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Force-Clamp Analysis Techniques Give Highest Rank to Stretched
Exponential Unfolding Kinetics in Ubiquitin
Herbert Lannon,† Eric Vanden-Eijnden,‡ and J. Brujic†*
†Department of Physics and Center for Soft Matter Research and ‡Courant Institute of Mathematical Sciences, New York University, New York,
New York
ABSTRACT Force-clamp spectroscopy reveals the unfolding and disulfide bond rupture times of single protein molecules as
a function of the stretching force, point mutations, and solvent conditions. The statistics of these times reveal whether the protein
domains are independent of one another, the mechanical hierarchy in the polyprotein chain, and the functional form of the
probability distribution from which they originate. It is therefore important to use robust statistical tests to decipher the correct
theoretical model underlying the process. Here, we develop multiple techniques to compare the well-established experimental
data set on ubiquitin with existing theoretical models as a case study. We show that robustness against filtering, agreement with
a maximum likelihood function that takes into account experimental artifacts, the Kuiper statistic test, and alignment with
synthetic data all identify the Weibull or stretched exponential distribution as the best fitting model. Our results are inconsistent
with recently proposed models of Gaussian disorder in the energy landscape or noise in the applied force as explanations for the
observed nonexponential kinetics. Because the physical model in the fit affects the characteristic unfolding time, these results
have important implications on our understanding of the biological function of proteins.
INTRODUCTION
Force-clamp spectroscopy using the atomic force micro-
scope has proven to be a useful tool for following the un-
folding trajectories of single polyprotein molecules (1–6).
Previous studies have investigated the effect of the applied
force (4,7–10), length of the polyprotein chain (11,12),
and order statistics (3) on the unfolding kinetics of mechan-
ically stable proteins. The simplest free energy landscape
model for mechanical unfolding is a two-state reaction
process over a single transition state barrier, which is tilted
by the work done on the molecule (13). In such a reaction
driven by simple diffusion, the probability distribution of
the measured dwell times at a given force is exponential
with a rate of decay that is determined by the barrier height.
Moreover, the unfolding rate is exponentially dependent
on the applied force. The majority of previous studies
have interpreted their data using this two-state model to
determine the height of the energy barrier and the distance
to the transition state.

Apart from the two-state fitting of the unfolding kinetics
of ubiquitin (7), more recent work has shown that a larger
statistical pool of dwell times at a given force reveals impor-
tant deviations from exponential kinetics and requires more
sophisticated modeling. Surprisingly, these deviations have
led to three alternative models with different physical inter-
pretations for the unfolding of ubiquitin pulled under the
same experimental conditions. The first physical interpreta-
tion considers unfolding via multiple pathways in a rough
energy landscape, where the timescale of interconversion
between the folded states is assumed to be slow compared
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to that of unfolding. This static disorder scenario predicts
that the nonexponential dwell times at a force of 110 pN
are consistent with exponentially distributed free energy
barriers (8). By contrast, a more recent work assumes that
the static disorder (14,15) has a Gaussian distribution of
barriers and derives the corresponding function to fit the
experimental dwell times over a range of constant forces
(10). Alternatively, assuming that the Gaussian distribution
comes from the noise in the applied force (11) leads to the
same form of the nonexponential fitting function for the
dwell times if the noise correlation time is longer than
that of unfolding. In addition to these physical interpreta-
tions, in (12) a log normal distribution is proposed to be
the best heuristic fit to the dwell times of both monomeric
and polyubiquitin data.

A possible explanation for the apparent success of these
four models in fitting the same data is that rigorous methods
of analyzing and assessing force-clamp trajectories are lack-
ing. For example, some studies average and normalize the
measured end-to-end length trajectories as an estimate of
the cumulative unfolding probability (7,9), whereas others
export the individual dwell times and bin them into proba-
bility density distributions before fitting (3,10). Moreover,
because the polyprotein chains vary in length and detach
from the cantilever at random times, not all events are neces-
sarily observed in the experiment. To account for the unde-
tected events different filtering methods are applied to the
data, each with their own associated uncertainties. In this
work we quantitatively assess the errors in existing analysis
protocols, develop new, to our knowledge, analysis methods
that systematically take into account biases introduced by
experimental artifacts, and evaluate the success of each
model using not only graphical tests, but also rigorous
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statistical tests based on maximum likelihood estimation
and Bayesian sampling. We show that tests of robustness
against filtering the data provide an excellent indication of
the validity of the underlying model and we illustrate the
results in both real and synthetic data sets. To use the full
experimental data set and avoid filtering, we additionally
derive a likelihood function that calculates the probability
of observing a sequence of dwell times followed by the
measured detachment time of the molecule. This method
allows us to rank the proposed models in terms of their
consistency with observing the data set using standard
statistical tests, such as those described in (16,17). Finally,
we show the agreement between filtering techniques and
the use of the likelihood function and propose a self-consis-
tent recipe for data assessment in future experiments.

