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Abstract
Signal fluctuations in functional magnetic resonance imaging (fMRI) can result from a number of
sources that may have a neuronal, physiologic, or instrumental origin. To determine the relative
contribution of these sources we recorded physiological (respiration and cardiac) signals
simultaneously with fMRI in human volunteers at rest with their eyes closed. State-of-the-art
technology was used including high magnetic field (7T), a multi-channel detector array, and high
resolution (3 mm3) echo-planar imaging (EPI). We investigated the relative contribution of
thermal noise and other sources of variance to the observed fMRI signal fluctuations both in the
visual cortex and in the whole brain gray matter. The following sources of variance were
evaluated separately: low frequency drifts due to scanner instability, effects correlated with
respiratory and cardiac cycles, effects due to variability in the respiratory flow rate and cardiac
rate, and other sources, tentatively attributed to spontaneous neuronal activity. We found that low-
frequency drifts are the most significant source of fMRI signal fluctuations (3.0% signal change in
the visual cortex, TE = 32 ms), followed by spontaneous neuronal activity (2.9%), thermal noise
(2.1%) and effects due to variability in physiological rates (respiration 0.9%, heartbeat 0.9%) and
correlated with physiological cycles (0.6%). We suggest the selection and use of four lagged
physiological noise regressors as an effective model to explain the variance related to fluctuations
in the rate of respiration volume change and cardiac pulsation. Our results also indicate that,
compared to the whole brain gray matter, the visual cortex has higher sensitivity to changes in
both the rate of respiration and in the spontaneous resting state activity. Under the conditions of
this study, spontaneous neuronal activity is one of the major contributors to the measured fMRI
signal fluctuations, increasing almost two-fold relative to earlier experiments under similar
conditions at 3T.
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Introduction
Several sources are responsible for fMRI signal fluctuations in the human brain at rest.
Some of these fMRI resting-state fluctuations have a neuronal [1–3] and metabolic [4]
correlate (spontaneous neuronal activity), and their apparent functional specificity has been
exploited to study the functional connectivity of the brain at rest [5]. A large number of
“resting-state” networks have been identified. Together they cover most of the brain,
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including the sensory areas, the fronto-parietal attentional system, the so-called “default-
mode” network and frontal regions related to executive cognitive control [6].

Nevertheless, non-neuronal contributions to fMRI signal fluctuations can form a major
confound to the study of functional connectivity [5, 7–9]. It has been shown that a
substantial amount of the variance in the blood-oxygenation level dependent (BOLD) fMRI
signal time course can be explained by a variety of physiological and instrumental sources.
These include thermal noise (i.e. electrical noise inherent to nuclear magnetic resonance
signal reception, with a “white” character, that is uniform power spectral density), and non-
thermal sources (generally having a non-uniform power spectral density) related to cardiac
and respiratory cycles, subject motion, and instrumental drift [7–13]. Spontaneous neuronal
activity is also a non-thermal source and some of its spectral components overlap with those
of physiological and instrumental sources. For proper interpretation of brain functional
connectivity with fMRI, it is therefore crucial to identify, characterize and, ultimately,
remove these confounds.

As a step towards this goal, the aim of the present study was to determine the variance
explained by and the signal change attributable to thermal noise and non-thermal sources
(including spontaneous activity) in resting-state fMRI data in the gray matter and
particularly in the visual cortex at 7T. We considered several components [12, 14] of non-
thermal sources of fluctuations separately: scanner instability (leading to signal drifts and
other image artifacts), effects in phase with respiratory and cardiac cycles (e.g. pulsatility of
blood flow, bulk motion of the head and local magnetic field changes in the head due to
breathing [10–11]); effects of changes in physiological rates (e.g. fluctuations in arterial
carbon dioxide (CO2) concentration and arterial blood pressure, and hence in cerebral blood
flow (CBF) and volume (CBV) [7–9]); and spontaneous neuronal activity. Because the exact
timing and shape of effects due to changes in physiological rates [15] are not well known,
we proposed an improved procedure for modeling these noise sources and compared it to
methods developed in previous work [7, 9, 15].

Materials and Methods
Overview

We acquired fMRI images at 7 T and simultaneous physiological recordings of the cardiac
and respiratory activity in eight healthy subjects during rest. First, the modeling of effects
due to rate changes in respiration and cardiac pulsation (noise sources 3–4, see below) was
studied and optimized. Specifically, an improved procedure for modeling these noise
sources is proposed and compared with previously developed procedures [7, 9, 15].
Subsequently, the contribution of these and other noise sources to fMRI signal fluctuations
was evaluated by estimating the explained variance and fMRI signal change in both the
visual cortex and the total gray matter. We investigated the following sources: 1) low
frequency drifts due to scanner instability and slow head motion; 2) signal fluctuations in
phase with respiration and cardiac cycles; effects due to fluctuations in the rates of 3)
respiration volume change and 4) cardiac pulsation; 5) thermal noise. Accounting for noise
sources 1) –5) allowed us to estimate the potential contribution of spontaneous resting state
neuronal activity (source 6)).

Paradigm
The functional paradigm employed two fMRI runs per subject. First, each subject was asked
to rest with eyes closed throughout the scan, not to engage in any particular mental behavior,
and to remain awake. Next, a polar-angle-mapping run, consisting of visual stimulation with
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a rotating wedge-shaped checkerboard (Figure 1A), was employed in order to functionally
localize the visual cortex (see Figure 1B).

