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ABSTRACT Pleiotropy is the property of genes affecting multiple functions or characters of an organism. Genes vary widely in their
degree of pleiotropy, but this variation is often considered a by-product of their evolutionary history. We present a functional theory of
how pleiotropy may itself evolve. We consider genes that contribute to two functions, where contributing more to one function
detracts from allocation to the second function. We show that whether genes become pleiotropic or specialize on a single function
depends on the nature of trade-offs as gene activities contribute to different traits and on how the functionality of these traits affects
fitness. In general, when a gene product can perform well at two functions, it evolves to do so, but not when pleiotropy would greatly
disrupt each function. Consequently, reduced pleiotropy should often evolve, with genes specializing on the trait that is currently more
important to fitness. Even when pleiotropy does evolve, not all genes are expected to become equally pleiotropic; genes with higher
levels of expression are more likely to evolve greater pleiotropy. For the case of gene duplicates, we find that perfect
subfunctionalization evolves only under stringent conditions. More often, duplicates are expected to maintain a certain degree of
functional redundancy, with the gene contributing more to trait functionality evolving the highest degree of pleiotropy. Gene product
interactions can facilitate subfunctionalization, but whether they do so depends on the curvature of the fitness surface. Finally, we find
that stochastic gene expression favors pleiotropy by selecting for robustness in fitness components.

PLEIOTROPY is the property whereby a gene affects more
than one function or phenotypic character of an organ-

ism. Gene-knockout studies in yeast indicate that deleting
genes with higher degrees of pleiotropy has, on average,
a more harmful effect on fitness (Salathé et al. 2006; Cooper
et al. 2007). This negative relationship with fitness is ex-
pected given that most mutational changes are deleterious
so that the more characters are affected by a mutation, the
more likely the net effect on fitness is harmful, even if the
mutation is beneficial for a subset of characters. This claim
has been verified in theoretical studies based on Fisher’s
geometrical model (Chevin et al. 2010; Lourenço et al.
2011). Pleiotropy is consequently seen as a constraint on
evolution because it reduces the adaptive capacity of an
organism (Orr 2000; Welch and Waxman 2003).

Recent observations in a variety of species have found that
the extent of pleiotropy varies among genes and is often
limited, with a majority of genes influencing a small set of
traits while a few genes affect many traits (Dudley et al.
2005; Albert et al. 2008; Wagner et al. 2008; Wang et al.
2010; Wagner and Zhang 2011). This is in direct opposition
to the historical assumption of universal pleiotropy underly-
ing most population and quantitative genetics approaches to
the joint evolution of multiple characters (Fisher 1930;
Lande 1979; Orr 1998). It has been suggested that selection
may favor reduced pleiotropy to improve the capacity of a pop-
ulation to respond to selective challenges, that is, to improve
its evolvability (Hansen 2003). Because selection on evolv-
ability would act at the population level, however, it is likely
weak compared to selection acting at the level of the pleio-
tropic genes themselves. It is thus not yet clear whether se-
lection pressures have substantially shaped the distribution
of pleiotropic effects among genes and what mechanisms ac-
count for the observed variability in pleiotropy. In this article,
we explore the fate of genetic modifiers that alter the degree
of pleiotropy to determine whether and when this expectation
for reduced pleiotropy is likely to hold.
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The nature of pleiotropy

A gene may have pleiotropic effects on different traits for
a variety of reasons. For example, pleiotropy may stem from
(i) the activity of two different enzymatic products coded by
the gene (e.g., from alternative splicing of the coding se-
quence), which catalyze different reactions, (ii) different
substrate affinities of a single enzymatic product catalyzing
different reactions, (iii) the differential allocation of the same
gene product to two functions in different cell compartments,
or (iv) two different biochemical properties of the same gene
product [e.g., eye crystallins that are also metabolic enzymes
(Piatigorsky and Wistow 1989)]. Although these cases differ
in the precise mechanism of their action, we treat them equiv-
alently by considering that their alternate activities trade off;
increasing activity in one compartment comes at an activity
cost in the other compartment. If this were not the case (i.e.,
if increasing one activity would benefit or hurt both traits),
then we would expect the system to evolve accordingly, until
reaching a point where a trade-off is observed.

As we shall see, selection on the degree of pleiotropy de-
pends critically on the shape of trade-offs that arise as gene
products are allocated to different traits and these traits con-
tribute differentially to organismal fitness. The shape of trade-
offs is similarly important in ecological models exploring the
evolution of specialists vs. generalists (Levins 1968; Egas et al.
2004; Ravigné et al. 2009; Débarre and Gandon 2010).

Indeed, the topics are intricately related, as genes with high
degrees of pleiotropy can be thought of as generalists. We
thus explore how the mappings that relate gene activity onto
trait functionality (Figure 1A) and then trait functionality
onto fitness (Figure 1B) combine together to determine the
overall shape of the trade-off between fitness contributions
from different traits (Figure 1C). As a result of these trade-
offs, organismal fitness may be maximized either when genes
are pleiotropic (red curves in Figure 1D) or when they spe-
cialize on a single trait (blue curves). We call the trade-off
between gene activity and trait functionality (Figure 1A) weak
when the mapping function is concave (or saturating; red
curves) and strong when the function is convex (or accelerat-
ing; blue curves); a weak trade-off implies that shifting some
gene products away from their current primary role leads
to minor losses in functionality of that primary trait relative
to gains in a secondary trait. Furthermore, we say that fitness
is robust when changes in functionality have relatively minor
effects on trait fitness (concave mappings in Figure 1B; red
curves) and is sensitive when changes in functionality have
relatively major effects on trait fitness (convex mappings; blue
curves). For example, the fitness of traits associated with met-
abolic enzymes may often be robust because flux through an
enzymatic pathway typically saturates at high enzyme activities
(Dykhuizen et al. 1987; Dekel and Alon 2005). On the other
hand, catalytically less efficient proteins may fail unless fully

Figure 1 Relationship between gene
activity, trait functionality, and fitness.
(A) Mapping between activity of gene
product allocated to trait 2 (r) and the
functionality of trait 1 (F1: thin lines) or
trait 2 (F2: thick lines). Red curves repre-
sent weak trade-offs (u = 1/2), blue
curves represent strong trade-offs
(u = 2), and the green line represents
a linear trade-off (u = 1). (B) Mapping
between the functionality of a trait (Fi)
and trait fitness (wi). Fitness may be ro-
bust (red curve, v = 2/3), sensitive (blue
curve, v = 3/2), or proportional (green
line, v = 1) to changes in functionality.
(C) The combination of these two map-
pings generates a trade-off between the
two trait fitnesses, w1 and w2. The red
curves assume fitness is robust (v = 2/3),
with either aweak (solid: u = 1/2) or a linear
(dashed: u = 1) activity–functionality trade-
off. The blue curves assume fitness is sen-
sitive (v = 3/2), with either a strong (solid:
u = 2) or a linear (dashed: u = 1) activity–
functionality trade-off. The green line
assumes linear activity–functionality (u = 1)
and trait–fitness (v = 1) relationships. (D)
The two trait fitnesses combine to deter-
mine organismal fitness, W, here assumed
to be additive and equally affected by both
traits (b1 = b2 = 1/2). A–D assume aA = 1
for a single locus A, while the strength of
selection (c) was kept general.

1390 F. Guillaume and S. P. Otto



functional, leading to sensitive fitness functions, as seen in
some cases of enzyme-mediated drug resistance (Zimmermann
and Rosselet 1977; O’Loughlin et al. 2006; Brown et al. 2009).

As motivating examples, we consider two specific sce-
narios. In the first, a gene product (cylinders in Figure 2A) is
divvied up among the traits, such that the proportions of
gene products allocated to each trait sum to one. If trait func-
tionality depends only on the total amount of gene product
allocated to a trait, then there will be a linear trade-off be-
tween the functioning of the traits (green line in Figure 1A).
Because the traits are essentially competing for the same gene
product, we call this the competitive allocation scenario. Exam-
ples include pigment production in flowers where a precursor
compound is used to produce different pigments [e.g., flower
anthocyanin pigments differentiate from the single product of
the flavanone-3-hydroxylase (F3H) enzyme, DH-kaempferol,
in angiosperms (Rausher 2008)], alternative splicing of pre-
mRNAwhere the spliced products are functionally distinct and
the modifier locus affects the relative amount of iso-proteins
produced (Black 2003), or any case where the functionality
of a trait (its phenotypic value) depends linearly on the amount
of gene product allocated to that trait.

In the second scenario, a single gene has more than one
biochemical property and can, for instance, catalyze two dif-
ferent reactions or interact with two substrates with different
affinities (stars and diamonds in Figure 2B). The functionality
of a trait then becomes a measure of the specificity of the gene
product for the substrate associated with that trait. Because the
two traits depend on different properties of the gene product,
we call this the multispecific scenario. Examples include cases
of “gene sharing” (Piatigorsky andWistow 1989), where a gene
product is co-opted for a secondary use that depends on a dif-
ferent biochemical property than its original function. A classic
example is eye crystallin proteins that also act as metabolic
enzymes (e.g., d-crystallin as arginosuccinate lyase). Other
examples are “promiscuous enzymes” (Aharoni et al. 2005;
Khersonsky and Tawfik 2010) that catalyze different reactions
but with large differences in their substrate specificities; they

are often highly specific for one primary substrate but show
low specificity to one or more secondary substrates. Under the
multispecific scenario, the nature of the trade-off in function-
ality depends on what aspects of the gene product have to
change to improve the functioning of a trait. In some cases,
the optimal conformation of the entire protein might be
different for the two functions, so that improving one func-
tion would substantially disrupt its original function (a strong
trade-off, blue curve in Figure 1A). On the other hand, when
two active sites of an enzyme are physically separated, it may
be possible to increase the functioning of one site with little
cost to the functioning of the other (a weak trade-off, red
curve in Figure 1A). Indeed, substrate affinities of many mul-
tispecific enzymes have been shown to trade off weakly
(Khersonsky and Tawfik 2010). We return to these scenarios
in the Discussion, applying our results to these cases.

Previous models

Previous population genetic models have considered modifi-
cation of pleiotropy mostly as a by-product of gene duplication
(Wagner 2000). A gene copy may acquire a novel function
(neofunctionalization), either by adding to the set of ancestral
functions (increased pleiotropy) or by substituting one func-
tion for another (no change in pleiotropy). Alternatively, the
pleiotropic degree of a coding gene may decrease because of
the appearance of degenerative mutations in a subset of its
regulatory sequences [subfunctionalization (Force et al. 1999;
Lynch and Force 2000)]. The total expression domain over
both copies remains the same, however. Because subfunction-
alization, either with or without neofunctionalization, is often
observed (He and Zhang 2005), gene duplication is viewed as
a mechanism that lessens the degree of pleiotropy.