The importance of distinguishing between fitting func-
tions is to deduce the correct physical picture for protein un-
folding, which sets the mechanical response timescales in
biology. Indeed, it is striking that the mean unfolding times
for the four proposed distributions for ubiquitin span over
two orders of magnitude at a given constant force, thus
emphasizing the importance of determining the correct
model.
MATERIALS AND METHODS

Force-clamp spectroscopy measurements are taken using the same atomic

force microscope and experimental method described in (1,2,7–12). The

ubiquitin polyprotein construct consists of 12 identical monomers and is

synthesized according to the same procedure as that described in (11). In

response to a constant stretching force, each of the protein domains in a pol-

yprotein chain unfolds stochastically, leading to a stepwise elongation of

the end-to-end length over time, as shown in the example in Fig. 1 A.

Time zero is marked at the beginning of the first plateau in the end-to-

end length after the constant stretching force of 110 pN is applied. The re-

sulting staircase of unfolding events yields a set of dwell times t1, t2, .,

which mark the rupture of the native state of each domain to the fully

extended unfolded state. Only staircases with a minimum of three repeating

steps are included in the analysis as the signature of the single polyprotein

molecule. Plotting over 2000 unfolding times in the order in which they are

collected leads to the scatter graph in Fig. 1 B. The logarithmic scale

emphasizes the span over three orders of magnitude of the unfolding times,

whereas the homogeneity of the data from experiments performed with

distinct cantilevers and on different days gives validity to the force calibra-

tion and the stability of the protein, respectively.
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RESULTS AND DISCUSSION

Unbiasing the unfolding data from experimental
artifacts

To determine the probability F ðtÞ of observing an unfolding
event before time t, a common way to analyze time series
data is to plot the cumulative distribution function (CDF)
of the dwell times. Experimentally this CDF is often con-
structed by averaging and normalizing the raw staircases,
but this method gives an approximation of the CDF that is
not monotonically increasing due to the presence of thermal
noise and occasional drift in the experiment. Instead, the
correct way to construct the CDF is to directly export the
dwell times, sort and rank them from smallest to largest,
and then plot the normalized rank against the dwell time
as the empirical CDF. This procedure avoids loss of infor-
mation by binning, given that this empirical CDF has a value
at each measured dwell time.

However, in the case of force-clamp trajectories the
empirical CDF of all the observed dwell times does not coin-
cide with the unfolding probability F ðtÞ because of experi-
mental artifacts. The experimental window (fixed by the
time resolution at short times, tmin, and the total duration of
the experiment, tmax) may not encompass the whole range
of the unfolding probability F ðtÞ. The empirical CDF is
given by

bPðtÞ ¼ #fdwell times<tg
N

; (1)

whereN is the total number of dwell times in the data set and
#fdwell times<tg denotes the number of such times that
are less than t, and must therefore be fit with a P ðtÞ, condi-
tional on the time range of the experiment (18). Although
F ðtÞ is zero at time zero and reaches one at infinity, the
conditional P ðtÞ is fixed to zero at tmin in our experiments,
reaches one at tmax, and is defined as

PðtÞ ¼

8>>><
>>>:

0 if t<tmin

FðtÞ � FðtminÞ
FðtmaxÞ � FðtminÞ if tmin%t%tmax

1 if t>tmax

: (2)
FIGURE 1 (A) A typical force-clamp unfolding

trajectory of a single ubiquitin polyprotein pulled

with a constant stretching force of 110 pN. The

beginning of the plateau that precedes the staircase

of unfolding events marks time zero t0 as the

moment when the molecule is held taught under

the applied force. The dwell times are then

measured as the time interval between t0 and each

of the unfolding steps. Finally, the molecule

detaches at td. The stepwise unfolding is illustrated

in the schematic diagram. (B) Unfolding dwell

times from the staircases are plotted on a semilog

scale in the order that they are collected and show

a broad and homogeneous distribution of times.
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Note that this conditional fitting of the data fixes the values
of F ðtÞ at tmin and tmax without the need of introducing
extra parameters. The functional form of F ðtÞ chosen for
the fitting procedure self-consistently determines the range
captured by the data, as shown in Fig. 2 A. If the experiment
lasts long enough that the value of F ðtÞ approaches one at
tmax then the conditioning has little effect on the parameters.
However, even cases where F ðtÞ reaches 0.85 at tmax

can alter the rate of an exponential function by 27% and
change the shape of the distribution unless this condition-
ing is taken into account (see Fig. S1 in the Supporting
Material).