Subjects
Eight healthy subjects (mean age 33 years, standard error (s.e.) ± 4 years, 5 males) were
included in the present analysis. The physiological and fMRI data acquired from these eight
subjects, as part of a previous study [3], was complete and of high quality. All subjects
received an explanation of the procedures and gave their written informed consent. The
human subject protocol was approved by the Institutional Review Board of the National
Institutes of Health.

Stimuli
Visual stimuli for the polar-angle mapping paradigm were presented by means of
Presentation 11.0 software (http://www.neurobs.com/), which was synchronized with the
MR scanner. Similar phase-encoding stimuli have been employed previously to map the
visuotopic organization in multiple visual areas [16]. The stimuli were back-projected onto a
translucent screen, positioned on the head coil, using a digital light processing (DLP)
projector located outside the MR scanner room. The subject viewed the projection screen
through a mirror and a prism (32° × 42° full field of view).

The wedge-shaped checkerboard used during the polar-angle-mapping run was 16° long (i.e.
eccentricity 0–16°) and had a polar angle width of 24° (Figure 1A). It reversed its contrast at
a rate of 7.5Hz. During each 3 s step the wedge consisted of black/white, red/green and blue/
yellow checkers during the first, second, and third second of each step, respectively. Each
wedge was superimposed on a gray background image with a central red dot and was
isoluminant to the background.

To control subject attention and ensure fixation during the entire polar-angle-mapping run,
subjects had to focus on a fixation dot displayed at the center of the screen and to press a
button for any change in the dot color. The dot color was modified every 15 s on average,
with the inter-stimulus interval in the range 10–20 s. The polar-angle-mapping paradigm
began with 36s of gray field containing only the fixation dot, after which the wedge-shaped
checkerboard appeared and started rotating in 30 steps of 12°.

Data Acquisition
fMRI was performed using a General Electric 7T MRI scanner (http://
www.gehealthcare.com/) using 16 receive-only coil elements out of a 32-channel Nova
detector array (http://www.novamedical.com/). Gradient-recalled echo-planar imaging (EPI)
was used to obtain BOLD contrast. We acquired 36, 2 mm-thick, slices (slice spacing equal
to 0.2 mm) in interleaved descending order, with the following parameters: repetition time
(TR) of 3 s, flip angle (FA) of 75°, echo-time (TE) of 32 ms, bandwidth of 250 kHz, in-
plane isotropic resolution of 1.25 mm (FOV = 240 x 180 mm2; matrix = 192 x 144) and a
SENSE acceleration rate of 3.

We acquired 115 scans for the rest condition (345 s acquisition time), and 172 for the polar-
angle-mapping run (516 s acquisition time). We used the first 10 images as a reference for
coil sensitivity mapping and then discarded them from further fMRI analysis. To minimize
head motion we placed foam pads in the space between the interior coating of the MRI
detector array and the subject’s head. To further improve temporal signal stability, real-time
modulation of B0 shims (2nd order) was carried out to compensate for respiration-induced
magnetic field changes in the brain [17].
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The timing of physiological cycles was recorded using the pulse-oximeter and respiratory
bellows provided with the MR scanner and with a data acquisition card (National
Instruments Corp., http://www.ni.com/) at a sampling rate of 250 Hz. This card also
recorded the subjects’ button presses in response to the task and MR scanner triggers
synchronized with the acquisition of each image volume.

Data Analysis
Pre-processing of fMRI data—We used a dedicated computer with code custom-written
using IDL 7.0 software (ITT Visual Information Solutions, http://www.ittvis.com/) for coil
sensitivity mapping and off-line SENSE image reconstruction. The FMRIB Software
Library (FSL4.0, http://www.fmrib.ox.ac.uk/fsl/) was used for additional pre-processing
steps, namely rigid body transformation to correct for head motion and spatial co-
registration of the polar-angle-mapping data to that of the resting-state fMRI run. Next,
time-series signals were converted to percentages by computing the ratio of the signal in
each voxel at every time point to the signal in the same voxel at a reference time point (11th

scan after the beginning of the acquisition), and then multiplying by 100.

Localization of regions of interest—We identified a functional region of interest (ROI)
in the visual cortex, ROIVC (Figure 1B), and another ROI comprising all the gray matter,
ROIGM (Figure 1C).

To define ROIVC we analyzed the functional localizer (polar-angle mapping) data-set as
follows. Univariate regression analysis was performed with the Analysis of Functional
NeuroImages tool (AFNI, http://afni.nimh.nih.gov/afni/) after high-pass filtering the data at
0.007Hz. This low frequency cut-off was chosen to preserve all stimulus-related signals.
Thirty regressors were used, each modeling the BOLD fMRI response to the wedge-shaped
checkerboard in one of the 30 partially overlapping positions occupied during its rotation.
Each regressor was created by convolving the time at which the checkerboard reached each
position with the Statistical Parameter Mapping (SPM2, http://www.fil.ion.ucl.ac.uk/spm/)
standard hemodynamic response function (combination of two gamma-variate functions
with a first positive peak at 5s, followed by an undershoot at 16s after the beginning of the
stimulation). Voxels that were significantly activated during any wedge position (F-test, P <
0.0001) formed ROIVC (Figure 1B).