Counteracting this decline, pleiotropy is thought to increase
as organisms face new selective challenges, with existing genes
providing the raw material from which evolution molds ad-
ditional functions. For example, using the software platform,
Avida, within which digital organisms compete for computer
resources (CPU cycles), Lenski et al. (2003) found that com-
plex features generally evolved out of simpler functions, with
some mutations adding functionality to existing code. Such
“addition exaptations” have been shown to play an important
role in the evolution of novel traits, such as defense and attrac-
tion systems in Dalechampia vines (Armbruster et al. 2009).

A further mechanism affecting the evolution of pleiotropy is
selection for robust genetic systems. Robustness is the capacity
of an organism to resist noisy gene expression and to produce
stable phenotypes. Noise in expression may be of developmen-
tal or mutational origin (McAdams and Arkin 1997; Elowitz
et al. 2002; Ozbudak et al. 2002). Developmental noise is pre-
dicted to be counterselected in a stable environment (Swain
2004; Raser and O’Shea 2005; Lehner 2008), although possibly
not under unpredictable and/or stressful conditions (Thattai
and Van Oudenaarden 2004; Acar et al. 2008; Ratcliff and
Denison 2010). Mutational noise stems from the constant
input of random genetic changes and is mostly deleterious
(Eyre-Walker and Keightley 2007). As such, nonadaptive

Figure 2 (A) Cartoon illustrating the competitive allocation scenario,
where a proportion r of the total gene product (cylinder) is allocated to
trait 2, and the remainder (1 2 r) to trait 1. (B) Cartoon illustrating the
multispecific scenario, where each gene product has two distinct proper-
ties (e.g., substrate specificities), with one affecting trait 1 (stars) and the
other affecting trait 2 (diamonds).
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stochastic gene expression is thought to select for phenotypic
robustness (de Visser et al. 2003). Pleiotropy could provide such
a buffering mechanism if multiple genes contribute pleiotropi-
cally to a trait rather than a single gene targeted solely to that
trait, because the functioning of the trait would not be entirely
dependent on the activity of a single gene. Robustness is itself
related to the curvature of the fitness function, with concave
fitnesscurvesyieldinghigher robustness to stochasticnoise(Gros
et al. 2009). Nevertheless, the connection between robustness
and the evolution of pleiotropy has yet to be explored explicitly.

In this study, we use a population genetic approach to ex-
plore the evolution of pleiotropy by determining the nature of
selection acting on any site that alters the set of functions
performed by a gene; we refer to such a site as a “modifier” of
pleiotropy. We show that weak functional trade-offs and robust
trait fitnesses promote the evolution of generalist genes with
higher degrees of pleiotropy, while strong functional trade-offs
and sensitive trait fitnesses promote the evolution of specialist
genes with lower degrees of pleiotropy. At an intuitive level,
pleiotropy evolves when performing multiple functions moder-
ately well still yields high fitness, whereas specialized (or mod-
ular) genes evolve when high fitness is attained only by
concentrating gene products on a particular trait.

The evolution of pleiotropy can thus be seen in the
broader context of the evolution of specialists vs. generalists
(Levins 1968; Egas et al. 2004; Ravigné et al. 2009; Débarre
and Gandon 2010; Rueffler et al. 2012). The recent study by
Rueffler et al. (2012) is particularly closely related. They
examined the evolution of specialist vs. generalist modular
structures, which could be physical structures (e.g., limbs) or
genetic structures (e.g., duplicate genes). We clarify the par-
allels and differences between the two models during the
analysis, especially when we consider how pleiotropy may
evolve in the context of gene duplicates. Overall, our work
indicates that variation in the nature of fitness trade-offs
among genes and functions may predict the degree to which
the underlying genes display pleiotropy.

The Model

We model the evolution of the degree of pleiotropy of genes
whose products influence the performance of two phenotypic
traits in an organism. The activities of these genes are adjusted
by a regulatory site, the modifier locus M, which may or may
not be linked to the focal gene(s) and may even lie within the
coding region of the gene(s). To describe a wide class of trade-
off functions, we use a general mapping of gene activity onto
trait functionality and ultimately onto organismal fitness, illus-
trating our results with specific trade-off functions. We begin
with a model that describes the evolution of pleiotropy of a
single gene and then consider two genes.

General mapping between genes and fitness

Trait functionality, Fi, is modeled as a function of gene ac-
tivity and can be viewed as the phenotypic value of the trait.
Genes are haploid with total activity level aj for gene j,
which represents the activity level if the gene were special-

ized on one or the other trait. We scale this activity relative
to one, which represents the activity of a fully functioning
gene (aj # 1). Activity can be interpreted as the level of
expression of a gene (e.g., number of proteins produced)
or as the catalytic activity of the gene product (enzyme).
The modifier locus M changes the targeting of gene activity
to the different traits and can be seen as a cis- or a trans-
acting regulatory sequence. The functionality, Fi(rj), of a trait
i depends on how much of the activity of the product of gene j
is allocated to that trait, rj, which can be altered by the mod-
ifier [where it improves clarity, we drop the (rj) notation].
With two traits, F1 and F2 change in opposite directions when
the modifier alters the targeting of gene activities, because we
assume a trade-off among the two functions (Figure 1A). We
thus let rjmeasure the degree of allocation to the second trait,
so that F1 is a decreasing and F2 is an increasing function of rj,

@F1
@rj

, 0 and 
@F2
@rj

. 0; (1)

for any coding gene j. We further say that a gene is pleio-
tropic when 0 , rj , 1, so that its activity is apportioned to
both functions, while it is perfectly specialized to trait 1
(trait 2) for rj = 0 (rj = 1) (see Figure 1).

The total fitness of an individual depends on how variation
at the regulatory and coding sequences influences trait func-
tionality and how this functionality in turn affects fitness.
Total fitness is thus given as a generic function of the con-
tributions to fitness coming from the two traits, W(w1, w2),
with the fitness contribution of a trait given as an arbitrary
function of that trait’s functionality, wi(Fi). We naturally as-
sume that total fitness is an increasing function of the con-
tributions of each trait to fitness, with

@W
@wi

. 0 for i 2 f1; 2g: (2)

As the two traits may not be equally critical to survival and
reproduction, we introduce the terms, b1 and b2, which
weight the relative importance of the two traits to total
fitness (with b1 + b2 = 1).

We first analyze the general model delineated here based
only on the conditions (1) and (2) and then illustrate our results
using the specific functional relationships described below.

Specific mapping between genes and fitness

For the mapping of gene activity onto trait functionality
(Fi(rj)), the specific function that we use is a power trade-off
describing how a gene’s activities are apportioned among
the two traits:

F1
�
rj
� ¼ �12rj

�u
aj;

F2
�
rj
� ¼ ruj aj:

(3)

This satisfies condition (1). To express the trade-off between
allocating the products of a gene to traits 1 and 2, we measure
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functionality relative to aj (its value if all gene products were
allocated to the trait) and define the trade-off function, t(x),
as F2(rj)/aj = t(F1(rj)/aj), where

tðxÞ ¼ �12x1=u
�u
: (4)

The parameter u (u . 0) determines the curvature of the
trade-off curve (Figure 1A). A linear trade-off function (Fig-
ure 1A, green: u = 1) describes cases where increasing al-
location to trait 1 proportionately reduces functionality of
trait 2, as in the competitive allocation scenario. Trade-offs
are strong when the curve is convex (Figure 1A, blue: u. 1)
and weak when the curve is concave (Figure 1A, red: u , 1)
(following Ravigné et al. 2009; Débarre and Gandon 2010).

We assume that the fitness contribution of each trait de-
pends on that trait’s functionality according to the “power”
function (Egas et al. 2004; Ravigné et al. 2009),

wiðFiÞ ¼ 12 c
�
12 Fvi

�1=v
; (5)

which we assume is the same function for both traits 1 and 2
(but see Discussion). The constant c determines the impor-
tance of trait i to fitness, with fitness reduced to wi(0) = 1 2 c
when there is no gene product allocated to the trait (Fi = 0). If
c= 1, the organism dies if the trait is nonfunctional, whereas if
c is small, variation in the performance of the trait matters little
to fitness (e.g., a trait involved in capturing one type of prey
may not matter much when other food sources are available).
The parameter v (v . 0) sets the convexity of the fitness curve
(Figure 1B). Trait fitness is sensitive to the functioning of a trait
when wi(Fi) is convex (Figure 1B, blue: v . 1) and robust
when wi(Fi) is concave (Figure 1B, red: v , 1). This power
function implies that the fitness trade-off curves that emerge
among the two traits (Figure 1C) will be monotonic, such that
w1 always decreases and w2 always increases with increasing
allocation to trait 2 (increasing r). As the maximum activity is
defined as aj = 1, trait functionality Fi lies between 0 and 1,
which ensures that w(Fi) 2 [0, 1].

Finally, we consider two specific functions relating the
fitness effect of a trait to the total fitness of an individual,
W(w1, w2), additive or multiplicative, with

Wadd ¼ b1  w1ðF1Þ þ b2  w2ðF2Þ; (6a)

Wmult ¼ ½w1ðF1Þ�b1 · ½w2ðF2Þ�b2 : (6b)

The additive case may be more biologically appropriate if, for
example, each trait contributes to energy reserves, the sum of
which determines the number of offspring, while the multipli-
cative case may be more biologically appropriate if each trait
contributes to survival at different stages, where reproduction
occurs only if death has not occurred in any previous stage.

Given these functional relationships, we track evolutionary
changes at the modifier locus, M, using a model of a single
large population of haploids that mate at random, with selec-
tion after reproduction. We initially consider models where
expression levels (aj) are the same for each individual within

the population, later relaxing this assumption and considering
noise and variation in expression levels.

Results

Evolutionarily stable pleiotropy at a single locus

We investigate the evolution of the targeting locus M by
introducing a modifier allele m that changes the allocation
of gene products by an amount Drj relative to the wild-type
allele M (with (rj + Drj) 2 [0, 1]). We first assume that
a single pleiotropic gene A is fixed for a certain level of
activity, aA. Because only the modifier is polymorphic, stan-
dard population genetics theory can be used to show that
the modifier allele m will spread if and only if it increases
fitness relative to the wild-type allele, DW . 0, regardless of
the recombination rate between the modifier and the focal
locus. In this case, the fitness difference between the mutant
and the wild-type modifier alleles is

DW ¼ Wm
�
w1
�
F1;m

�
;w2

�
F2;m

��
2WM

�
w1
�
F1;M

�
;w2

�
F2;M

��
;

(7)

with

Fi;M ¼ FiðrÞ;  and Fi;m ¼ Fiðr þ DrÞ; i 2 f1; 2g: (8)

Plugging (8) into (7), and assuming that Dr is small, the
difference in fitness between m and M carriers is

DW ¼ Dr

�
@W
@w1

@w1

@F1

@F1
@r

þ @W
@w2

@w2

@F2

@F2
@r

�
þ O

�
Dr2

�
: (9)

Whether a modifier spreads in this one-locus case thus de-
pends on the sign of the term in parentheses. A potential evo-
lutionary stable strategy (ESS) is found by setting DW= 0 and
solving for the pleiotropic value, r*, that resists invasion by
modifiers of pleiotropy. In general, this requires a numerical
solution. We can obtain an ESS solution in the perfectly sym-
metrical case, where the fitness functions are identical in their
rate of change relative to changes in their arguments close to
r* (i.e., @W/@w1 = @W/@w2 = @W/@w, which implies that b1

= b2, and @w1/@F1 = @w2/@F2 = @w/@F). A symmetrical ESS
then occurs at the point where @F2/@r = 2@F1/@r, that is,
where any further change in gene allocation would improve
the functioning of one trait to the same extent that it harms the
other (see Rueffler et al. 2012, for a similar and independently
derived result in the context of generalist/specialist evolution).
Using the specific function (3), we find r*=1/2, independently
of the form of the trade-offs and how these traits influence or-
ganismal fitness (i.e., independently of the values of u and v).