Another artifact of force-clamp trajectories is that the
molecules detach from the cantilever at random times td,
which implies that some events are not observed in the
experiment. If the total number of domains N in the poly-
protein chain were known a priori (3), one could unbias the
distribution of dwell times using order statistics, assuming
that the unfolding events are independent of one another.
This assumption for linear polyproteins has been proven
correct for ubiquitin (11), NuG2 protein (3) as well as in
numerical simulations (19). However, in our experiments
the cantilever picks up polyproteins at random points on
the surface such that any N (up to the full length Nmax)
can be exposed to a stretching force in a given experiment.
This renders the unbiasing procedure difficult to resolve
because different distributions pðNÞ bias the empiricalbPðtÞ, which is illustrated on synthetic examples in
Fig. S2. It is therefore necessary to filter the data, such
that all events come from trajectories that correspond to
the same time window in the experiment, to construct the
P ðtÞ that corresponds to the underlying F ðtÞ. The correct
way to do so is to choose an experimental time window
(e.g., from tmin to a cutting time tc) and only consider those
dwell times that i), occur within that range and ii), come
from trajectories that lasted over the entire range, such
that tdRtc, as shown in Fig. S3. Note that filtering the
data by the detachment time alone by keeping all dwell
times less than td leads to empirical CDFs that give
inaccurate values of the fitting parameters, as shown in
Fig. S4.
Graphical tests of the unfolding probability F(t)

Using the described methods for filtering and fitting of the
experimental CDF bP ðtÞ, we assess the success of different
models in explaining the ubiquitin data. The experimental
time window is chosen to be between the time resolution
of the experiment tmin ¼ 5 ms and the cutting time tc ¼
5 s, which ensures three decades over which to test the good-
ness of fit of the data. The same empirical bP ðtÞ is then fit
with Eq. 2 for the four functional forms of F ðtÞ proposed
in the literature and listed in Table 1. The fitting can be
done by least squares or maximum likelihood methods,
which result in parameters that agree to within two decimal
places. Because the fitting procedure self-consistently fixes
F ðtmaxÞ and F ðtminÞ for each function, the resulting
empirical bF ðtÞ ¼ ðF ðtmaxÞ � F ðtminÞÞbP ðtÞ þ F ðtminÞ, ob-
tained by solving Eq. 2 for F ðtÞ, differ in their range, as
shown in Fig. 2 A. For instance, the experimental window
captures only 60% of the events in the case of the log normal
distribution, whereas it covers almost all the events in the
case of the exponential function. Moreover, the curves
clearly show that the exponential fitting is inaccurate,
although the other three models are all in good agreement
with the data on the linear scale and exhibit comparable
c2 values. To zoom into the two decades of fast unfolding
times, the inset shows the data plotted as the conditional
P ðtÞ on a log-log scale that emphasizes deviations from
the fits. Here, it can be seen that the Weibull distribution
performs better than all others on timescales below 0.1 s.
Note that the Weibull distribution plotted as the F ðtÞ would
be a straight line on the scales of the inset, but the P ðtÞ
distribution is conditional on the time window of the exper-
iment and thus exhibits curvature. Even though the Weibull
distribution fits this data set most accurately, the statistical
error in the experiment precludes the determination of the
correct model by this graphical test alone.

Indeed, many functional forms (particularly those with
several parameters) can be successful in fitting a particular
time window chosen for the analysis, but it is a greater chal-
lenge to assess how robust the fitting function and its param-
eters are against filtering the same data over different time
FIGURE 2 (A) The unfolding probability F ðtÞ
for four models proposed in the literature is used

to fit the same empirical CDF of dwell times.

