indi-

vidual appear microscopically normal, they share with

the c.2796A>T cells a functional ciliary defect. Downregu-

lation of BMP4 and WNT2B, but not WNT5A, was also

observed in control fibroblasts treated with RTTN-specific

siRNAs (Figures S4A, S4B, and S4D). Although we cannot

explain the lack of WNT5A downregulation, the transient

and partial effect of RTTN siRNA may not be sufficient to

achieve a detectable downregulation of WNT5A in fibro-

blasts.WNT5A is a key regulator of the planar cell polarity,

through polarized distribution of adhesion receptors in the

cell.32 Planar cell polarity is essential for coordinating the

cellular localization of the nodal cilia and for determining

embryonic polarity.33 Bmp4 also plays an important role in

embryonic polarity and determination of left-right asym-

metry in chicken, zebrafish, andmouse embryo by control-

ling asymmetric expression of Nodal in the lateral plate

mesoderm.26,28–30 Rttn knockout mice lose the asymmetric

expression of Nodal and show abnormal heart looping and

hydrocephalus, as seen in ciliopathies.7,11,12 However, the

literature does not provide a link between RTTN and neural

development. To gain insight in the physiological role of

RTTN in human neural cells, we investigated in vitro

gene expression in cultured embryonic stem cell-derived

human pluripotent neural stem cells (hNSCs).34 Knock-
538 The American Journal of Human Genetics 91, 533–540, Septemb
down of RTTN expression by siRNAs in hNSCs leads to

a reduction of BMP4 mRNA (Figures S4C and S4D). These

results suggest that RTTN is involved in regulation of

BMP signaling in neural cells.

In the developing mammalian telencephalon, WNTs

and BMPs, in particular BMP4 and WNT2B, are primarily

expressed at the cortical hem and are implicated in

patterning of the cerebral cortex.30,31,35,36 The human

cortical hem is an organizing center of the dorsomedial

telencephalon that regulates choroid plexus and hippo-

campus development and broadly directs cerebral cortical

development by giving rise to Cajal-Retzius (CR) neurons.

Mutations in genes expressed by CR neurons have already

been associated with human cortical malformations that

are due to abnormal transmantle migration.3,37,38 Muta-

tions in genes important in intraflagellar transport of the

cilia, such as Ift88, are associated with abnormal WNT

signaling and cause disorganization of the dorsal telen-

cephalon, disappearance of the cortical hem, and cobble-

stone appearance of the cerebral cortex, as demonstrated

by the cbs/cbs mouse mutants, which lack 80% of

the normal Ift88, polaris.39 Interestingly, whereas Ift88

knockout mice are not able to build up structurally normal

cilia, cbs/cbs mutants have structurally normal cilia.39

Because of the apparent role of RTTN in regulation of

WNT and BMP expression in vitro, we investigated

whether Rotatin is present in the same brain areas in the

developing telencephalon as the CR neurons, e.g.,

the marginal zone, which might imply an influence on

the cortical organization. We stained embryonic mouse

brain at E14.5 and E16.5, ages at which the cortical hem

produces migrating CR neurons, using the CR marker

calretinin- and Rotatin-specific antibodies. We found that

Rotatin localizes in the upper cortical layers and particu-

larly in the marginal zone of the developing mouse cortex,

similar to calretinin (Figures S6 and S7). Considering that

PMG, as observed in individuals with RTTN mutation, is

a postmigratory cortical organization defect, the localiza-

tion of Rotatin to the marginal zone supports its involve-

ment in the pathogenesis of the cortical malformation.

However, the mechanism by which RTTN mutation

causes PMG is not yet clear. If RTTN mutation leads to

abnormal cortex development through disruption of the

CR neurons, one of the possible mechanisms could be

disturbance of the developing leptomeninges. CR neu-

ronal development is under the influence of leptome-

ninges,40,41 and BMPs are known to control the develop-

ment of the roof plate.42

In conclusion, we provide evidence that autosomal-

recessive missense mutations in RTTN are associated with

PMG, which probably represents a ‘‘hypomorphic’’ pheno-

type, raising the question of whether RTTN null mutations

might be lethal.

Rotatin is a basal body protein that localizes at the upper

cortical layers of the developing telencephalon.

We hypothesize that Rotatin regulates the organization

of the cerebral cortex through regulation of BMP and
er 7, 2012



WNT expression and therefore provides a link between

organization of the human cortex and ciliary function,

hereby elucidating one of the many possible mechanisms

leading to polymicrogyria, which can sometimes be the

only phenotypic manifestation of a ciliopathy.43–45
Supplemental Data

Supplemental Data include seven figures and five tables and can be

found with this article online at http://www.cell.com/AJHG/.
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National Center for Biotechnology Information (NCBI) dbSNP,

http://www.ncbi.nlm.nih.gov/projects/SNP/
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