General convergence properties (one gene): The system
will converge toward r* if mutants increasing (decreasing) r
are able to invade when r is initially below (above) r*. This
requires that the derivative of equation (9) with respect to r

is negative [recall that (9) will equal zero at r*] (Eshel
1983). In the opposite scenario (with a positive derivative),
r* will be repelling, with modifier alleles being favored that
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reduce r when r , r* and vice versa. Starting from points
near the ESS, the condition for convergence stability (dDW/
dr , 0) is thus

Dr

"
@2W
@w2

1

�
@w1

@F1

@F1
@r

�2

þ @2W
@w2

2

�
@w2

@F2

@F2
@r

�2

þ @2W
@w1@w2

@w1

@F1

@w2

@F2

@F1
@r

@F2
@r

þ @W
@w1

 
@w1

@F1

@2F1
@r2

þ @2w1

@F21

�
@F1
@r

�2
!

þ @W
@w2

 
@w2

@F2

@2F2
@r2

þ @2w2

@F22

�
@F2
@r

�2
!#

, 0;

(10)

where each of the derivatives is evaluated at the ESS, r*.
The term in brackets equals the curvature of the fitness func-
tionW at r*, as expected for a fitness surface. The convergence
properties of the ESS level of pleiotropy, r*, thus depend on
exactly how the curvatures of the different fitness and activity
trade-off functions combine. For the case where each trait’s
effect on total fitness adds together (Equation 6a), several
terms cancel and we are left with

Dr

�
b1

 
@w1

@F1

@2F1
@r2

þ @2w1

@F21

�
@F1
@r

�2!

þb2

 
@w2

@F2

@2F2
@r2

þ @2w2

@F22

�
@F2
@r

�2!#
,0:

(11)

Therefore, in the additive case, the relative importance of each
trait to total fitness (given by b1, b2) plays a key role in the
convergence properties of the ESS whenever the parenthetical
terms have opposite signs. More importantly, Equations 10 and
11 show that selection may favor the evolution of increased or
decreased levels of pleiotropy, depending on the nature of the
trade-offs experienced. Assuming that fitness of the traits rises
with functionality (@wi/@Fi. 0), concave trait functionality and
fitness relationships (@2Fi/@r2 , 0 and @2wi=@F2i , 0) facilitate
the evolution of pleiotropy, yielding a convergence stable ESS,
whereas the ESS is repelling when both of these functions are
convex, favoring the specialization of both genes on the same
function. To obtain more detailed predictions, especially when
the curvatures differ in sign, requires that we specify the nature
of these functions.

Exploring specific mapping functions (one gene): Using the
specific functions relating gene activity to trait functionality
(Equation 3) and trait functionality to trait fitness (Equation
5), Equation 9 for a single gene A becomes

DWadd ¼ Dr c u aA

h
b2r

u21ððaAr
uÞ2v21Þð1=vÞ21

2b1ð12rÞu21ððaAð12rÞuÞ2v
21Þð1=vÞ21

i
þ O

�
Dr2

�
;

(12)

for additivity of fitness components (Equation 6a), and

DWmult ¼ Dr c u aA w1ðF1Þb1w2ðF2Þb2

·

"
b2

ru21ððaAr
uÞ2v21Þð1=vÞ21

w2ðF2Þ

2b1
ð12rÞu21ððaAð12rÞuÞ2v

21Þð1=vÞ21

w1ðF1Þ

#

þ O
�
Dr2

�
;

(13)

for multiplicativity of fitness components (Equation 6b).
Because, by definition, aA # 1, the terms multiplying b1 and
b2 are non-negative. In the symmetrical case where both traits
have similar importance to total fitness (b1=b2=1/2), a poten-
tial ESS, where DW=0, occurs when r*=1/2, regardless of u
and v. In asymmetrical cases, the exact position of r* needs to
be found numerically (see Figure 3).

Convergence properties with the specific mapping functions
(one gene):With b1 = b2 = 1/2, convergence to the singular
point at r*=1/2 from initial values nearby requires that
dDW=dr,0, which for the specific trade-off functions (3)
and (5) equals

22uvð12 uvÞ þ ð12 uÞav
A, 0; (14)

for Dr . 0. This result holds exactly when total fitness is an
additive function of trait fitnesses (Equation 6a) and holds
approximately when fitness is multiplicative (Equation 6b) if
selection is weak (for small c), which we assume henceforth
unless explicitly mentioned. Because av

A is always,2uv under
our assumptions, r* is attracting when both trade-off func-
tions Fi(r) and wi(Fi) are concave (0, u, v, 1) and repelling
when both functions are convex (u, v . 1), regardless of the
value of aA (detailed proofs are available in supporting in-
formation, File S2 and File S3). If the trade-off functions have
opposite curvatures, then the singular point will be conver-
gence stable only if the net result causes the total fitness
function, W, to be concave near r*=1/2 [this is mathemati-
cally equivalent to requiring (14)]. Even when the curvatures
are opposite, r* is guaranteed to be an attractor when 1 , u
# 1/v and a repeller when 1 . u $ 1/v.

Summary of one-gene results: Our analyses demonstrate
that weak activity–functionality trade-offs [concave Fi(r)
with u , 1] and robust trait fitnesses [concave wi(Fi) with
v , 1] favor the evolution of pleiotropy, while complete
specialization of the gene product on only one trait (r =
0 or 1) is expected to evolve when activity–functionality
trade-offs are strong and trait fitnesses are sensitive (see
Figure 3). At an intuitive level, if the product of a gene
can perform well at two functions, it evolves to do so, but
not if pleiotropy would greatly disrupt each function. Finally,
because polymorphism is present only at the modifier, the
location of the modifier in the genome is immaterial and can
include alterations to the coding gene itself.
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Evolution of pleiotropy at two coding loci

Regulatory sequences often affect the expression of multiple
genes within a gene family. We thus model the evolution of
a modifier locus affecting the pleiotropic degree of two
protein-coding sequences, loci A and B, with activity levels
aA and aB, respectively. This model allows us to address how
pleiotropy evolves in the context of gene duplication. With
allele M initially present at the modifier locus M, the pleio-
tropic degrees of loci A and B are rA and rB, respectively.
We proceed as previously by introducing a modifier mutant
allelem that changes the pleiotropic levels at loci A and B by
DrA and DrB, respectively, and assume total fitness is addi-
tive (Equation 6a) (or multiplicative with weak selection, c
small). We then ask under what circumstances the modifier
is able to spread, assuming that the Dr’s are of small order.
Again, because the A and B loci are initially assumed fixed,
the spread of the modifier allele m depends only on its effect
on total fitness, DW. The difference in fitness betweenm and
M carriers is now

DW ¼ @W
@w1

@w1

@F1

�
DrA

@F1
@rA

þ DrB
@F1
@rB

�

þ @W
@w2

@w2

@F2

�
DrA

@F2
@rA

þ DrB
@F2
@rB

�
þ O

�
Dr2

�
:

(15)

Under the assumption of a symmetrical system, where the
fitness effect of each trait influences organismal fitness to
the same extent (i.e., @W/@w1 = @W/@w2 = @W/@w), and
the fitness of each trait is equally sensitive to that trait’s

functionality (@w1/@F1 = @w2/@F2 = @w/@F), we find that
DW = 0, regardless of the mutational effects of the modifier
(DrB and DrA), when @F2/@rA = 2@F1/@rA and @F2/@rB =
2@F1/@rB. Thus, again, a potential symmetrical ESS,
(r*A; r

*
B), occurs where the functionality of trait 2 increases

with increased allocation of gene product to trait 2 by an
amount exactly equal to how much the functionality of trait
1 decreases for both genes A and B (see proofs in File S2 and
File S3). To simplify the following presentation, we discuss
functionality in reference to trait 2, defining F(rA, rB) =
F2(rA, rB).

General convergence properties (two genes): To determine
the convergence properties of the singular point in a sym-
metrical system (r*A; r

*
B), we need to evaluate the rate of

change in fitness close to that point on the fitness surface.
We assess convergence to the ESS by examining the topol-
ogy of the total fitness function, Wadd, on the (rA, rB) plane,
as described by the Hessian matrix H evaluated at (r*A; r

*
B)

(see Appendix A and more extensive derivations in File S2
and File S3). As illustrated in Figure 4, a concave fitness
surface at (r*A; r

*
B), representing a local optimum that favors

the evolution of two pleiotropic generalist genes, occurs
when both eigenvalues of H (l1 and l2) are negative. Alter-
natively, when at least one of the eigenvalues of H is posi-
tive, indicating convexity of the fitness surface along the
corresponding eigenvector (see dashed lines in Figure 4),
the singular point is an evolutionary repeller favoring the
evolution of specialist strategies. Generally, the signs of the
eigenvalues are given by the combination of the curvature of
the functionality and trait-fitness mapping functions (@2F/
@r2, @2w/@F2, respectively) and of the way the gene products
interact to determine trait functionality (@2F/(@rA@rB)). The
full derivation of the general results is presented in Appendix
A (see also File S2 and File S3). The results indicate that we
cannot always expect the system to evolve toward increased
pleiotropy or subfunctionalization; the predicted outcome
depends on the overall shape of the fitness surface. For more
detailed predictions, we next apply these general results, us-
ing a specific set of activity–functionality mapping functions.

