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ABSTRACT Genome-wide association studies (GWAS) have become an important method for mapping the genetic loci underlying
complex phenotypic traits in many species. A crucial issue when performing GWAS is to control for the underlying population structure
because not doing so can lead to spurious associations. Population structure is a particularly important issue in nonhuman species since
it is often difficult to control for population structure during the study design phase, requiring population structure to be corrected
statistically after the data have been collected. It has not yet been established if GWAS is a feasible approach in Saccharomyces cerevisiae,
an important model organism and agricultural species. We thus performed an empirical study of statistical methods for controlling for
population structure in GWAS using a set of 201 phenotypic traits measured in multiple resequenced strains of S. cerevisiae. We
complemented our analysis of real data with an extensive set of simulations. Our main result is that a mixed linear model using the
local ancestry of the strain as a covariate is effective at controlling for population structure, consistent with the mosaic structure of
many S. cerevisiae strains. We further studied the evolutionary forces acting on the GWAS SNPs and found that SNPs associated
with variation in phenotypic traits are enriched for low minor allele frequencies, consistent with the action of negative selection on
these SNPs. Despite the effectiveness of local ancestry correction, GWAS remains challenging in highly structured populations, such
as S. cerevisiae. Nonetheless, we found that, even after correcting for population structure, there is still sufficient statistical power

to recover biologically meaningful associations.

key concern in biology is understanding the nature of

the nucleotides underlying the variation in complex
phenotypic traits among individuals. Recent breakthroughs
in genotyping and sequencing technologies have facilitated
an explosion of genome-wide association studies (GWAS)
resulting in the discovery of many new associations of SNPs
with complex traits, especially in humans (Hindorff et al.
2009). GWAS is also an increasingly important mapping
approach in other nonhuman species, including plant species
such as maize, rice, and Arabidopsis (reviewed in Brachi et al.
2011), mouse (Payseur and Place 2007), Drosophila (Mackay
et al. 2012), and dog (Tsai et al. 2012). However, the feasi-
bility of GWAS in Saccharomyces cerevisiae, an important
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model organism and agricultural species, has not yet been
fully studied.

A critical issue that needs to be addressed in any GWAS is
the presence of underlying population structure in the individ-
uals studied, since population structure generally leads to
spurious associations (Price et al. 2010). Accordingly, a number
of statistical techniques have been proposed to correct for
population structure, including genomic control, which cor-
rects the GWAS test statistics by a variance inflation factor
that is constant over all SNPs (Devlin and Roeder 1999; Reich
and Goldstein 2001) and structured association (Pritchard
et al. 2000b). An elegant approach is to use a linear model
with ancestry components estimated from principal compo-
nents analysis (Price et al. 2006) or mixture models (Pritchard
et al. 2000a) as covariates. Other statistical approaches are
also possible when there is pedigree structure underlying
the data (Thornton and McPeek 2010).

Here we explored the feasibility of using GWAS to map
complex traits in S. cerevisiae. We used whole-genome rese-
quencing data from multiple S. cerevisiae strains (Liti et al.
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2009) and data for 201 phenotypic traits for a significant
fraction of these strains (Warringer et al. 2011). Previous
population genetic studies of S. cerevisiae have made it clear
that there is considerable population structure in this species
(Liti et al. 2009; Schacherer et al. 2009; Elyashiv et al. 2010).
We took an empirical approach to comparing different statis-
tical methods for correcting for population structure in GWAS.
Specifically, we assessed the performance of each statistical
method by the shape of the quantile-quantile (Q-Q) plot of
observed vs. expected P-values. Throughout our analysis we
considered only statistical methods based on linear models
since these allow the use of population structure data as
covariates in a natural and flexible way. We also complemented
our empirical study with an extensive set of simulations to
assess the performance of the different GWAS methods.

Materials and Methods
Parameters for the program STRUCTURE

To study the population structure in the S. cerevisiae strains,
we used the program STRUCTURE, which uses a Markov
Chain Monte Carlo approach to assign individuals to ances-
tral populations and simultaneously infer the allele frequen-
cies of the ancestral populations (Pritchard et al. 2000a;
Falush et al. 2003). The parameters for the preliminary short
run of STRUCTURE used for SNP selection (see Methods for
SNP Selection) were default parameters except for PLOIDY =
1; BURNIN = 5000; NUMREPS = 5000; LINKAGE = 1; ADM-
BURNIN = 2500; and SITEBYSITE = 1. The long STRUC-
TURE runs used for the rest of the analysis used the same
parameters except for BURNIN = 50,000; NUMREPS =
50,000; and ADMBURNIN = 25,000.