To define ROIGM we used a global signal regression procedure [18]. The signal in each
voxel was correlated with the average time-series across the whole brain (after accounting
for low frequency drifts with third-degree polynomials). Voxels with significant correlation
(p<0.001) were included in ROIGM.

On average across subjects ROIVC was comprised of 8734±1094 voxels, and ROIGM of
109110±10336 voxels.

Extraction of RVT regressor—The recorded respiratory signal (an offset added to make
the signal positive) during the resting session was down-sampled to 10 Hz after
neighborhood averaging. The cumulative integral (C) of the signal was computed. For each
time-point (t, with t = 0 corresponding to the first MR trigger of the session), the respiration
volume per unit time (RVt) was computed as the difference between C at t+TR/2 and at t-
TR/2, divided by TR. The respiration volume per unit time (RVT) at each TR (defined as the
interval between two consecutive MR scanner triggers), was computed by down-sampling
RVt to 1/TR Hz after neighborhood averaging. This procedure to compute RVT is based on
the method developed in [8], but it is slightly less computationally demanding.
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Extraction of cardiac-rate regressor—The cardiac peaks in the pulse-oximeter signals
were detected and the beat-to-beat cardiac rate was calculated (Hz) as the inverse of the
beat-to-beat interval. Spurious, non-physiological ((p < 0.05, two sided t-test) beat
frequencies were removed by rejecting any beat frequencies that were more than 1.96
standard deviations (calculated across the whole time-course) away from the median and
replacing them with the mean of the two nearest non-spurious beat frequencies. A cardiac
rate time-course with one time-point for every image volume was obtained by averaging the
cardiac rate values falling within each TR. This procedure to compute the cardiac-rate
regressor is based on the method developed in [9].

Model optimization for effects due to changes in physiological rates—Because
the exact timing and shape of the effects due to changes in physiological rates on the BOLD
signal are unclear [15], several models for cardiac and respiratory noise sources, 3) and 4),
were tested. The variance explained by and the signal change attributable to each model
(computed as described in paragraph “Relative contribution of each noise source and
spontaneous activity to fMRI resting-state data”) were compared (Table 1).

All models employed respiration volume per unit time (RVT) [8] and cardiac rate [9]
regressors, computed (using in-house code in IDL 7.0) from physiological recordings as
explained above.

First, we explored the use of a RVT and a cardiac rate regressor, each shifted at two optimal
time lags. This is referred to as the “dual-lagged procedure”. We fitted RVT and cardiac-rate
regressors shifted over a range of lag times to the single-voxel time-series in each ROI (low
frequency drifts with third-degree polynomials were also accounted for). We repeated the
same analysis for ROI-averaged time-series in ROIVC and ROIGM. The adoption of two lags
was inspired by the shape of the correlation (t-values and explained variance) of
physiological regressors with fMRI signal fluctuations for different lag times, which
displayed two maxima (in absolute value) for each regressor (Figure 2).

As an alternative to the dual-lagged model we also considered the RVT time course
convolved with a respiration impulse response function (IRF) for respiration effects. The
IRF was equal to either: a) a single gamma-variate function having width 6 s and mean lag
6.3 s (IRF1), valid for cerebral blood flow velocities in the middle cerebral artery, used in
[7], and in agreement with previous transcranial Doppler ultrasound measurements [19]; or
b) a combination of two gamma-variate functions (see Eq. (3) in [15]) peaking at 3 s
followed by an undershoot peaking at 16 s (IRF2), estimated from fMRI data in the gray
matter during cued breathing [15].

Finally, we considered a procedure with 8 RVT and 5 cardiac-rate regressors [9], shifted at
different time lags within a range of lags (–24 through 18 s and –12 through 12 s,
respectively, with step = 6 s). This “multi-lagged procedure” [9] is the most conservative
noise correction strategy of the four evaluated in this study. It allowed for the most
comprehensive modeling of the targeted physiological noise sources, albeit with the most
severe loss in degrees of freedom and the possible under-estimation of signals related to
spontaneous neuronal activity.

Relative contribution of each noise source and spontaneous activity to fMRI
resting-state data—The contribution of each noise source to fMRI resting-state signal
fluctuations was evaluated in terms of the variance it explained and the signal change it
caused in ROIVC and ROIGM.
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The percentage fMRI signal variance explained (VE) by sources 1)−4) was computed as the
coefficient of determination adjusted for the degrees of freedom (R2

adj), multiplied by 100.
The R2

adj of a regression model measures the proportion of the fMRI signal variance that is
explained by that model [20]. R2

adj has values between 0 and 1 and is adjusted to account
for the different number of regressors in each model partition, enabling comparisons across
model partitions. In particular, following the procedure developed by Shmueli [9], we used a
set of 5 nested regression models X:

(1)

Xpol is a third-order polynomial, modeling mainly low frequency drifts up to about 0.01 Hz,
but also extending to higher frequencies. Xretroicor consists of eight RETROICOR
regressors [11], including Fourier series expanded in terms of cardiac and respiratory phases
up to the second-order, which explain fMRI signal fluctuations in phase with respiration and
heartbeat cycles (the extraction of RETROICOR from physiological recordings acquired
during the resting run was performed using the procedure (code written in C) of Glover et al.
[11]). Xrvt and Xcard-rate comprise RVT and cardiac rate regressors determined using the
“dual-lagged procedure” described above (or other models for noise sources 3) −4), when
explicitly stated).