The normalization of each F ðtÞ leads to different

timescales on which the data unfold. The inset

shows the corresponding conditional P ðtÞ on

a log-log plot to emphasize the goodness of fit at

short times. (B) Changing the time window from

5 s in (A) to tc shows the variability in the charac-

teristic unfolding time between the different

models. They span more than two orders of magni-

tude and only the Weibull and the exponential

distribution settle to a given value. The inset shows

how the number of data points changes as the time

window is expanded.
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TABLE 1 Parameter values from previous and our study for different distributions applied to a data set of ubiquitin pulled at 110 pN

of constant force

Distribution F(t) Previous Studies MLE Parameters

Exponential

1� e�at

a ~ 0.67 s-1 (9) a ¼ 0.66 5 0.02 s-1

Log-Normal

1

2
erfc

�
� lnðt=t0Þ

s
ffiffiffi
2

p
� s ¼ 3.0 (12)

t0 ¼ 0.005 s

s ¼ 2.04 5 0.05

t0 ¼ 1.26 5 1.08 s

Gaussian Disorder (GD)

1� R
R

e�kFte
�br e�

r2

2s2ffiffiffiffiffiffiffiffiffiffi
2ps2

p dr

kF ¼ 0.73 5 0.03 s-1 (10)

s ¼ 3.47 5 1.16 pNnm

kF ¼ 0.57 5 0.05 s-1

s ¼ 5.32 5 0.72 pNnm

Force noise ¼ GD

With s ¼ sFDx

Dx ¼ 0.23 nm

sF ¼ 15.09 5 5.04 pN

Dx ¼ 0.23 nm

sF ¼ 23.13 5 3.13 pN

Weibull

1� e�ðatÞb
a ~ 0.9 s-1 (8)

b ¼ g – 1 ¼ 0.8

a ¼ 0.59 5 0.04 s-1

b ¼ 0.73 5 0.02
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windows. The shorter the time window, the more data points
are needed to obtain the same statistical accuracy in the
fitting, as shown in the synthetic example in Fig. S5. Never-
theless, there exists a range of cutting times tc over which
the fitted parameters should converge to the same values
given a large enough pool of data. As a test of robustness
of the parameters, we calculate the first moment of F ðtÞ
(i.e., the mean unfolding time) fitted at different values of
tc, shown in Fig. 2 B. It can be seen that filtering the data
at any time above 2.5 s has little effect on the mean unfold-
ing time for the Weibull distribution, whereas the Gaussian
disorder and log normal distributions vary greatly with tc.
The mean unfolding time is plotted on a logarithmic scale
to capture the two orders of magnitude span that is predicted
by the different experimental time windows of the same
pool of data. This result shows that fitting with different
physical models leads to dramatic consequences on biolog-
ical function, because the characteristic protein unfolding
time varies from 1 s to 3 min.

Although it can be argued that the statistical pool of
filtered data shown in the inset is insufficient to fit F ðtÞ at
short cutting times tc, the lack of convergence over any
significant filtering range for the Gaussian disorder and
log normal functions questions their validity in describing
the data. On the other hand, the exponential distribution
does exhibit a range of stability after tc z 3 s, but its poor
Biophysical Journal 103(10) 2215–2222
performance in fitting the data invalidates its use for
a different reason. This analysis shows that a successful
model must not only fit the data with fidelity over a range
of tc, but also predict parameters that are stable over that
range.

Instead of using the least squares method to assess the
goodness of fit and extrapolate variance in the parameters
by bootstrapping, other approaches work equally well.
One such method is maximum likelihood estimation
(MLE) (20), which computes the most likely parameters
of a distribution using a set of variables—in our case the
dwell times. The variance in the parameters is then obtained
by Bayesian sampling of the data set (21), as shown in
Fig. S6. The mean values of parameters a and b in the
Weibull distribution and kf and s in the Gaussian disorder
distribution are shown as a function of the experimental
time window tc in Fig. 3, A and B, respectively. The inset
shows that the root mean standard deviation in the fitting
parameters decreases as a function of tc, which is consistent
with the concomitant increase in the number of data points
and the wider time window of the fit. Although the fluctua-
tions observed in the Weibull parameters converge to stable
values above tc z 3 s, those of the Gaussian disorder model
do not settle to any given values before tc z 7 s, which is
also reflected in the broad fluctuations of the mean unfold-
ing time shown in Fig. 2 B. Note that filtering at long tc
FIGURE 3 Estimate of the fitting parameters in

the Weibull in (A) and the Gaussian disorder distri-

bution in (B) as a function of the experimental time

window. Bayesian sampling shows that the fluctu-

ations around the mean of the parameters diminish

as the time window increases. The constant solid

lines are the parameter values obtained from the

maximum likelihood function in Eq. 3 and the

dashed lines are their standard deviation.