Methods for SNP selection

As described in the main text (in Selecting SNPs for popula-
tion structure analysis), it is important to remove SNPs in
high linkage disequilibrium (LD) because STRUCTURE does
not model background LD. To do this, we implemented two
procedures for selecting an independent set of SNPs: a “sliding-
window” procedure and a “sequential” procedure.

Sliding-window procedure: We implemented a sliding-
window procedure in which we selected a small number of
SNPs for each window of N consecutive SNPs. To select the
SNPs, we calculated the LD, measured by D'2 for each pair of
SNPs in the window. If the LD was above a threshold, the
SNPs with more missing data were removed, with ties broken
randomly. We tested window sizes of N = 10-100 consecutive
SNPs in increments of 10 and D’2 thresholds of 0.1 to D = 0.9
in increments of 0.1. These parameters resulted in ~1700-
15,500 SNPs selected out of a total of 150,077 SNPs. Most
windows contained one SNP, resulting in a roughly uniform
distribution of SNPs across the genome. The window size N
was the main determinant of the number of SNPs selected and
the threshold D’2 had a relatively small effect on the choice of
SNPs (data not shown). We chose a final window size of N =
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30 as the number of SNPs chosen at this window size was
approximately the average of all trials (data not shown). In-
stead of removing the SNP with more missing data, we also
implemented several other procedures, including removing
a random SNP, choosing the SNP with the higher minor allele
frequency (MAF), and choosing the SNP that was more dif-
ferentiated among the ancestral populations, as previously de-
scribed (Liti et al. 2009). However, the set of SNPs selected
was essentially unchanged (data not shown).

Sequential SNP selection procedure: We implemented
a sequential SNP selection procedure in which we identified
LD blocks along a chromosome and kept one SNP per block.
Starting with the first SNP in a chromosome (SNP A), we
calculated LD between this SNP and the next SNP (SNP B).
If SNP B was in high LD with SNP A (upper bound), the SNPs
with less missing data were kept, with ties broken randomly. If
SNP B was in LD with SNP A but not above a certain threshold
(lower bound), the next SNP was considered and no change
was made to SNP A. If SNP B was not in LD with SNP A, then
we kept SNP A as the defining SNP for the previous LD block
and let SNP B begin a new LD block. We varied the lower
bound cutoff and the upper bound cutoff from D’2 = 0.05-
0.95 in increments of 0.05 and found that the upper bound
cutoff did not significantly impact the number of SNPs se-
lected, while the lower bound cutoff had a significant impact,
with more SNPs selected with a higher lower bound. This
trend plateaued at a lower bound of 0.90 (given an upper
bound of 0.95), with ~5700 SNPs. We chose a D’2 cutoff
for high LD of 0.95 and a D'? cutoff for low LD of 0.16,
resulting in a total of 3723 SNPs. We compared the distribu-
tion of SNPs chosen with a more relaxed lower bound of D'? =
0.5 to the distribution of SNPs chosen with D'?2 = 0.16 and
found that both patterns were consistent (data not shown).

Methods for correcting for population structure
in GWAS

A general linear model (LM) without covariates does not
correct for population structure and therefore serves as a
baseline statistical method for comparison with more sophis-
ticated GWAS methods. Several other linear models are
commonly used for population correction, including a gen-
eral linear model with whole-genome ancestry estimates
as covariates and a mixed linear model (MLM) with the kinship
matrix as a random effect, both with and without whole-
genome ancestry covariates. There are several existing pro-
grams that implement these methods in an efficient way for
genome-scale studies, including TASSEL (Yu et al. 2006) and
EMMAX (Kang et al. 2010). TASSEL performs both LM and
MLM, while EMMAX performs only MLM. We implemented an
LM both with and without covariates in R, and we used both
EMMAX and TASSELs MLM algorithms. A summary of all
methods used follows.

LM with covariates: The following methods were used for
LM with covariates:



1. Whole-genome ancestry covariates (obtained from
STRUCTURE) implemented in R;

2. Local-ancestry covariates (obtained from STRUCTURE)
implemented in R;

3. Both whole-genome ancestry and local ancestry covari-
ates implemented in R.

MLM with covariates, implemented in both EMMAX and
TASSEL: The following methods were used for MLM with
covariates, implemented in both EMMAX and TASSEL:

1. Kinship matrix only (kinship matrix computed by
EMMAX-KIN from the EMMAX package);

2. Whole-genome ancestry covariates and kinship matrix,
implemented in EMMAX and TASSEL,;

3. Local ancestry covariates and kinship matrix, implemented
in EMMAX;

4. Local ancestry covariates, whole-genome ancestry covari-
ates, and kinship matrix, implemented in EMMAX.

We denote whole-genome ancestry covariates by Q,
following the notation used in STRUCTURE (Pritchard et al.
2000a), local ancestry covariates as LA, and the kinship matrix
as K. The statistical methods are summarized in Table 1.