We evaluated the adjusted coefficient of determination (R2
adj) for each regression model

(R2
adj(1–5)). We thereby computed R2

adj for each model partition (i.e. each group of noise
regressors for noise sources 1) −4)) by subtracting the R2

adj of two consecutive regression
models. For instance, we obtained:

(2)

For RVT and cardiac-rate regressors, depending on which models were considered (with
only one noise source at a time or both respiration and cardiac regressors together), two
different values for the percentage fMRI signal variance explained could be obtained: the
second value (e.g. R2

adj-2 (Xrvt)) was, in general, smaller than the first (e.g. R2
adj-1 (Xrvt),

see also Table 1), due to some collinearity between Xrvt and Xcard-rate (see Figure 3).

The percentage signal change (SC) attributable to sources 1) −4) was computed from the
signal variance (σ2) and VE of Eq. (2), as follows: SC = √(σ2 · VE). Note that similar values
are obtained if SC is computed as the standard deviation of the signal fitted by each model
partition.

Sources 5) (thermal noise) and 6) (spontaneous neuronal activity) were not modeled with
any regressor, but their contribution to fMRI signal fluctuations at rest in our experiments
was estimated as follows. The SC due to thermal noise was estimated as the inverse of the
image signal-to-noise ratio (SNR). The SNR was calculated by dividing the signal in each
voxel at a fixed time point (11th scan after the beginning of the acquisition) by the square
root of the noise covariance in the same voxel. The noise covariance was computed from an
extra acquisition with no radiofrequency (RF) excitation. The R2

adj and SC assumed to be
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due to spontaneous resting-state neuronal activity were determined from the residual signal
variance after accounting for noise sources 1) −5).

We computed R2
adj and SC both for voxel time-courses (voxel level) and for signals

averaged (ROI level) within the visual cortex and the total gray matter (ROIVC and ROIGM,
respectively). Then, the R2

adj and SC mean ± s.e. across voxels were calculated and
displayed (Figure 4 and Table 1).

Results
Optimization of the proposed model of effects due to changes in physiological rates

The computed t-values of the correlation between RVT (Figure 2A, upper row) and cardiac-
rate regressors (Figure 2B, upper row), shifted over a range of lag times, and the single-
voxel time-series in ROIVC and ROIGM (t-values averaged over ROIs) show a bi-modal
distribution with the time lag. The variance explained by RVT and cardiac-rate regressors
(Figure 2A-B, lower row) also display a similar distribution, with relevant delays for
maximum explained variance (VE) at −9 s and +9 s for RVT and −3 s and +9 s for the
cardiac-rate regressor. Similar trends were observed for signals in the visual cortex and in
the whole gray matter (correlation between VE in the two ROIs: r > 0.9), and similar results
for ROI-averaged signals with respect to single-voxel time-series (r > 0.87, results not
shown). We therefore proposed and further investigated the use of a RVT and a cardiac rate
regressor, each shifted at two optimal time lags (−9 s, +9 s and −3 s, +9 s, respectively).

Additional analysis of the autocorrelation between the time-lagged RVT (or cardiac-rate)
regressors (Figure 3) showed that the use of only two time-lagged regressors to model RVT
effects (or cardiac-rate effects) is sufficient to capture the inter-subject variability in the
RVT (or cardiac-rate) response function. As visible from Figure 3, the use of shifts of a few
seconds does not generate orthogonal regressors, and that the choice of only two time lags
separated by at least 6–12 s is adequate. For example, a shift of 9 s of the RVT time series
(and even more for the cardiac-rate regressor) does not generate an orthogonal regressor to
the unshifted RVT regressors (p < 0.05, see Figure 3). To disclose the true autocorrelation
order of RVT (cardiac-rate) regressors, we computed the partial autocorrelation function of
RVT (cardiac-rate) regressor by the Yule-Walker equations procedure [21]. This procedure
removes the contribution of lags lower than L from the computation of the autocorrelation at
lag L (see also Figure 4SM, [3]). We found an autocorrelation order equal to one (3 s) and
three (9 s) respectively for RVT and cardiac-rate regressors (p < 0.05), with RVT (or
cardiac-rate) regressors becoming non-collinear when separated by at least two time lags,
i.e. 6 s (or 4 time lags, i.e. 12 s).

Comparison with previous models of effects due to changes in physiological rates
In assessing the contribution of effects due to changes in the rates of respiration and cardiac
pulsation to fMRI signal fluctuations at rest, we compared the two-time-lag RVT (or
cardiac-rate) model (dual-lagged procedure) with three other models for noise sources 3)
and 4). The explained variance (VE) and the signal change (SC) from the different models
of noise sources 3) and 4) in the visual cortex and the gray matter are shown in Table 1.