Exploring specific mapping functions (two genes): To
simplify the presentation, we assume that the products of
the two genes do not interact [@2F/(@rA@rB) = 0] and let

F1
�
F1;A; F1;B

� ¼ ð12rAÞu aA þ ð12rBÞu aB;

F2
�
F2;A; F2;B

� ¼ ruAaA þ ruBaB:
(16)

This assumption is reasonable as long as the functionality
trade-offs occur at the level of each gene product separately,
without interactions between the gene products (e.g., trade-
offs in affinity given changes in protein configuration). We
also assume that both genes have similar activity trade-off
curves, with u identical for genes A and B, as may be the case
for two newly duplicated genes. The levels of activity of the
duplicates (aA and aB, with 0 , aA + aB # 1) are, however,

Figure 3 Fitness landscape of genotype M in the one-locus model as
a function of trait allocation r at locus A. Total fitness in the additive
case, Wadd is plotted against gene allocation to trait 2, r. Solid curves
illustrate a robust trait–fitness relationship (v = 1/2), while shaded curves
illustrate a sensitive relationship (v = 2), both assuming a strong activity–
functionality trade-off (u = 1.5). The dashed curves correspond to traits
equally important to fitness b1 = b2 = 0.5, while solid curves correspond
to b1 = 0.2 and b2 = 0.8. Circles represent singular points where DW in
Equation 12 is zero. For the value of u used here, the solid circles are
attracting for robust traits (corresponding to an evolutionary stable state),
while the hollow circles are repelling for sensitive traits. Pleiotropy is
maintained when the ESS value of r lies between 0 and 1 and is absent
otherwise. Other parameters are c = 1 and aA = 1/2.
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allowed to differ and may result from differences in promoter
sequences flanking the two genes. Finally, we assume that
total fitness is additive (Equation 6a) and that the contribu-
tion of each trait to fitness is given by Equation 4.

Because of the symmetry of these specific functions, the
potential ESS always occurs on the diagonal where r*A ¼ r*B,
and it lies exactly midway (r*A ¼ r*B ¼ 1=2) when both traits
are equally important to fitness (b1 = b2; see File S2 and File
S3). In either case, the convergence properties of the singular
point can be directly obtained from Appendix A [definition (16)
satisfies the symmetry assumptions made there about the cur-
vature of the trait–functionality relationship], and the results
are summarized in Table 1. The singular point ðr*A; r*BÞ is

attracting in all directions if u, v . 1 (Table 1A) or repelling
if u, v , 1 (Table 1D), as in the one-gene case.

When the curvatures of the functionality and the trait–
fitness relationships are opposite, and unlike our one-gene
analysis, the potential ESS can sit on a saddle-shaped sur-
face. Using the specific functions (Equation 16), the require-
ments for a saddle-shaped topology are

22uvð12 u  vÞ þ ð12 uÞðaA þ aBÞv , 0 when ðu. 1; v, 1Þ
(17a)

22uvð12 u  vÞ þ ð12 uÞðaA þ aBÞv . 0 when ðu, 1; v. 1Þ:
(17b)

Figure 4 Fitness surface in the two-locus model. Contours represent fitness isoclines as a function of rA and rB. Darker colors represent lower fitness
values. Circles represent singular points, which are either repelling states (open circles) or evolutionary stable states (solid circles). The orientations of the
eigenvectors of the Hessian matrix are indicated by dashed lines, and the arrows indicate the convergence stability of the singular point and the sign of
the associated eigenvalue; a positive eigenvalue is indicated by an arrow pointing toward the singular point, while a negative eigenvalue points away
from it. The four graphs correspond to the four cells of Table 1. (A) u, v = 0.5; (B) u = 1/v = 0.5; (C) u = 1/v = 2; (D) u, v = 2. Other parameters are c = 1,
aA = aB = 0.5, and b1 = b2 = 0.5, and total fitness is additive.
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These conditions are equivalent to requiring
��@2w=@F2

��.
jCcrit j in the general analysis (see Equation A2). A saddle
necessarily results when 1/v . u . 1 (favoring specializa-
tion of the two genes on different traits, i.e., subfunctional-
ization; Figure 4C) or when 1/v , u , 1 (favoring
specialization of the two genes on the same trait; Figure
4B). In other cases, Equation 17 must be evaluated numer-
ically to determine whether a saddle is present.

Implications for the evolution of pleiotropy after gene
duplication (two genes): When the functionality and trait–
fitness relationships are both concave functions (u, v , 1;
Figure 4A), we expect from our one-gene analysis that plei-
otropy will be favored (see black lines in Figure 3), so that
the genes, once duplicated, will start close to and then
approach the central ESS, where both genes will remain
pleiotropic, according to Table 1A. Conversely, when the
relationships are both convex (u, v . 1; Figure 4D), we
expect the ancestral gene to be originally specialized on
one of the traits (see gray lines in Figure 3), in which case
the duplicated system is likely to start near (rA, rB) = (0, 0)
or (1, 1) and approach the closest of these two corners after
duplication (Table 1D).

When the two relationships have opposite curvatures, the
central ESS will represent a saddle point as long as condition
(17) is satisfied. In this case, depending on the orientation of
the saddle, the duplicate copies will either start as two
pleiotropic genes close to the central ESS ðr*A; r*BÞ and evolve
toward subfunctionalization (if u . 1, v , 1; Table 1C) or
start close to one of the specialized corners and remain
specialized on the same trait (if u , 1, v . 1; Table 1B).
If, however, the functional trade-offs between the two traits
are too strong or too weak, then the condition (17) for
a saddle will not be met. If the trade-off is too strong
(@2F=@r2j � 0; that is, u � 1), the singular point will repel
in all directions despite v , 1, leading to specialization even
before the gene duplicates arise. If the trade-off is too weak
(@2F=@r2j � 0; that is, u � 1), the singular point will sit on
a maximum of the fitness surface despite v . 1, and the
duplicate system will start near that point, leading to func-
tional redundancy and the maintenance of pleiotropy. It may
thus not be easy, given these restrictions, to evolve toward
subfunctionalization of the gene copies.

Connections with Rueffler et al. (2012): Rueffler et al.
(2012) recently analyzed the conditions under which gener-
alist or specialist structures would evolve in a model exploring
the evolution of repeated modules within an organism, dis-
cussing duplicated genes as a special case. While similar in
many respects, they assume robustness of fitness to changes
in identical modules (@2W/@r2 , 0 when rA = rB; their con-
strained trait space) and identical activity levels of the mod-
ules (in terms of the specific model introduced above, this
implies aA=aB). They also find that modules can evolve either
to subfunctionalize on different tasks or to generalize on mul-
tiple tasks, depending on how performance affects fitness and
on how the modules (our genes) interact to affect perfor-
mance of two tasks (our traits). They find that negative inter-
actions among the gene products [@2F/(@rA@rB) , 0] favor
the evolution of specialization on different tasks (subfunction-
alization), which we also find (see analysis in Appendix A).
Our analysis shows, in addition, that positive interactions tend
to facilitate specialization of both genes on the same trait,
rather than pleiotropy or subfunctionalization, a result that
is consistent with the results of Rueffler et al. (2012) but lies
outside of their constrained trait space. Our model also allows
us to explore how initial differences in expression (aA 6¼ aB)
might influence the evolution of pleiotropy (see next section).

On the role of aA and aB: Assuming the total expression level
of the two coding genes is held constant (aA+aB), changing
the relative expression levels of genes A and B has no effect on
the position of the potential ESS (see proof in File S2 and File
S3 and Figure 5). Similarly, the stability properties of this point
remain unchanged by slight changes in relative expression lev-
els [whether an eigenvalue is below or above one is not af-
fected by a small enough change in the parameters (Karlin and
Mcgregor, 1972a,b)]. Consequently, the primary effect of alter-
ing the relative expression levels of the two coding genes is to
shift the orientation of the fitness surface, causing the eigen-
vectors of H to rotate as indicated by the dashed lines in Figure
5. In particular, when the singular point is a saddle point that
favors subfunctionalization (Equation 17a; Figure 5D), the ei-
genvector associated with the positive eigenvalue no longer
aligns with the {21, 1} diagonal line, moving the attracting
points away from complete subfunctionalization (e.g., with
rA = 0, rB = 1) and toward more central points on the borders

Table 1 The evolutionarily stable strategy for a modifier affecting pleiotropy at two genes

v , 1 (robust trait fitness) v . 1 (sensitive trait fitness)

u , 1
(weak trade-off)

(A) l1,l2 , 0; pleiotropy maintained (Figure 4A) (B) l1 , 0, l2 . 0 if @2w=@F2 .Ccrit; specialization (Figure 4B)
[Behaves as in (A) if @2w=@F2 ,Ccrit]

u . 1
(strong trade-off)

(C) l1 . 0, l2 , 0 if @2w=@F2 ,Ccrit;
subfunctionalization (Figure 4C)
[Behaves as in (D) if @2w=  @F2 .Ccrit]

(D) l1,l2 . 0; specialization or subfunctionalization (Figure 4D)

Assuming a symmetrical system with aA � aB, an analysis of the shape of the fitness surface at the singular point r*A ¼ 1=2, r*B ¼ 1=2 predicts that selection favors (A) the
maintenance of pleiotropy for both genes (convergence to the singular point), (B) two genes that specialize on the same trait (l1 , 0, l2 . 0), (C) two genes that specialize
each on a different trait (subfunctionalization), or (D) two genes that specialize either on the same or on two different traits, depending on the parameters and initial
conditions (l1 . 0, l2 . 0; see Figure 4D). When aA 6¼ aB, the corners representing specialization on the same trait or subfunctionalization are no longer maxima on the
fitness surface, so that the ESS always involves one pleiotropic gene and one specialized gene—a mixture of specialization and subfunctionalization (see Figure 5). The
expression for Ccrit is given by Equation A2 in Appendix A.
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of the (rA, rB) plane. The gene with higher expression level
then evolves some degree of pleiotropy while the less expressed
gene becomes specialized on a single function (Figure 5D).

The orientation of the fitness surface is particularly impor-
tant when the activity–functionality relationship is linear, as in
the competitive allocation scenario where a gene product must
be allocated to one or the other function (i.e., @2F/@r2 = 0 or,
using the specific functions, u = 1). As shown in Appendix A,
one eigenvalue is zero in this linear case (Equation A7), yielding
a fitness surface with a ridge of equal fitness (Equation A10;
Figure 6). The orientation of this ridge is given by the eigenvec-
tor associated with l= 0, which depends only on the relative
values of aA and aB (Equation A9). Consequently, when the
genes differ in their inherent activity level (aA 6¼ aB), the eigen-
vectors point less in the diagonal directions and more in the
horizontal and vertical directions (Figure 6). Thus, in the com-

petitive allocation scenario, when the ridge is attracting (v, 1),
the gene having the highest expression level always evolves
some degree of pleiotropy, while the other gene evolves to
any point along the ESS ridge, including edge cases without
pleiotropy.