Force-Clamp Spectroscopy Analysis Tools 2219
uses as little as 10% of the data collected, as shown in the
inset in Fig. 2. Disregarding the majority of the data set is
never desirable to an experimentalist. Nevertheless, having
access to only those trajectories that unfold the entire poly-
protein chain is an experimental way to bypass the need of
data filtering.
FIGURE 4 A Kuiper statistic of 1 signifies a perfect match between the

experimental data and the proposed distribution. Deviations from the line

at 1 quantify the disagreement between the maximum likelihood function

estimate for the four models and the experimental data set as a function

of the experimental time window tc.
Maximum likelihood function includes all
collected data

An alternative MLE function to fitting the CDF of the dwell
times as a function of tc is one that takes into account exper-
imental features of force-clamp trajectories and thus uses
the whole data set to estimate parameters in the unfolding
model. In a typical pulling experiment, the cantilever picks
up a polyprotein chain of N domains with a probability pðNÞ.
These domains subsequently unfold at dwell times t1, t2,.,
tk , where k corresponds to the last observed step in the stair-
case with a minimum k� ¼ 3 required as the signature of the
single molecule. Finally, the molecule detaches either from
the tip or the surface at time td. Assuming that the dwell
times are independent of one another (3,11) and identically
distributed (19,22,23) we calculate the probability of
observing k unfolding events, multiplied by the probability
of N – k domains remaining folded up to the detachment
time td, for every polyprotein chain:

1

G�

XN�

N¼ k

pðNÞ N!

ðN � kÞ!k! f ðt1Þ/f ðtkÞ½1� FðtdÞ�N�k
; (3)

where f ðtÞ ¼ dF=dt is the probability density asso-
ciated with FðtÞ, N� ¼ 12 is the number of domains in the
expressed protein construct, and G� accounts for the proba-
bility of not including staircases with less than k� ¼ 3 steps

G� ¼
XN�

N¼ k�

pðNÞ
XN
l¼ k�

N!

ðN � lÞ!l!½FðtdÞ�
l½1� FðtdÞ�N�l

: (4)

Taking the product of the likelihoods for each polyprotein
chain in Eq. 3 gives the overall likelihood function. The
binomial prefactor takes into account the fact that the dwell
times increase with a decreasing number of folded domains
in the polyprotein chain. The parameters in the unfolding
probability FðtÞ as well as those defining pðNÞ (assumed
to be a power law with a decay coefficient g in this case)
are obtained by maximizing this likelihood function,
whereas the uncertainties are estimated using Bayesian
sampling.

The maximum value of the likelihood function from the
ubiquitin data set ranks the four proposed unfolding distri-
butions in the following order from highest to lowest likeli-
hoods: Weibull, Gaussian disorder, log normal, and
exponential distribution. Given that the actual values of
the likelihoods depend on the size of the data set and
F ðtÞ, this rank test only estimates which distribution is
more consistent with the data, however it cannot assess
the accuracy of the fits themselves. Nevertheless, the fact
that the Weibull parameters from the likelihood function,
also shown in Fig. 3 A, are in good agreement with
the parameter convergence of the fits of the F ðtÞ above
tc z 3 s gives further support to this model. Conversely,
the lack of such an agreement in the runner-up Gaussian
disorder model suggests that this is not the correct func-
tional form for the unfolding probability.

A statistical test that quantitatively assesses whether a set
of observables originates from a given distribution is the
Kolmogorov-Smirnov approach with a modification by
Kuiper (16). We therefore compare the empirical CDFs at
different tc from the data set with those generated from
the four functional forms of f ðtÞ using the parameters esti-
mated by the above likelihood function. Denoting as before
by P ðtÞ the postulated distribution and by bP ðtÞ the experi-
mental distribution, the Kuiper statistic is defined as

U ¼
ffiffiffiffi
N

p
max

j¼ 1;.;N

�
P
�
tj
��bP�tj��� ffiffiffiffi

N
p

min
j¼ 1;.;N

�
P
�
tj
��bP�tj��;

(5)

where the maximum and the minimum are taken over all the

N dwell times t1;.; tN in the data set. U ¼ 1 signifies
a perfect match. The results in Fig. 4 show that the Weibull
distribution is closest to 1 over almost the entire range of tc.
Although the Gaussian disorder model is slightly closer to 1
between 7:2<tc<8 s, this narrow range is based on <10% of
the collected data and is likely to be fortuitous.
Comparison with synthetic and other data sets