Our results show that, in brain fMRI signals at rest (in the gray matter), the variance
explained by and the signal change attributable to RVT convolved either with an impulse
response function peaking at 6 s, obtained for cerebral flow velocities in the middle cerebral
artery [7, 19], or with an impulse response function optimized for cerebral fMRI data [15]
are comparable (in the visual cortex, the former performs better than the latter). The
proposed dual-lagged procedure for selecting the optimal RVT (or cardiac-rate) regressors is
a compromise between the more conservative multi-lagged model [9] (with eight and five

Bianciardi et al. Page 7

Magn Reson Imaging. Author manuscript; available in PMC 2012 December 03.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



lags for RVT and cardiac-rate regressor, respectively) and the procedures [7, 15] which
employ an impulse response function to model signal fluctuations related to changes in
respiration rate and volume.

Relative contribution of each noise source and spontaneous activity to the fMRI resting-
state data

The VE and SC attributed to each noise-source (non-thermal and thermal) in the visual
cortex and the gray matter are shown in Figure 4, both at the voxel level and at the ROI
level. For RVT and cardiac-rate regressors, we used the dual-lagged procedure (see also
Table 1), computing R2 adj-2 (Xrvt) and R2

adj-1(Xcard-rate) (“dual-lagged RVT2” and “dual-
lagged Cardiac-rate1” in Table 1). For the calculation of the VE and SC of spontaneous
neuronal activity, this is equivalent to using the procedures “dual-lagged RVT1” and “dual-
lagged Cardiac-rate2”, because the sum of R2

adj-2(Xrvt) and R2
adj-1(Xcard-rate) is the same

as that of R2 adj-1(Xrvt) and R2
adj-2(Xcard-rate). The R2

adj and SC of thermal noise at the
ROI level were considered negligible, because averaging across voxels attenuated the SC by
the square root of the total number of voxels (i.e., by a factor of ~93 and 330 for ROIVC and
ROIGM, respectively).

The SNR (used to calculate the contribution of thermal noise) in the visual cortex and in the
gray matter was equal to 70.7 ± 4.2 and 64.9 ± 4.2, respectively (mean ± s.e. across subjects,
after averaging the SNR across voxels within ROIs).

Compared to the whole gray matter, the visual cortex showed larger signal fluctuations in
response to variations in the rate of respiration volume change (source 3)) and greater
spontaneous resting-state activity (source 6)), both at the voxel and ROI level (paired t-test,
p < 0.05). This was not the case for either low frequency drifts (source 1), or for
RETROICOR regressors (source 2). The difference between the signal change related to
cardiac rate effects (source 4) in the visual cortex and the total gray matter was not
significant, though it was close to significance at the voxel level.

Discussion
In this work we evaluated the relevance of different sources to fMRI signal fluctuations at
7T during rest, separating the contributions of signal drifts, effects related to physiological
cycles, signal fluctuations related to changes in respiration and cardiac rates, thermal noise
and signal changes tentatively attributed to spontaneous neuronal activity.

First, we discuss the contribution of non-thermal sources to fMRI signal fluctuations at 7T,
and compare it to previous findings at 3T. We then address the differences in the amount of
nonthermal noise between the visual cortex and the gray matter. Finally, we examine some
issues linked to modeling non-thermal noise sources and, in particular, effects related to
fluctuations in respiratory and cardiac rates.

Relative contributions of non-thermal noise at 7T
Our results demonstrate that low frequency drifts (mainly at frequencies < 0.01Hz) are a
very important source (35.3 % of the total variance in the gray matter, at the voxel level,
corresponding to a signal change of 3.2 %) of non-thermal noise and must be properly
accounted for in studies of resting state activity. Potential contributors to this noise source
are slow changes in head position, baseline physiology, and instrumental conditions such as
slow drifts in gain and resonance frequency.

At the voxel level, RETROICOR regressors explained only 2.5 % of the signal variance
(corresponding to a signal change of 0.6 %) in the gray matter. The observed contribution of
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physiological motion to fMRI signal fluctuations in the gray matter is smaller at 7T (2.5%)
than at 3T (3.8% of the signal variance, as reported by Shmueli et al., [9]) and this could be
the result of the use of real-time shimming at 7T [17] or of a stronger contribution from
other sources to the measured signal. The contribution of RETROICOR regressors to fMRI
ROI-averaged signals was negligible, suggesting a low spatial coherence of noise in phase
with physiological cycles across the visual cortex and the gray matter in general.

A significant portion (9.8 % and 5.4 % in ROIVC and ROIGM, at the voxel level, see Figure
4) of the variance in fMRI signal fluctuations in the resting brain was explained by signal
fluctuations induced by variations in the rates of respiration volume change and cardiac
pulsation (sources 3) −4)). The exact amount of variance explained depends on how these
noise sources are modeled (see Table 1 to compare different models), which is still a matter
of controversy. Comparison of the current findings with previous results obtained at 3T [7,
9] is not straightforward as previous studies report on fluctuations in terms of explained
variance (%) rather than signal change (%). The former is dependent on the contribution of
other sources (for example thermal noise for results at the voxel level, or any other source at
the ROI level), which generally differs across studies and thus precludes meaningful
comparison. For example, the respiration-related variance reported by Wise in selected
regions at 3T (R2 = 24.1%, see Table 3 in [7]) is larger than the variance found here in gray
matter-averaged signals (9.6%) at 7T; this discrepancy could be readily explained by
differences in regions of interest and the contributions of other noise sources. In contrast,
comparing the multi-lagged procedure with previous findings at 3T obtained at the single
voxel level within the gray matter (Table 2 in [9]), the variance explained by RVT and
cardiac-rate regressors is larger (about 4.9 and 2.7 times, respectively) at 7T (Table 1), as
expected for higher field strengths. Nevertheless, some of this variation in single voxel
analysis could be explained by differences in thermal noise levels across studies.