On the role of b1 and b2: The main effect of having the traits
affect fitness to different degrees is to shift the singular point
away from the center of the (rA, rB) plane (see Figures 5 and
6). When trait 2 becomes increasingly important to fitness
(b2 rises relative to b1) and when the singular point is attract-
ing, the ESS moves toward the specialized corner rA = rB = 1
(compare Figure 5, B and C, to 5A). This movement to the
corners is even more pronounced when the fitness trade-
off is nearly linear (v nearer one), with the activities of both
genes evolving to the point where they are primarily, but not

Figure 5 Functional redundancy and subfunctionalization of two coding genes with asymmetric expression levels and unequal trait importance to
fitness. Compared to the symmetrical cases considered in Figure 4, asymmetry of gene expression levels (aA = 0.2, aB = 0.8 in A, C, D, and F) causes a tilt
in the eigenvectors (dashed lines in A and D), away from the diagonals of the rA, rB plane. Asymmetry in the importance to fitness of the traits, with trait
2 mattering more than trait 1 (b1 = 0.2, b2 = 0.8 in B, C, E, and F), causes a shift of the singular point (open and solid circles) toward specialization on
trait 2 in the upper right corner whenever v , 1 (as here, v = 0.5 in all panels) and away from it otherwise. With a weak activity–functionality trade-off
(u = 0.5 in A–C), the central ESS remains stable but shifts toward greater specialization on the trait that is more important to fitness. With a strong
activity–functionality trade-off (u = 1.5 in D–F), the central ESS is an unstable saddle, and subfunctionalization evolves. In D–F, there are two sets of local
maxima on the fitness surface: higher ones indicated by larger solid circles and lower ones by smaller solid circles. Thus, in these cases, either partial or
complete subfunctionalization may evolve, depending on the initial conditions and the nature of the mutations that arise. Total fitness is additive
(Equation 6a).
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exclusively, targeted to trait 2 when b2 . b1 (Figure S1 and
Figure S2 in File S1). In such cases, it may be difficult to
maintain the functioning of trait 1 in the face of mutation
pressure, and even if pleiotropy is maintained, it may be
difficult to detect. In cases where the singular point is re-
pelling and v . 1, increasing b2 relative to b1 moves the
singular point in the opposite direction, away from the rA =
rB = 1 corner, which increases the basin of attraction to this
corner, making it more likely for specialization to evolve to
the more important trait (see Figure S3 in File S1).

Strong selection: In the above, we have assumed that it is
possible for the organism to function even if there is no

allocation of gene product to a trait. In some cases, however,
the two traits may be essential to fitness. If those traits require
allocation of gene product to be functional, then the organism
would die without any allocation from at least one of the
genes. Such cases can continue to be modeled within our
framework, but the possibility of lethality in the absence of
a functional trait requires strong selection (c = 1) and implies
that total fitness is multiplicative and so drops to zero if one of
the traits becomes nonfunctional (i.e., wi = 0 in Equation 6b).
In essence, such a scenario causes the fitness surface at the two
specialist corners (rA, rB) = (0, 0) and (1, 1) to be pulled
down to zero. This converts all cases like those in Figure 4,
B and D, into cases like Figure 4, A and C. Specializing both

Figure 6 Fitness surface and ESS ridges in the two-locus model with competitive allocation (u = 1). Parameters are aA = 1/4, aB = 1/2 with b1 = b2 = 1/2
in A and C and b1 = 0.2, b2 = 0.8 in B and D. Trait fitness is robust (v = 1/2) in A and B and sensitive (v = 2) in C and D. The ridge is presented as a solid
line, using Equation A10 when b1 = b2 or determined numerically otherwise. Darker colors represent lower fitness values. The ESS ridge is attracting in A
and B and favors the evolution of some degree of pleiotropy at both genes, while specialist strategies are favored in C and D, with both genes
specialized on the same trait, denoted by the circles and the arrows pointing away from the ridge.
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gene products solely on one of the traits is then no longer
viable, and the system can evolve only toward a pleiotropic
state (Figure 4A) or a subfunctionalized state (Figure 4C).

Adding developmental noise

Gene expression is known to be a highly stochastic process
(McAdams and Arkin 1997; Elowitz et al. 2002; Ozbudak et al.
2002). To describe the type of noise in gene expression, we
borrow from literature in ecology on adaptation in variable
environments (Levins 1968) and define fine and coarse-grained
noise. Expression noise is fine-grained when the gene expres-
sion level varies over a single generation such that a given
individual experiences a mix of expression levels. By contrast,
coarse-grained noise is expressed at the among-individual
level, where individuals in a population are found in different
states characterized by different expression levels.

Coarse-grained noise can arise stochastically during de-
velopment (nonheritable) or it can result from genetic
variation within a population (heritable). With heritable
variation in expression levels among individuals, we must
technically track the frequency of each genotype and
account for linkage disequilibrium that builds up between
the selected loci and the modifier of pleiotropy. If the rate of
recombination between these loci is high relative to selec-
tion, however, linkage disequilibrium has a weaker effect on
a modifier than direct fitness differences (Kirkpatrick et al.
2002). Consequently, to leading order, we need only track
the frequencies of different types of individuals within a pop-
ulation, regardless of whether variants arise by developmen-
tal noise or mutation.

In all cases, we consider two alternate states or alleles at
each coding locus, with the wild-type state occurring with
probability 12p and having expression level aj and the alter-
nate deleterious state occurring with probability p and contrib-
uting in a reduced way to expression, aj2 Daj. Conceptualized
in this way, developmental and mutational noise is seen to
perturb a system from its optimal state, reducing expression
of these genes.

Fine-grained noise: If expression levels vary at a sufficiently
fine-grained scale, introducing such noise simply results in
an altered average amount of gene product, with aA and aB

replaced by (aA2p DaB) and (aB2p DaB), respectively. Con-
sequently, we can apply the results of section “on the role of
aA and aB.” In particular, such noise tends not to alter the
position of the singular point or its stability properties, un-
less expression levels are so altered that the conditions in
Equation 14 for the one-gene case or Equation 17 for the
two-gene case are affected (see File S2 and File S3). Fine-
grained noise does, however, alter the orientation of the
fitness surface (the eigenvectors) in the two-gene case, es-
pecially when the product of one gene is more subject to
noise than that of the other. As described previously, we then
expect the gene that is less affected by noise (highest ai 2 p
Dai) to remain pleiotropic, either when subfunctionalization
is expected or in the competitive allocation scenario (u= 1),

improving the robustness of the two traits to noise. While we
have modeled developmental noise here as switching be-
tween two states, the above discussion applies to noise gen-
erating a variety of states experienced by a single individual,
with p Daj then representing the average reduction in gene
expression across all perturbed states.

Coarse-grained noise: With coarse-grained noise, we must
average the fitness effect of a modifier over the different
types of individuals within a population. For the one-locus
case, using (12), we find that the change in mean fitness
caused by a substitution at the modifier is, to leading order,

DW ¼  Dr c u ðð12 pÞaAK1 þ pðaA 2DaAÞÞ þ O
�
Dr2

�
;

(18)

with

K1 ¼ b2r
ðu21ÞððaA   r

uÞ2v21Þð1=vÞ21

2b1ð12rÞðu21ÞððaAð12rÞuÞ2v
21Þð1=vÞ21

;
(19a)

K2 ¼ b2r
ðu21ÞðððaA2DaAÞruÞ2v21Þð1=vÞ21

2b1ð12rÞðu21ÞðððaA2DaAÞð12rÞuÞ2v
21Þð1=vÞ21

:

(19b)

Selection on a modifier of pleiotropy is then intermediate
between the same model in the absence of noise (i.e., setting
p = 0 in Equation 18, we recover Equation 12) and the
model with fine-grained developmental noise when p = 1
and aA is replaced with (aA 2 p DaA). The ESS value of r* is
thus bounded by the values obtained in these two models
(but remains at r* = 1/2 when b1 = b2 = 1/2; see File S2
and File S3). The difference between these models is small,
however, with Equation 12 yielding slightly smaller
(greater) ESS values than fine-grained noise for r* when
v , 1 (v . 1).

For two loci, results are similar when we assume that
individuals have probability pApB of having both coding
genes in the deleterious state, probability (pA(12pB)+
(12pA)pB) of having one of the two genes in the deleterious
state, and probability (12pA)(12pB) of being in the wild-type
state. The main difference is that the eigenvectors fall in
slightly different locations depending on the relative effects
of each modifier allele on pleiotropy at loci A and B (DrA vs.
DrB). In the competitive allocation case (u = 1), this means
that the ridge lines shift, depending on the exact nature of the
modifier mutations that arise. When the ridge is attracting (v,
1), these slight shifts in the location of the ridge tend to draw
the system inward, toward complete pleiotropy (see File S2
and File S3). Simulations of this coarse-grained model show
that its behavior indeed converges toward more central values
for rA and rB, leading to increased pleiotropy of both genes
(Figure 7; see Appendix B for simulation procedures). This
tendency is pronounced only for intermediate expression noise
(p �10% 2 20%, with pA = pB = p). If p is near zero or one,
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the system instead aligns with the ridge expected under the
highest (p = 0) or lowest (p = 1) expression levels.

Discussion

Why do genes vary in their degree of pleiotropy? This fun-
damental question has not previously received much atten-
tion, with pleiotropy often considered to be an immalleable
side-product of a gene’s evolutionary history. Our model
explores how the degree of pleiotropy may itself evolve
and provides some clues as to why we might expect pleiot-
ropy to vary among genes (as shown by Dudley et al. 2005;
Albert et al. 2008; Wagner et al. 2008; Wang et al. 2010).
Most importantly, the degree to which a gene specializes on
a given function depends on the trade-offs that arise when
dedicating gene products to different functions and on the
relationship between those functions and fitness. We show
that selection favors generalist, pleiotropic genes when im-
proving one gene function comes at little costs to other
functions, particularly when activity–functionality (Fi) and
trait–fitness (wi) relationships are concave (red curves in
Figure 1, A and B). Pleiotropy is thus intimately linked to
the robustness of phenotypes and organismal fitness to var-
iation in expression of the underlying genes. In addition, the
expression level of a gene plays an important role, as we
found that more highly expressed genes (those with higher
aj) evolve a greater degree of pleiotropy whenever pleiot-
ropy is favored (e.g., Figure 6). Evidence consistent with this
prediction has been found recently in yeast gene deletion

experiments where genes with a high degree of pleiotropy
were found to have significantly higher per-trait effects
(Wang et al. 2010; see Wagner and Zhang 2011, for a syn-
thesis including other organisms). Moreover, we find a pos-
itive but weak correlation between the expression level and
the pleiotropic degree of genes in the budding yeast Saccha-
romyces cerevisiae, using four different data sets, as shown in
Table 2. These empirical patterns are tantalizing and sug-
gest that pleiotropy and gene expression may coevolve, al-
though the direction of causality is not settled. It might be,
for instance, that more pleiotropic genes evolve higher ex-
pression levels to maintain functionality at the traits they
affect. Finally, we have also shown that variation in the de-
gree of noise in expression among genes can facilitate the
maintenance of pleiotropy in cases where complete subfunc-
tionalization (Figure 5) or a neutrally stable ridge (Figure 7)
would have arisen otherwise.

Exploring two motivating examples of specific
functional trade-offs

As mentioned in the Introduction, pleiotropy can arise in
a myriad of ways (e.g., Hodgkin 1998; He and Zhang 2006).
To place our results in context, we now explore the impli-
cations of our results in the competitive allocation and mul-
tispecific scenarios, which motivate particular mappings of
gene activity onto trait functionality and ultimately fitness.