To further test the consistency of the ubiquitin data with the
Weibull and Gaussian disorder models, we generate two
Biophysical Journal 103(10) 2215–2222
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synthetic data sets using the parameters obtained from the
maximum likelihood function in Eq. 3 that mimic the size
of the experimental data. We then filter the synthetic and
experimental data sets by tc and compare the values of their
fitting parameters using the Weibull distribution in Fig. 5, A
and B, and the Gaussian disorder model in Fig. 5, C and D.
In all cases, we find that the experimental and the synthetic
Weibull data are in good agreement with each other above
tc ¼ 3 s, whereas the synthetic Gaussian disorder data
exhibits significant deviations. The two data sets are
similar in that they not only exhibit comparable fluctua-
tions in the fitting parameters of the Weibull arising from
statistical errors, but they also follow similar trends in their
discrepancy from the fitting parameters of the Gaussian
disorder model. All these results are consistent with the
hypothesis that the unfolding of ubiquitin data at 110 pN
is most likely to originate from a Weibull distribution.

The fact that the Gaussian disorder model does not agree
with the data contradicts theories of static disorder (10) and
force noise (24), since they imply the same fitting function.
Although the former places the Gaussian noise in the
barriers to unfolding, the latter does so in the constant force
applied by the cantilever. Given that s ¼ sFDx, where sF is
the noise in the applied force and Dx ¼ 0:23 nm is the esti-
mated distance to the transition state, s in the barriers
obtained from the MLE function translates to sF ¼ 21%
or sF ¼ 32% error in the force calibration, depending on
whether one takes the value of (s) in Table 1 that is most
likely or most stable against filtering, respectively. If this
functional form had fit the data well, the estimated error
in the force calibration would be much higher than the
Biophysical Journal 103(10) 2215–2222
measured error of z5% (25) and would thus give validity
to the scenario of static disorder in the ubiquitin free energy
landscape rather than that of the force noise.

It is worth noting that there are several reasons for which
our results are not in agreement with those published in the
literature and why the results in the literature disagree
between each other. First, a common mistake in fitting
force-clamp data is to introduce a normalization constant
as an extra fitting parameter. Instead, care must be taken
to fit the conditional unfolding probability distribution
over the experimental window with P ðtÞ and obtain F ðtÞ
using Eq. 2. Second, binning the distribution of unfolding
times should be avoided because it effectively introduces
an extra parameter into the fitting and loses resolution at
short unfolding times. Third, filtering the data by accepting
those trajectories that last a set minimum detachment time td
and including events that occur after that td into the P ðtÞ
biases the resulting distribution at long times, which in
turn skews the fitting parameters. Instead, one must only
include those dwell times that occur within exactly the
same time window. Finally, plotting and fitting data on
log-log scales can be useful if the data have been shown
to fit well with a stretched exponential function to use
a straight line fit. Otherwise, the compression of the data
may obscure deviations from view and requires further
assessment of the fits using MLE and Bayesian sampling.
CONCLUSIONS

Numerous force-clamp analysis methods, such as the fitting
of filtered cumulative dwell time distributions, convergence
FIGURE 5 Comparison between synthetic data

sets generated using the parameters in the

maximum likelihood function for the Weibull and

Gaussian disorder distribution and the experi-

mental data set of ubiquitin. The constant solid

lines are the parameter values obtained from the

maximum likelihood function in Eq. 3 and the

dashed lines are their standard deviation. Fitting

the three data sets using the Weibull distribution

gives the fluctuations in parameter a in (A) and

b in (B) and using the Gaussian disorder distribu-

tion gives kF in (C) and s in (D). The ubiquitin

data and the synthetic Weibull distribution behave

similarly above tc ¼ 3 s in all cases, but the

synthetic Gaussian distribution is significantly

different.
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of fitting parameters with an expanding time window of the
experiment, the prediction of the maximum likelihood func-
tion for the whole data set, the Kuiper test, as well as the
comparison with synthetically generated data sets, ubiqui-
tously show that the data are most likely to arise from an
underlying Weibull distribution, otherwise known as the
stretched exponential distribution. This type of kinetics
has been observed in the case of DNA relaxation (26), ther-
mally induced protein folding (27,28), protein binding (29),
and conformational dynamics in solution (30). Microscopi-
cally, the stretched exponential has been attributed to
multiple pathways in the protein landscape (31) or memory
effects (32). Our results show that such complexities may
also play a role in the protein’s response to a pulling force
at the single molecule level.