BOLD signal fluctuations are expected to increase at 7T with respect to 3T, as we observed
for the effects due to spontaneous neuronal activity. Here, we observed residual fMRI signal
changes attributed to spontaneous neuronal activity of 2.9 % in visual cortex (1.9 % in gray
matter, TE = 32 ms) when analyzing on a voxel-by-voxel basis after removal of non-thermal
and thermal noise sources. For ROI-averaged results we found residual signal changes of
2.0% and 1.5% for ROIVC and ROIGM, respectively. This is indeed 1.7 times larger than
what was previously reported at 3T: 1.2 % and 0.9 % for average signals in the VC and GM
respectively, during resting without sleeping for a voxel volume 1.85 times larger than that
of the current study and an echo time of 43 ms optimized for fMRI at 3T, see Figure 4 in
[22].

Non-thermal noise in the visual cortex and in the gray matter
It is not clear whether non-thermal noise, especially physiological noise, and spontaneous
activity in fMRI signals are characterized by significant regional heterogeneity and how this
might affect the identification of spontaneous resting activity in different brain areas. To
clarify this issue, we compared the relative contribution of different non-thermal noise
sources to the total fMRI signal fluctuations in the visual cortex with that in the whole brain
gray matter.

Compared to the total gray matter, the greater amplitude of fMRI signal fluctuations due to
RVT changes and to spontaneous activity observed in the visual cortex demonstrates this
region’s high BOLD sensitivity to physiological changes and to neuronal activity. The
greater physiological noise and spontaneous neuronal activity is consistent with regional
differences in vascular regulation and metabolism within the brain: in the visual cortex the
BOLD fMRI sensitivity to changes in cellular activity is higher than in neighboring areas
[23], potentially due to its high concentration of venules [24]. Moreover, the BOLD fMRI
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signal in the visual cortex (together with that in the parietal and the temporal lobe) displays
the highest reactivity in the brain to spontaneous fluctuations of arterial carbon dioxide level
(CO2) in volunteers at rest [7], and during CO2 challenges such as hypo- and hypercapnia
[25–27].

Non-thermal noise modeling
The contribution of spontaneous neuronal activity to resting state fMRI signal fluctuations
depends strongly on the number of noise sources considered and on the approach employed
to model each noise source.

In multiple regression analysis the degrees of freedom decrease with the number of
regressors employed. Therefore, to avoid losing statistical power in the detection of
spontaneous neuronal activity, one should keep the number of regressors modeling different
noise sources well below the number of independent time points. Note that in addition to the
above-mentioned noise sources, for data heavily compromised by head motion, it is
common to use an extra six regressors to model head motion (unrelated to physiological
cycles), which further exacerbates this issue.

The number of regressors used to model low frequency drifts depends only on the scan
length (i.e. increases with it), and once the frequencies of interest and the model are defined,
some room for optimization is available. Polynomial modeling is preferable to finite
impulse-response high-pass filtering since the frequency content of the polynomials is very
similar to that of low-frequency drifts and also includes their contribution at frequencies
higher than any filter cut-off (even though these tails explain no more than 1% of the signal
variance). Note that much of the typical “1/f” shape of fMRI noise can be accounted for
simply by modeling a linear drift. In addition, the choice of a polynomial model for low
frequency drifts can help in reducing the number of regressors. For a 315 s acquisition and a
high-pass limit of 0.01 Hz (spontaneous neuronal activation is usually investigated above
this frequency, [5]) we employed a third-degree polynomial fit (three regressors). If a
Fourier basis set had been chosen to remove frequencies below 0.01 Hz for a TR of 3 s, it
would have required functions up to third-order i.e. six regressors which is double the
number needed for the polynomial model.

Motion due to respiration and cardiac cycles is usually modeled with eight regressors: four
for fluctuations in phase with the respiration and cardiac cycles, and four for fluctuations at
twice that phase [10–11]. In our data, the contribution of the second harmonic of the
physiological motion to the total fMRI signal variance (0.5 %) was much smaller than the
contribution of the first harmonic (2.0 %). Therefore, when the number of degrees of
freedom is of concern, this suggests that using only four RETROICOR regressors instead of
eight may be most efficient.

Noise components related to changes in physiological rates are the most difficult to
characterize in terms of both their number and their dynamics. Little is known about the
effects of respiration and cardiac rates on the timing and shape of CBF, CBV and BOLD
signal changes. Depending on the brain region, different response delays and dispersion
might occur, due to differences in local vascular properties and in the transport of CO2.
Nevertheless, from our results (Figure 2), the visual cortex behaved very similarly to the
total gray matter, except for an increased contribution of physiological noise regressors for
lags in the range [–6 0] s (cardiac rate regressors) and [−12 −6] s (RVT regressors).