Competitive allocation scenario: The first scenario assumes
that the product of a gene is allocated to one trait or the other
trait (e.g., proteins targeted to different structures; see cartoon
in Figure 2A). In this case, if the functioning of each trait is
directly proportional to the amount of gene product allocated
to that trait, then we would expect the functional trade-off
relationship, Fi, to be linear (i.e., @2F/@r2 = 0 as in the green
curve in Figure 1A). As shown in Appendix A (Equations A7–
A10; see also File S2 and File S3), a ridge of equal fitness then
results on the fitness surface (Figure 6). When fitness is robust
to changes in gene allocation [concave wi(Fi), implying v , 1
using our specific functions], the ridge is an evolutionary
attractor. As evolution along the equilibrium ridge is neutral,
genetic drift can lead to the evolution of a large range of out-
comes, from complete pleiotropy of both genes to subfunction-
alization of one of the genes (Figure 6, A and B), with
subfunctionalization of both genes expected only in the sym-
metric case (aA = aB and b1 = b2) where the ridge line passes
through the points (rA, rB) = (0, 1) and (1, 0). Alternatively,
when fitness is an accelerating function of trait performance
[convex wi(Fi), implying v. 1], the two genes tend to special-
ize on the same trait (Figure 6, C and D). In either case, sub-
functionalization is not an attracting state, at best being
neutrally stable with respect to pleiotropy.

Multispecific scenario: Gene products often have more than
one biochemical property and can, for instance, catalyze two
different reactions or interact with two substrates with
different affinities (see cartoon in Figure 2B). Mutations at

Figure 7 Evolution of pleiotropy in two-locus simulations with coarse-
grained noise and robust traits. The level of expression at each coding
locus is aA = aB = 0.5, with noise reducing gene expression in some
individuals by DaA = 0.1 and DaB = 0.3. The green line is the ESS ridge
line in the absence of noise (p = 0) while the red line represents the
expectation for expression levels reduced by DaA and DaB in every in-
dividual (p = 1), as given by numerically solving Equation 18. Each point
on the graph represents a different simulation, with 100 replicates per
parameter set, for various values of p (see inset key). Mutations drive the
system inward toward pleiotropy at both genes when there are low to
intermediate levels of noise (particularly with p = 0.18). The population
size is N = 5000, b1 = b2 = 0.5, u = 1, and v = 0.5.
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the modifier locus then change the biochemical properties
of the gene product(s), instead of changing the allocation
of the product as in the previous case. In this multispecific
scenario, functionality (Fi) then becomes a measure of the
specificity of the gene product for substrate i, and the
strength of the trade-off in gene activities depends on
u 6¼ 1. As mentioned in the Introduction, multispecific genes
may exhibit strong functional trade-offs (u . 1), when func-
tioning well for one trait requires conformational changes
that greatly disrupt the other trait, or weak functional trade-
offs (u , 1), when traits depend on different aspects of the
gene product that can be altered fairly independently (e.g.,
distinct active sites). If we focus this second example on
enzyme affinities for alternate substrates, then trait perfor-
mance and thus fitness can be measured in terms of enzy-
matic fluxes. Enzymatic flux classically depends on the
kinetic properties of the enzyme involved in the conversion
of a given substrate into a product and is well described by
Michaelis–Menten kinetics for a large proportion of known
enzymes (Cornish-Bowden 2004). Rueffler et al. (2012) use
a similar example to illustrate the evolution of specialization
of duplicated genes; we have thus not repeated their deri-
vations here. The main qualitative point is that enzymatic
flux is typically a saturating function of gene affinity for
a given substrate. It follows, with the additional assumption
that trait fitness is directly proportional to flux, that fitness
will be robust to declines in trait functionality (@2wi=@F2i , 0
or, using the specific functions, v , 1). Subfunctionalization
may then evolve if there are strong trade-offs between the
functioning of the two traits [u greater than one but not so
large that condition (17a) is not satisfied; see Table 1 and
Figure 4C] or if there are interfering interactions among
gene products (Appendix A), as shown recently by Rueffler
et al. (2012). They argue that such interactions would, for
instance, arise when heterodimers are more stable than
homodimers, favoring specialization of duplicated genes
on different subcomponents. Nevertheless, specialization

should not always be expected, and there are numerous
cases that might yield the type of weak activity–function
trade-offs (u , 1) that facilitate the evolutionary mainte-
nance of pleiotropy, as evidenced by the many examples of
gene sharing and enzyme promiscuity. It is also important to
note that examples of accelerating enzymatic flux functions
exist (see, e.g., Zimmermann and Rosselet 1977; Brown
et al. 2009), which would tend to cause fitness to be sensi-
tive to trait functionality (v . 1) and could help explain the
existence of genes that are highly specialized on the same
trait. Finally, while we considered two mapping levels, from
activity to functionality, and from functionality to fitness,
specific cases might necessitate more levels. For instance,
in the multispecific scenario, mapping of flux to fitness
may be nonlinear and require an additional mapping [e.g.,
from affinity to functionality (say Km of an enzyme), from
functionality to flux, and from flux to fitness].

Evolution by gene duplication and the rise
of two specialists

Gene duplication is seen as a major mechanism driving the
evolution of pleiotropy, with the common view being that
gene duplication generally reduces the degree of pleiotropy.
The argument usually invoked is that pleiotropy represents
a constraint on the evolution of independent gene functions,
and specialization is seen as a way of escaping adaptive
conflicts caused by multifunctionality (Hughes 1994; des
Marais and Rausher 2008). From our perspective, speciali-
zation is not a necessary outcome of gene duplication. Im-
portantly, if conditions that prevail prior to the duplication
event favor the maintenance of a single multifunctional gene
with u, v , 1 (see Table 1) and those conditions continue to
apply after duplication, then we would expect pleiotropy to
be maintained at both genes, essentially because the genes
can perform both functions well and there are diminishing
returns with respect to fitness of specializing further on ei-
ther trait (as in Figure 4A). Only if there is a convex activity–

Table 2 The correlation between gene expression and pleiotropy in Saccharomyces cerevisiae

Data set rSpearman P rPearson P ngenes ntraits

Dudley et al. (2005) 0.059 0.116 0.071 0.119 698 21
Ohya et al. (2005) 0.077 0.0004 0.087 0.0002 1792 254
CYGD: phenotypic 20.017 0.52 0.0095 0.56 1381 142
CYGD: functional 0.046 0.0006 0.027 0.104 5192 456
GO: biological processes 0.059 ,0.0001 0.034 0.030 5160 2294
GO: molecular functions 0.064 ,0.0001 0.033 0.037 5160 1747
GO: cellular components 0.193 ,0.0001 0.173 ,0.0001 5160 649
GO: all categories 0.127 ,0.0001 0.106 ,0.0001 5160 4690

Estimates of gene pleiotropy are obtained from different sources (leftmost column). Dudley et al. (2005) report significant growth defects for 774
nonessential gene knockout strains in 21 different environments. Ohya et al. (2005) report significant effects of 2059 haploid knockout strains on
254 morphological traits. Literature-curated phenotypic effects (physiological) and functional categories of yeast genes are reported in the
Comprehensive Yeast Genome Database (CYGD) (http://mips.helmholtz-muenchen.de/genre/proj/yeast/). Further gene functional annotation is
provided by the Gene Ontology (GO) database (http://www.geneontology.org/), accessed on August 16, 2012, where pleiotropy is assessed by
counting the number of (nonredundant) GO categories associated with each gene, considering three main functional categories or their union.
Genome-wide gene expression levels are provided by Holstege et al. (1998) for 5449 yeast genes. We assessed the correlation between the log-
transformed expression level and pleiotropic degree using Spearman’s rank correlation (rSpearman) and Pearson’s (rPearson) estimates. Because of
a lack of normality, significance was assessed by randomization, permuting the pleiotropic degree among genes randomly 10,000 times. We report
the two-tailed P-values (P). ngenes reports the number of genes present in both the pleiotropy and gene expression data set, and ntraits is the total
number of traits affected by the genes in each analysis. All significant correlations are positive.
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functionality relationship (u . 1) and there is a sufficiently
concave trait–fitness relationship (v , 1, such that Equation
17a is satisfied) or there are interfering interactions would
we expect the system to evolve toward a generalist state
when only one gene is present (as in Figure 3), but to
branch after gene duplication into two subfunctionalized
genes (as in Figure 4C). On the other hand, with a convex
trait–fitness relationship (v. 1), we would expect the single
gene to have specialized to one or the other trait before
duplication, and this specialist state would likely be subse-
quently maintained by the duplicated genes, essentially be-
cause continuing to perform that one trait very well is most
conducive to high fitness (see Figure 4, B and D).

Our conclusions may seem at odds with established
models of the evolution of subfunctionalization by gene
duplication, which suggest subfunctionalization as a likely
outcome of the duplication of originally multifunctional
genes. Our results can, however, be aligned with established
models given special choices of the parameters, clarifying
the underlying assumptions of these models. In particular,
we consider two opposing views, neutralist and adaptation-
ist, about the evolutionary forces acting on young paralogs
(Hahn 2009; Innan and Kondrashov 2010). The neutralist
view (Ohno 1970; Nowak et al. 1997; Force et al. 1999)
classically assumes a period of relaxed selection after dupli-
cation for one gene copy that can neutrally evolve toward
a pseudogene (no expression), a subfunctional gene (Force
et al. 1999), or a new form, eventually co-opted into a new
function (Ohno 1970). In contrast, the adaptationist view
considers the retention of the duplicate copies as a result of
positive selection for increased gene dosage, with the sub-
sequent evolution into subfunctional genes driven by a re-
lease of selective constraints [i.e., the escape from adaptive
conflict hypothesis (see Hughes 1994; des Marais and
Rausher 2008; Rueffler et al. 2012)].

First, nearly neutral evolution allowing subfunctionalization
of pleiotropic genes can be achieved in our model by making
the fitness surface extremely robust to declines in functionality.
Setting v small, the fitness surface is virtually flat as long as
some gene product is allocated to the trait, so that the duplica-
tion itself and a null mutation in one of the gene copies (e.g.
setting rA = 0) become effectively neutral (similar to the model
of Force et al. 1999). Once subfunctionality is achieved through
the degeneration of a particular function in one coding locus
(say trait 1 in gene A), a null mutation for that same function in
the other gene (causing F1 = 0) would be selected against.
Selection would then lead gene B toward increased allocation
to this function, although such selection would be very weak
when v is small. Even then, complete subfunctionalization, with
gene B fully specialized on the function that gene A no longer
performs, is expected only in the perfectly symmetrical case
with b1=b2 and aA=aB (see Figure 6). Otherwise, some degree
of pleiotropy is maintained at the second coding locus.