One possible interpretation is that the unfolding events
can occur via many (random) pathways, each with a
different rate a, and the distribution of unfolding times is
obtained via superposition of the exponential decays in
each of these pathways. For example, the stretched expo-
nential corresponds to rates that are distributed according
to the Lévy distribution, because its probability is defined
implicitly via

ZN
0

�
1� e�at

�
rðaÞda ¼ 1� e�ðatÞbhFðtÞ; (6)

where rðaÞ cannot be written in closed analytical form but it
exhibits a power law fa�g at large a. Therefore, the

stretched exponential fitting function is in agreement with
the theoretical model used in (8) to fit the ubiquitin unfold-
ing kinetics. It remains an open question how the stretching
exponent varies with the constant force in ubiquitin and
whether it also captures the unfolding kinetics in other
mechanically stable proteins. By contrast, the Gaussian
distribution of energies or force noise proposed in (10)
corresponds to a log-normal distribution in the rates in
Eq. 6 via the Arrhenius assumption.

These methods invite previous studies to verify the accu-
racy of their results and provide a statistical toolbox for the
analysis of future force-clamp studies. Moreover, it is
possible to build on these techniques to take into account
the particularities of a given experiment. For example, it is
possible to introduce correlations between the domains
within the likelihood function or assume a known pðNÞ in
the case of prepulled proteins. More generally, this type of
analysis can be applied to other types of force-clamp
measurements, such as the disulfide bond rupture kinetics
(33) or the disassociation of quaternary interactions between
individual domains (34).
SUPPORTING MATERIAL

Six figures are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(12)01127-7.
We thank Jin Montclare for the expression of the ubiquitin polyprotein and

Maxime Clusel for useful discussions. J.B. holds a Career Award at the

Scientific Interface from the Burroughs Wellcome Fund. This work was

supported partially by the MRSEC Program of the National Science

Foundation under award No. DMR-0820341 and the National Science

Foundation Career Award 0955621.
REFERENCES

1. Oberhauser, A. F., P. K. Hansma, ., J. M. Fernandez. 2001. Stepwise
unfolding of titin under force-clamp atomic force microscopy. Proc.
Natl. Acad. Sci. USA. 98:468–472.

2. Fernandez, J. M., and H. Li. 2004. Force-clamp spectroscopy monitors
the folding trajectory of a single protein. Science. 303:1674–1678.

3. Cao, Y., R. Kuske, and H. Li. 2008. Direct observation of markovian
behavior of the mechanical unfolding of individual proteins.
Biophys. J. 95:782–788.

4. Liu, R., S. Garcia-Manyes, ., J. M. Fernández. 2009. Mechanical
characterization of protein L in the low-force regime by electromag-
netic tweezers/evanescent nanometry. Biophys. J. 96:3810–3821.

5. Perez-Jimenez, R., S. Garcia-Manyes, ., J. M. Fernandez. 2006.
Mechanical unfolding pathways of the enhanced yellow fluorescent
protein revealed by single molecule force spectroscopy. J. Biol.
Chem. 281:40010–40014.

6. Bullard, B., T. Garcia,., A. F. Oberhauser. 2006. The molecular elas-
ticity of the insect flight muscle proteins projectin and kettin. Proc.
Natl. Acad. Sci. USA. 103:4451–4456.

7. Schlierf, M., H. Li, and J. M. Fernandez. 2004. The unfolding kinetics
of ubiquitin captured with single-molecule force-clamp techniques.
Proc. Natl. Acad. Sci. USA. 101:7299–7304.

8. Bruji�c, J., R. Hermans, ., J. Fernandez. 2006. Single-molecule force
spectroscopy reveals signatures of glassy dynamics in the energy land-
scape of ubiquitin. Nat. Phys. 2:282–286.

9. Garcia-Manyes, S., L. Dougan, ., J. M. Fernández. 2009. Direct
observation of an ensemble of stable collapsed states in the mechanical
folding of ubiquitin. Proc. Natl. Acad. Sci. USA. 106:10534–10539.

10. Kuo, T. L., S. Garcia-Manyes,., J. M. Fernández. 2010. Probing static
disorder in Arrhenius kinetics by single-molecule force spectroscopy.
Proc. Natl. Acad. Sci. USA. 107:11336–11340.

11. Bruji�c, J., R. I. Hermans,., J. M. Fernandez. 2007. Dwell-time distri-
bution analysis of polyprotein unfolding using force-clamp spectros-
copy. Biophys. J. 92:2896–2903.

12. Garcia-Manyes, S., J. Bruji�c, ., J. M. Fernández. 2007. Force-clamp
spectroscopy of single-protein monomers reveals the individual unfold-
ing and folding pathways of I27 and ubiquitin. Biophys. J. 93:
2436–2446.