Various approaches have been adopted previously to model signal changes related to
respiration rate fluctuations [7–9, 15]. Wise et al. [7] used, for each brain region, a single
convolution kernel of the BOLD response to CO2 changes induced by respiration depth and
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rate. In their approach, the kernel is optimized for the middle cerebral artery [7, 19], and not
necessarily accurate for the cerebral cortex. Our results show that, in the gray matter, the
amount of variance explained by the adoption of such a kernel is similar to that explained by
an impulse response function optimized for cortical fMRI signals [15]. The latter approach,
i.e. the adoption of an independently measured respiratory response function obtained by
experiments using cued breathing [15], is theoretically the most favorable approach.
However, it gives disappointing results when applied to spontaneous breathing (i.e. that
usually employed resting condition) unless a lag optimization procedure at the voxel level is
employed [15]. Optimization at the voxel level has certain drawbacks, since it would require
a separately acquired dataset on the same subject. Since neuro-vascular control and
hemodynamic delays are unlikely to dramatically vary at the voxel level, local optimization
over bigger areas might be a suitable compromise.

Shmueli et al. [9] use for each voxel the same regressor derived from the respiration belt
measurement shifted at different time lags. The same approach is used for cardiac noise
modeling. This method seems very conservative in terms of physiological noise removal and
probably overestimates the physiological noise contribution to the total signal. Assuming
that in the fMRI signal in a brain area only few lagged noise regressors (one, or two if
feedback loops are included) explain physiological noise, the use of the remaining time-
shifts will incorrectly remove spontaneous resting-state activity with the same spectral
amplitude of physiological noise but with a different phase. In the current study, discarding
a single-voxel approach, we adopted a region-based double-lagged approach to optimize
physiological noise modeling, to be used for future studies in the visual cortex (or in the
gray matter in general). While the amount of variance explained with the dual-lagged
procedure was larger (especially in the visual cortex) than that of some procedures used
previously [7, 15], it did not reach that level achieved with the multi-lagged procedure [9].
The flipside of this is that the latter required a large number (13) of regressors, which can
substantially reduce efficiency for the detection of spontaneous activity, in particular for
brief experimental sessions.

Our result for respiration-related effects qualitatively agrees with a previous study [8],
showing a bi-modal distribution of the correlation of the RVT regressor with fMRI signal
fluctuations. With respect to cardiac-rate related effects, our study indicated that negative
correlations between the cardiac-rate regressor and the fMRI signal occur in the [−6 15] s
range of time lags, and that two lags separated by 12 s are sufficient to describe most of the
variance in this range. This result partially agrees with previous work [9] at lower temporal
resolution (TR = 6 s), which shows a negative correlation of cardiac-rate regressor with
fMRI signal fluctuations in the range 6–18s; however, a double peak in the correlation was
not found previously [9]. This discrepancy may have various origins, including experimental
differences and differences across volunteers. Investigation of the origin of this double-peak
behavior requires further study.

Limitations
Because of the many possible contributions to fMRI temporal signal variability, some of
which strongly depend on experimental conditions, our results are not directly generalizable
to all resting conditions and functional brain regions outside the two regions studies here.
The impact of non-thermal noise (more specifically physiological noise) on fMRI signal
fluctuations is expected to depend on the breathing conditions and might increase
considerably in special circumstances (sleep, anxiety studies, experiments involving
children). Future work might extend our findings to other resting-state networks (e.g.
auditory system, sensory-motor areas, attentional system etc) and different conditions or
patients.
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Conclusions
The results presented in this study underline the importance of modeling non-thermal noise
and especially low frequency drifts to define resting-state activity in the visual cortex and in
the gray matter as a whole. Our findings demonstrate the usefulness of 7T studies of
spontaneous neuronal activity, which is a major contributor to the signal variance and causes
increased signal fluctuations with respect to those measured at 3T. Compared to the gray
matter in general, the visual cortex showed increased signal fluctuations due to both
physiological noise and spontaneous neuronal activity. We provide guidelines for selecting
an appropriate model (number and time-shifts of lagged regressors) for the effects due to
respiration volume and cardiac rate changes. More work is needed to better elucidate the
shape of the BOLD response functions related to these physiological fluctuations.
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Figure 1.
A) The stimulus employed to functionally localize the visual cortex (polar-angle mapping
run). The wedge-shaped checkerboard (contrast reversing at 7.5Hz) performed a full clock-
wise rotation in 90s, covering 30 positions. For details, see Materials and Methods. B)
Region of interest in the visual cortex (ROIVC, for an example data-set), defined on the basis
of the polar-angle mapping run. In particular, ROIVC comprised the voxels in the visual
cortex responding to the wedge-shaped checkerboard at any position in the visual field. C)
Region of interest in the gray matter (ROIGM, for the same data-set as shown in Figure 1B).
ROIGM was identified after regression of the signal of each voxel with a global regressor
(average time-series across the whole brain), following a procedure developed in previous
work [18]. Voxels with significant correlation (p < 0.001) were included in ROIGM.
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Figure 2.
A) t-value of the correlation between the RVT and cardiac-rate regressors (shifted over a
range of lag times) and the single-voxel time-series. The results of averaging the t-values of
correlation in each voxel over ROIVC and ROIGM are shown here. For the RVT, the time
lags −9 s and +9 s correspond to the maximum and minimum t-values, respectively (positive
time lags indicate that fluctuations in RVT predict future fMRI signal changes; viceversa for
negative time lags). The Cardiac-rate regressor shows two (negative) peaks at time lags −3 s
and +9 s. B) Variance (%) explained by each regressor at different delays. Mean values (of
ROI-averaged values of VE) ± s.e. across subjects are displayed. In this computation, low
frequency drifts were accounted for with third-degree polynomials (i.e., X = [Xpol Xrvt] or
X = [Xpol Xcard-rate]).
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Figure 3.
The correlation matrix (upper triangular matrix, r-value ranging from −1 to 1) of all noise
regressors for noise sources 1) −4) is displayed, showing the collinearity between regressors.
In the lower triangular matrix a contour plot highlighting regressors with significant
collinearity (p < 0.05) is shown. At this statistical threshold (but not for p < 0.001) some
regressors for different noise sources are collinear (see for example low frequency drifts and
RVT regressors, or RVT regressors with cardiac-rate regressors).
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Figure 4.
Pie-charts showing the fMRI data variance explained (R2