Second, under the adaptationist view, selection would
drive the spread of the gene duplicate when the total gene
product, aA + aB, is greater than the amount of gene prod-

uct from a single gene, a. This will not always be true if
other factors (such as substrate availability) limit the total
amount of gene product. Assuming that the gene duplicate
has spread because of selection for increased dosage, then
our model reveals the condition for subfunctionalization to
result. Specifically, when there is a slightly convex activity–
functionality trade-off (@2F=@r2j . 0) and the trait–fitness
relationship is sufficiently robust (such that @2w/@F2 , Ccrit
, 0 or, equivalently, Equation 17a), then we would expect
the two genes to exhibit pleiotropy initially but then become
subfunctionalized, representing an escape from adaptive con-
flict. As mentioned earlier, this scenario is especially likely
when selection is strong and each trait must function for
survival, as this tends to drive down the fitness near the
corners where both genes are specialized on the same trait
(making it more likely that @2w/@F2 , Ccrit , 0 is satisfied).

To sum up, only under very specific conditions do we
expect the two gene copies to become perfectly subfunction-
alized, each contributing independently to different func-
tions, or perfectly pleiotropic, contributing equally to both
functions. More generally, we expect gene duplicates to
remain specialized on the same trait (because of the
advantage of increased dosage) or to exhibit a certain
degree of functional redundancy, with the gene contributing
more to trait functionality and/or more to fitness exhibiting
the highest degree of pleiotropy.

Indeed, functional redundancy among pairs of duplicated
genes is commonly observed in many different organisms
(He and Zhang 2005; Dean et al. 2008; Farré and Albà
2010; Qian et al. 2010; Liu et al. 2011), even after pro-
longed periods of evolution (Dean et al. 2008; Farré and
Albà 2010). Furthermore, it is common for expression in-
tensity to differ between newly duplicated genes (Farré and
Albà 2010; Qian et al. 2010; Liu et al. 2011), which, based
on our model, tends to favor the evolution of only partial
functional redundancy, with pleiotropy maintained for the
more highly expressed gene (i.e., when aA 6¼ aB; see Figure
5). That said, partial functional redundancy can also result
from neutral processes [e.g., incomplete complementary de-
generation (Force et al. 1999)].

Caveats

While we have attempted a fairly general analysis of the
evolution of pleiotropy at one or two genes, with or without
developmental noise, we should close by emphasizing that
our main results were simplified by focusing on potential
ESS points that arise in symmetrical cases, where the
benefits of allocating gene products to either trait 1 or trait
2 were equivalent. Furthermore, our figures were all
generated assuming specific functional equations (e.g.,
Equations 5 and 16) that forced the total fitness surface to
exhibit smooth shapes, with at most one internal maximum
for total fitness, W. In particular, we ignored the possibility
of having stabilizing selection for intermediate levels of
functionality or trait fitness, assuming that the functioning
of a trait, Fi, was a monotonically increasing function of the
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amount of gene product allocated to that trait and that trait
fitness, wi, was a monotonically increasing function of Fi.
Such assumptions may have important implications for the
evolution of pleiotropy of duplicated genes. Would selection
for optimal dosage after duplication then favor subfunction-
alization or would it instead favor decreased expression of
each gene (decreased aj), as sometimes observed (Qian
et al. 2010)? Further work on the evolution of pleiotropy
may profitably shed light on such questions.

In addition, we assumed that each trait exhibited a similar
relationship between allocation and function and between
function and fitness. Real fitness surfaces are likely more
complex. For example, traits may differentially affect fitness or
may vary in their sensitivity to products of different genes.
Such asymmetries could be modeled by letting the v coeffi-
cients differ for different traits (or the u coefficients). Prelim-
inary results (see Figure S4 in File S1) suggest that changing
the fitness curve for one of the traits from a concave to
a convex one (e.g., v1 . 1, v2 , 1) may lead to increased
specialization to the more sensitive trait with higher v. Com-
binations of concave and convex curves lead to highly non-
linear fitness surfaces and a thorough investigation of the
dynamics is awaited.

Finally, we have ignored the possibility that the nature of
the trade-off may itself evolve. For example, structural muta-
tions may change the efficacy with which a gene product
could perform a certain task (changing u or v), as suggested
by experimental studies (Brown et al. 2009), turning a weak
trade-off into a strong one, or vice versa. Empirical work
grounding our understanding of the nature of the functional
trade-offs and trait–fitness relationships will improve our
understanding of what is possible and what is likely when
it comes to the evolution of pleiotropy.

Conclusions

Taken together, our results suggest that pleiotropy and spe-
cialization of all genes on the trait particularly important to
fitness are two common outcomes of the evolution of multi-
functional genes under functional trade-offs. By contrast,
subfunctionalization is expected only under more stringent
conditions, requiring slightly convex trade-offs between gene-
product allocation and functionality as well as a sufficiently
robust relationship between fitness and trait functionality.
Even then, complete and reciprocal specialization of two genes
on two different functions is selectively favored only when the
two traits are equally important to fitness and the two genes
are equally expressed. These results could thus help explain
why complete subfunctionalization is a less common out-
come than theory predicts (e.g., Hughes 1994; Force et al.
1999; Innan and Kondrashov 2010; Proulx 2012). Further-
more, our results indicate that variation in the degree of
pleiotropy among genes should be the norm. In particular,
genes that contribute more to trait functionality (higher aj)
are expected to evolve a higher degree of pleiotropy, all else
being equal. Conversely, an increased degree of specializa-
tion of genes is expected when one trait matters substan-

tially more to fitness (Figure 5). These results are in line
with the more general literature on the evolution of special-
ization, mostly studied in an ecological context and at the
level of individuals rather than genes (Levins 1968; Egas
et al. 2004; Ravigné et al. 2009; Débarre and Gandon
2010). Our results also agree with and extend indepen-
dently derived results from a recent model on the evolution
of the division of labor (Rueffler et al. 2012).

In conclusion, variation in pleiotropy is multifactorial and
depends not only on variation in the biochemical properties
of coding genes but also on variation in selection pressures
among traits, on variation in expression level of the genes, on
stochastic noise, on drift, and on variation in the evolutionary
history of the genes, where processes such as duplication and
regulatory mutations are expected to play a leading role. A
few empirical studies have started exploring the functional
causes of variation in pleiotropy, and we hope this study will
motivate more theoretical and empirical work to come.
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Appendix A

Eigen-Decomposition of the Hessian Matrix

We derive the Hessian matrix H of the fitness surface at (r*A; r
*
B) and determine the sign of the eigenvalues and orientation of

the eigenvectors of H. We focus on the stability properties of the symmetrical ESS (r*A; r
*
B), which can be found under the

symmetry assumptions @W/@w1 = @W/@w2 = @W/@w and @w1/@F1 = @w2/@F2 = @w/@F. To simplify the analysis of the
eigensystem near this ESS, we make the additional symmetry assumptions that trait 1 and trait 2 are equally sensitive
to variation in rA and rB (@2Fi=@r2j ¼ @2F=@r2j ; @

2Fi=@rA@rB ¼ @2F=@rA@rB) and similarly for trait fitnesses ð@2wi=@F2i ¼
@2w=@F2Þ, while assuming that total fitness is additive (Equation 6a). Under these assumptions, we are able to derive
a workable expression for the eigenvalues (l1, l2) of H. To determine their sign, we use the fact that the characteristic
polynomial of H (calculated as def[lI 2 H]) has a quadratic form with a positive l2 term (see File S2 and File S3).
Consequently, the roots of this quadratic are the eigenvalues, and their signs depend on the slope and intercept of the
characteristic polynomial at l = 0:

slope ¼2
@2w
@F2

��
@F
@rA

�2
þ
�
@F
@rB

�2�
2

@w
@F

 
@2F
@r2A

þ @2F
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!
(A1a)

intercept ¼ @2w
@F2

@w
@F

 
@2F
@r2B

�
@F
@rA

�2
2 2
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�2!
:

(A1b)

When the intercept is positive, both eigenvalues will have the same sign, yielding an ESS that is attracting from all directions
(two negative eigenvalues when the slope is positive) or repelling in all directions (two positive eigenvalues when the slope
is negative). Conversely, when the intercept is negative, the potential ESS sits on a saddle, attracting along one eigenvector
and repelling along the other.

In the absence of gene interactions [@2F/(@rA@rB) = 0], the intercept of the characteristic polynomial is always positive
when the trait functionality and fitness relationships are curved in the same way. When they are both negatively curved
(@2F=@r2j , 0, @2w/@F2 , 0), the slope of the characteristic polynomial must be positive (so that l1, l2 , 0), indicating that
(r*A; r

*
B) represents a local fitness maximum. In this case, we expect each gene to remain pleiotropic, even after gene

duplication, because of the diminishing returns with respect to both functionality and fitness if either gene allocates more
to a particular trait, at the cost of the other trait. Conversely, when both relationships are positively curved (@2F=@r2j .0,
@2w/@F2 , 0), the slope of the characteristic polynomial must be negative (so that l1, l2 . 0), indicating that ðr*A; r*BÞ is
a repelling point, and the system will evolve increased specialization, because of the accelerating functionality and fitness
benefits of doing so. Even when the curvatures are opposite at these two levels, the above slope and intercept results
continue to hold (with the behavior depending on the sign of @2F=@r2j ) if the activity–functionality relationship is highly
curved while the trait–fitness curvature is sufficiently mild that @2w/@F2 lies between 0 and Ccrit, where

Ccrit ¼2
@w=@F

ð@F=@rAÞ2=ð@2F=@r2AÞ þ ð@F=@rBÞ2=ð@2F=@r2BÞ
: (A2)
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Thus, when the trade-off between allocation of the gene product to two traits and functionality of these traits is very weak
ð@2F=@r2j � 0Þ or very strong ð@2F=@r2j � 0Þ, Ccrit will be large in magnitude, and the singular point will tend to sit on
a maximum (pleiotropy favored if @2F=@r2j � 0) or a minimum (specialization favored if @2F=@r2j � 0), rather than a saddle.

Only when the relationship between fitness and functionality is strongly curved and opposite in sign to @2F=@r2j , such that
the magnitude of @2w/@F2 is greater than the magnitude of Ccrit, does the total fitness surface become saddle shaped. To
assess the orientation of the saddle, we can determine the curvature of the total fitness surface along the diagonal connecting
specialization on trait 1 (rA = rB = 0) and specialization on trait 2 (rA = rB = 1):

@Wadd

@rA@rB
¼ @2w

@F2
@F
@rA

@F
@rB

þ @w
@F

@2F
@rA@rB

: (A3)

Again ignoring gene-product interactions, the saddle will represent a maximum along this diagonal when the trait–fitness
relationship is negatively curved (@2w/@F2 , 0). Thus, when @2F=@r2j is positive yet @2w/@F2 is negative and less than Ccrit,
the system will tend to evolve toward increased pleiotropy along this diagonal line and then be repelled toward subfunc-
tionalization of the two genes on opposite traits, at least in the vicinity of (r*A; r

*
B).