13. Bell, G. I. 1978. Models for the specific adhesion of cells to cells.
Science. 200:618–627.

14. Zwanzig, R. 1990. Rate processes with dynamical disorder. Acc. Chem.
Res. 23:148–152.

15. Zwanzig, R. 1992. Dynamical disorder: passage through a fluctuating
bottleneck. J. Chem. Phys. 97:3587–3589.

16. Kuiper, N. 1960. Tests concerning random points on a circle. Nederl.
Akad. Wetensch. Proc. Ser. A. 63:38–47.

17. Tygert, M. 2010. Statistical tests for whether a given set of independent,
identically distributed draws comes from a specified probability
density. Proc. Natl. Acad. Sci. USA. 107:16471–16476.

18. Koster, D. A., C. H. Wiggins, and N. H. Dekker. 2006. Multiple
events on single molecules: unbiased estimation in single-molecule
biophysics. Proc. Natl. Acad. Sci. USA. 103:1750–1755.

19. Bura, E., D. K. Klimov, and V. Barsegov. 2007. Analyzing forced
unfolding of protein tandems by ordered variates, 1: Independent un-
folding times. Biophys. J. 93:1100–1115.
Biophysical Journal 103(10) 2215–2222

http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)01127-7
http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)01127-7


2222 Lannon et al.
20. Edwards, A. 1992. Likelihood, Expanded ed. The John Hopkins
University Press, Baltimore, MD.

21. Howson, C., and P. Urbach. 2005. Scientific Reasoning: The Baysian
Approach, 3rd ed. Open Court, Chicago, IL.

22. Bura, E., D. K. Klimov, and V. Barsegov. 2008. Analyzing forced un-
folding of protein tandems by ordered variates, 2: dependent unfolding
times. Biophys. J. 94:2516–2528.

23. Cao, Y., and H. Li. 2011. Single-molecule force-clamp spectroscopy:
dwell time analysis and practical considerations. Langmuir. 27:
1440–1447.

24. Clusel, M., and E. I. Corwin. 2011. Unfolding proteins with an atomic
force microscope: force-fluctuation-induced nonexponential kinetics.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84:041920.

25. Ohler, B. 2007. Cantilever spring constant calibration using laser
Doppler vibrometry. Rev. Sci. Instrum. 78:063701.

26. Biancaniello, P. L., A. J. Kim, and J. C. Crocker. 2008. Long-time
stretched exponential kinetics in single DNA duplex dissociation.
Biophys. J. 94:891–896.

27. Leeson, D. T., F. Gai,., R. B. Dyer. 2000. Protein folding and unfold-
ing on a complex energy landscape. Proc. Natl. Acad. Sci. USA.
97:2527–2532.
Biophysical Journal 103(10) 2215–2222
28. Chung, H. S., M. Khalil, ., A. Tokmakoff. 2005. Conformational
changes during the nanosecond-to-millisecond unfolding of ubiquitin.
Proc. Natl. Acad. Sci. USA. 102:612–617.

29. Hagen, S. J., J. Hofrichter, and W. A. Eaton. 1995. Protein reaction
kinetics in a room-temperature glass. Science. 269:959–962.

30. Yang, H., G. Luo, ., X. S. Xie. 2003. Protein conformational
dynamics probed by single-molecule electron transfer. Science.
302:262–266.

31. Hagen, S., and W. Eaton. 1996. Nonexponential structural relaxations
in proteins. J. Chem. Phys. 104:3395–3398.

32. Kou, S. C., and X. S. Xie. 2004. Generalized Langevin equation with
fractional Gaussian noise: subdiffusion within a single protein mole-
cule. Phys. Rev. Lett. 93:180603–180607.

33. Wiita, A. P., S. R. Ainavarapu, ., J. M. Fernandez. 2006. Force-
dependent chemical kinetics of disulfide bond reduction observed
with single-molecule techniques. Proc. Natl. Acad. Sci. USA.
103:7222–7227.

34. Xu, T., H. Lannon, S. Wolf, F. Nakamura, and J. Bruji�c. 2012. Filamin
A (16–23) reveals a hierarchy of unfolding forces arising from domain-
domain interactions in the polyprotein chain. ArXiv e-prints.


	Force-Clamp Analysis Techniques Give Highest Rank to Stretched Exponential Unfolding Kinetics in Ubiquitin
	Introduction
	Materials and Methods
	Results and Discussion
	Unbiasing the unfolding data from experimental artifacts
	Graphical tests of the unfolding probability F(t)
	Maximum likelihood function includes all collected data
	Comparison with synthetic and other data sets

	Conclusions
	Supporting Material
	References