adj, %, upper bold) by, and fMRI
signal change (SC, %, lower italic) attributed to non-thermal noise sources 1) −4), thermal
noise and spontaneous activity. Average (s.e) values across subjects are shown. The
contribution of thermal noise at the ROI level was negligible.
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Table 1

The variance explained by and signal change attributed to different models of effects due to changes in the
rates of respiration and cardiac pulsation (noise sources 3) and 4)) in the visual cortex (VC) and the total gray
matter (GM) at the voxel and ROI level.

VOXEL LEVEL ROI LEVEL

VC GM VC GM

RVT⊗IRF1a) [7] 7.0 (1.6)
1.0 (0.1)

3.8 (0.5)
0.7 (0.1)

19.4 (4.5)
1.0 (0.1)

9.6 (2.5)
0.7 (0.1)

RVT⊗IRF2b) [15] 3.5 (1.3)
0.8 (0.2)

2.7 (0.9)
0.5 (0.1)

9.8 (3.9)
0.7 (0.2)

9.5 (4.3)
0.5 (0.1)

Dual-laggedc) RVT1d) 6.8 (2.0)
1.1 (0.2)

3.7 (1.0)
0.7 (0.1)

17.4 (5.2)
1.0 (0.2)

12.3 (4.4)
0.7 (0.1)

Dual-lagged Cardiac-rate2e) 3.0 (1.3)
0.7 (1.1)

1.7 (0.6)
0.5 (0.1)

6.1 (2.7)
0.5 (0.1)

2.5 (1.1)
0.3 (0.1)

Dual-lagged RVT2 5.1 (1.6)
0.9 (0.2)

2.6 (0.8)
0.6 (0.1)

14.3 (4.8)
0.8 (0.2)

8.6 (3.9)
0.5 (0.1)

Dual-lagged Cardiac-rate1 4.7 (2.0)
0.9 (0.3)

2.8 (0.9)
0.6 (0.1)

9.2 (4.0)
0.6 (0.2)

6.3 (2.2)
0.5 (0.1)

Multi-lagged f) RVT1 [9] 12.3 (2.8)
1.1 (0.2)

7.9 (1.6)
0.7 (0.1)

31.2 (5.4)
1.0 (0.2)

18.5 (6.6)
0.7 (0.1)

Multi-lagged Cardiac-rate2 [9] 3.7 (1.0)
0.7 (0.2)

2.4 (0.6)
0.5 (0.1)

6.3 (2.1)
0.5 (0.1)

4.1 (1.2)
0.3 (0.1)

Multi-lagged RVT2 [9] 9.2 (1.9)
1.4 (0.2)

5.9 (1.2)
1.0 (0.1)

23.9 (5.0)
1.1 (0.2)

14.1 (5.4)
0.8 (0.2)

Multi-lagged Cardiac-rate1 [9] 6.7 (2.5)
1.2 (0.3)

4.4 (1.3)
0.8 (0.2)

13.6 (5.5)
0.7 (0.2)

8.5 (3.4)
0.6 (0.2)

Percentage of variance explained (% VE), average (s.e.) across subjects, is given in bold (upper row). Percentage signal change (% SC), average
(s.e.) across subjects, is given in italic (lower row). Noise sources 1) and 2) were accounted for in all the regression models included in the table
(for example, in the Birn model [15] in the top row, the matrix of regressors used was X = [ Xpol Xretroicor RVT⊗IRF1]).

a)
 IRF1 = respiration impulse response function used in [7] (see also Methods)

b)
 IRF2 = respiration response function described in [15] (Eq. (3))

c)
 The dual-lagged procedure corresponds to the model proposed in the present work, with RVT and cardiac-rate regressors shifted at two optimal

time lags (lags = −9 s, +9 s and −3 s, +9 s respectively)

d)
 RVT1 means that VE = R2adj-1(Xrvt), see Eq. 2, and RVT2 means that VE = R2adj-2(Xrvt))

e)
 Cardiac-rate2 means that VE = R2adj-2(Xcard-rate), see Eq. 2 (analogous for Cardiac-rate1). Note that since the sum of values of RVT1 and

Cardiac-rate2 is the same as that of RVT2 and Cardiac-rate1, in the table we grouped RVT1 with Cardiac-rate2 and RVT2 with Cardiac-rate1

f)
The multi-lagged procedure corresponds to the model proposed in [9], with RVT and cardiac-rate regressors shifted at eight and five different

time lags, respectively (lag range [−24 +18]s, and lag range [−12 +12]s, respectively, with step = 6 s)
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