Gene-product interactions

The topology of the fitness surface is also influenced by the way the products of the two genes interact [i.e., @2F/(@rA@rB) 6¼ 0 in
Equation A1b]. A positive interaction implies that increasing both gene products improves trait functionality more than the in-
dividual contributions of each product would predict. The sign of the intercept (A1b), but not the slope, depends on the interaction
term. If the interaction (@2F/@rA@rB) and the curvature of the fitness function (@2w/@F2) are both positive or both negative, then
the intercept becomes more negative (more likely to be saddle shaped in the vicinity of r*A; r

*
B). When they are both negative, the

saddle is declining toward the (0, 0) and (1, 1) corners [i.e., (A3) is negative]; such interactions thus facilitate evolutionary
branching and subspecialization, essentially because fitness is maximized by investment in both traits but the negative interactions
among the gene products favor the specialization of each gene on different traits. The interactions continue to contribute negatively
to the intercept if @2F/(@rA@rB) and @2w/@F2 have opposite signs but the functionality interactions are stronger:���� @2F

@rA@rB

����.
����2ðð@2w=@F2Þð@F=@rAÞð@F=@rBÞÞ@w=@F

����: (A4)

Examining Equation A3 when (A4) is satisfied, the total fitness surface will be curved downward along the diagonal between
specialization on trait 1 (0, 0) and specialization on trait 2 (1, 1) if @2F/@rA@rB , 0 and curved upward otherwise. Thus,
strong negative interactions facilitate subspecialization, with evolution along the diagonal toward (r*A; r

*
B) followed by

specialization of each gene on different traits, regardless of the sign of @2w/@F2 as long as (A4) is satisfied. By contrast,
when the interactions are weak and opposite in sign to the curvature of the trait–fitness relationship, so that (A4) is not
satisfied, the interactions make the intercept of the characteristic polynomial more positive, favoring a stable ESS [if the
slope (A1a) is positive] or a repelling point [if the slope (A1a) is negative].

Eigenvalues and eigenvectors

The eigenvalues are obtained by solving the characteristic polynomial for l (see File S2 and File S3),

l1;2 ¼ 1
2

�
2 slope∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
slope22 4 intercept

q �
; (A5)

and their corresponding eigenvectors equal

e1;2 ¼
(

l2 ð@2w=@F2Þð@F=@rBÞ2 2 ð@w=@FÞð@2F=@r2BÞ
ð@2w=@F2Þð@F=@rAÞð@F=@rBÞ þ ð@w=@FÞð@2F=@rArBÞ

; 1

)
: (A6)

We next consider some limiting cases of relevance.

Special case of a linear functional trade-off:When gene products are allocated to one or another function, the functionality
relationship may become linear, with @2F=@r2A ¼ @2F=@r2B ¼ @2F=@rArB ¼ 0. In this competitive allocation scenario, the
eigenvalues simplify to

l1 ¼ 0;  l2 ¼ @2w
@F2

��
@F
@rA

�2
þ
�
@F
@rB

�2�
; (A7)
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with corresponding eigenvectors

e1 ¼
	
2

ð@F=@rBÞ
ð@F=@rAÞ

; 1


; e2 ¼

	ð@F=@rAÞ
ð@F=@rBÞ

; 1


: (A8)

Thus, with linear allocation of gene products to the two traits, one eigenvalue becomes zero, and it can be shown that this
occurs because the fitness surface contains a neutral ridge of equal fitness, which is either an attracting ridge with maximal
fitness if @2w/@F2 , 0 (so that l2 , 0) or a repelling ridge with minimal fitness if @2w/@F2 . 0 (so that l2 . 0). Using the
specific functional relationships (5) and (16), these eigenvectors become

e1 ¼
	
2

aB

aA
; 1


; e2 ¼

	
aA

aB
; 1


: (A9)

The first eigenvector, associated with l1 = 0, describes a ridge of equal fitness on the fitness surface that passes through the
ESS point. In the symmetrical case where b1 = b2, this ridge passes through the midpoint, r*A ¼ r*B ¼ 1=2, and is given by

r*B ¼ aA þ aB

2aB
2

aA

aB
r*A: (A10)

For other values of bi, the ridge must be numerically calculated, but it can be shown that it remains a line whose slope
depends only on the relative expression levels of aA and aB (see File S2 and File S3). This ridge is an evolutionary attractor
when v, 1 (the fitness surface is concave across the ridge; l2 , 0), in which case any combination of the pleiotropic degrees
of the two genes that brings the system to the ridge is neutrally stable with respect to any other point on the ridge (Fig. 6, A
and B). When v . 1, the ESS ridge becomes an evolutionary repeller, and the two specialized states (rA, rB) = (0, 0) and (1,
1) become the stable equilibria of the system (Fig. 6, C and D). Which trait becomes more “functional” then depends on their
relative contributions to fitness (the b-coefficients) and on the current state of the system, where evolution is likely to lead
both genes to specialize on the initially more functional and more important trait.

Special case of equal expression levels:While the general analysis allowed the genes A and B to differ in expression levels, the
analysis simplifies greatly when the two genes have equal expression levels (aA = aB), which might occur initially following
gene duplication if gene regulation is unaffected. With equal expression levels, trait functionality is equally sensitive to changes
in either gene, with @F=@rA ¼ @F=@rB and @2F=@r2A ¼ @2F=@r2B. Further assuming that there are no interactions between the
gene products (@2F/@rA@rB = 0), the eigenvalues simplify to

l1 ¼ @w
@F

@2F
@r2

; l2 ¼ @w
@F

@2F
@r2

þ 2
@2w
@F2

�
@F
@r

�2
; (A11)

and their corresponding eigenvectors equal

e1 ¼ f� 1; 1g; e2 ¼ f1; 1g: (A12)

The first eigenvector points to the two corners corresponding to subfunctionalization, with one gene specialized on trait 1
and the other gene specialized on trait 2, while the second eigenvector points to the two corners where both genes are
specialized on the same trait. For subspecialization to evolve over either specialization on the same trait or pleiotropy thus
requires that @2F/@r2 . 0 so that l1 is positive, while @2w/@F2 is sufficiently negative that l2 is negative (this is equivalent to
the general requirement that @2w/@F2 be greater in magnitude than Ccrit for a saddle-shaped topology and, using the specific
functions, to Equation 17a). In cases where the expression levels of genes A and B are not equal, however, the eigenvectors
will not line up along the diagonals, so that even when ðr*A; r*BÞ is evolutionarily unstable, the system can evolve in directions
that maintain pleiotropy in one gene (see, for example, Figure 5).

Appendix B

Individual-Based Simulations

We implemented the haploid model with coarse-grained noise in the Nemo individual-based simulation platform (Guillaume
and Rougemont 2006). Each individual carried two expression loci and one modifier locus. Mutations affecting rA and rB at the
modifier locus were randomly drawn from a bivariate Gaussian distribution with mean of 0 and standard deviation equal to
0.05, with mutational effects added to the allelic values already present at the locus. Such mutations occurred at rate mr = 1024.
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Mutational covariance of the effects of a mutation on rA and rB was set to zero. The initial allelic values at the modifier locus
were set randomly in the first generation by drawing each individual from a uniform distribution, for each replicate, ensuring an
initially large phenotypic variance to avoid strong effects of initial allelic values. Because we model coarse-grained noise, each
locus in a new individual had probability p to be in the more deleterious state (aj2Daj). Random mating (with probability 1/N
of self-fertilization) and free recombination among all three loci were assumed. A single large panmictic population of size N =
5000 was modeled. Individuals were subject to viability selection at birth with fitnesses given by Equation 6a. Enough surviving
offspring were produced each generation to fill the population to its carrying capacity. A total of 100 replicates were run for
500,000 generations for each parameter set, and the results presented are the averages over the last 20,000 generations,
recorded every 100 generations.
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Figure S1. Fitness surface and ridge position for robust traits with v = 0.9
and u = 1. When one trait is more important to fitness than the other (first and last
row), selection leads a system toward a ridge that is near complete specialization for the
more important trait. The ridge is here an attractor because v < 1. Warmer colors are
for higher fitness values.
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Figure S2. Simulation of the evolution of pleiotropy in the two-locus model
with v = 0.9 and u = 1. Results are presented for the case where αA = 0.25 and
αB = 0.5, corresponding to the left column of Figure 1. The population size is N = 5000.
Each dot on the graph represents a single replicate. Each simulation was replicated 100
times for 50,000 generations. See Appendix B in the main text for more details about
the simulation procedure and the mutational parameters. The ridge position (solid lines)
is obtained by numerically solving the equilibrium equation for the change in fitness
caused by the modifier allele under weak selection (see Online Supp. Mathematica file).
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Figure S3. Fitness surface and ridge position for sensitive traits with v = 1.1
and u = 1. In the first and last row, selection typically favors the emergence of a single
specialist that allocates all the gene resources to the trait with highest importance, as
the ridge is pushed to a corner of the fitness surface. When traits have similar
importance (central row), the ridge position is independent of v (see also Figure 3 in the
main text). The ridge position is obtained from equation (5) in the main text. The ridge
is here a repeller, favoring the evolution of two specialists (see main text). Other
parameters are c = 0.1. Warmer colors are for higher fitness values.
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Figure S4. Evolution of pleiotropy when fitness curves differ among traits. In
these graphs, the curvature of the fitness function varies for each trait (v1 for trait 1 and
v2 for trait 2), while u = 1 (competitive allocation scenario). Panel A shows simulation
results for the evolution of the modifier (see Appendix B for details), and panel B shows
theoretical results for the change of the ridge position (intercept value). In A, the
parameter v1 is kept constant at 0.5, while v2 is set to either 2/3 (purple) or 2 (blue),
with either equal expression of both genes (αA = αB = 0.5: circles) or higher expression
of locus B (αA = 0.25, αB = 0.5: crosses). When both traits are robust to changes in
functionality (v < 1), substantial pleiotropy evolves at both genes (purple). When one
trait is very sensitive (v >> 1), however, specialization results, with nearly complete
allocation to trait 2 (blue circles) or to trait 1 (blue crosses). In panel B, the intercept of
the ridge is shown as a function of 1/v2 (with v1 = 0.5), with either equal expression of
both genes (αA = αB = 0.5: solid curve) or higher expression of locus B (αA = 0.25,
αB = 0.5: dashed curve). Above the thin dashed lines, the intercept is higher (greater
allocation to trait 2) than would be expected if v2 were equal to v1. As 1/v2 declines
below 1, however, the intercept declines precipitously, such that eventually the system is
driven to specialize on the more robust trait (trait 1). The ridge position is obtained
numerically from a modification of equation (5) in the main text. The arrows in B
indicate the two values of v2 used in A. Other parameters are β1 = β2 = 0.5, and c = 1,
with additive total fitness.
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