Computing global ancestry

We estimated the global ancestry for each strain by running
STRUCTURE with the 3723 SNPs selected by the sequential
SNP selection method (see Methods for SNP selection). To
determine the most likely number of ancestral populations,
we first ran STRUCTURE (see short-run parameters in Param-
eters for the program STRUCTURE) by varying the value of K,
the number of populations, between 3 and 8. Our results in-
dicated that the most likely number of populations is six,
consistent with previous studies (Liti et al. 2009; Schacherer
et al. 2009). We performed a longer run of STRUCTURE using
the linkage model with K = 6 to get a more refined anal-
ysis of the population structure (see long-run parameters
in Parameters for the program STRUCTURE).

Computing local ancestry

STRUCTURE produces local ancestry estimates for each
nucleotide based on a hidden Markov model (Falush et al.
2003). We removed SNPs in background LD using the se-
quential SNP selection scheme described above (see Methods
for SNP selection). To verify the local ancestry estimates of
STRUCTURE, we used the program WINPOP (Pasaniuc et al.
2009) to more carefully analyze the mosaic strains by using as
ancestral populations the non-mosaic strains as determined by
STRUCTURE, since we expect those lineages to be primarily of
a single ancestry across the genome. For this purpose, the
North American strains were grouped with the mosaic strains
as previously determined by Liti et al. (2009), as they exhibit
widespread mosaicism. We used a recombination rate of r =
3.5 x 10~ following Ruderfer et al. (2006). While the number
of generations since admixture is unknown, one estimate
of the number of outcrossing events since the most recent

Table 1 GWAS methods used in this study

Abbreviation Statistical method Covariates
R-LM LM None
R-Q LM Q
R-LA LM LA
R-LAQ LM LA +Q
EMMAX-K MLM K
EMMAX-QK MLM Q+K
TASSEL-K MLM K
TASSEL-QK MLM Q+K
EMMAX-KLA MLM LA + K
EMMAX-KLAQ MLM LA+K+Q

common ancestor of two particular S. cerevisiae strains is 314
(Ruderfer et al. 2006), and the estimate from STRUCTURE
was 28 generations. Therefore, we ran WINPOP for the fol-
lowing range of generations: 5, 10, 15, 28, 157, and 314. The
first four values result in very similar patterns of ancestry
while the last two values give very noisy results. We found
that the local ancestry calls were significantly similar be-
tween WINPOP and STRUCTURE (data not shown) so we
used the STRUCTURE local ancestry estimates for the re-
mainder of the analysis.

Computing the kinship matrix

We computed a kinship matrix for use in the EMMAX and
TASSEL MLMs using the EMMAX-KIN program. We used
PLINK (Purcell et al. 2007) to convert .ped and .map files to
EMMAX-readable .tped and .tmap files. These converted files
were then input to EMMAX-KIN. We used the “identity-by-
state” matrix option, following Zhao et al. (2007).

Identifying significant associations

We used two methods for multiple hypothesis testing correc-
tion. First, we used the Holm correction, which is a family-
wise error rate (FWER) method, similar to the Bonferroni
correction. Second, we used the Benjamini-Hochberg correc-
tion, which is a false discovery rate (FDR) correction. We used
a threshold of 0.05 in both cases.

To identify genes corresponding to statistically significant
SNPs, we used two methods. First, given a significant SNP, if
the SNP fell within a gene, we counted the gene as significant.
Otherwise, we treated both flanking genes as significant.
Second, given a significant SNP, we considered the entire
linkage block containing the SNP and all genes that over-
lapped the linkage block as significant. Linkage blocks were
determined with a procedure similar to the sequential SNP
selection method: starting with the SNP (SNP A), we
computed pairwise LD between the SNP and the next SNP
(SNP B). If LDs between SNP A and SNP B were above the
threshold D’2 > 0.95 (this threshold was chosen to be con-
sistent with that discussed in Methods for SNP selection), then
we considered SNP B to be part of the LD block. We did the
same for the SNPs before SNP A as well. We preferred the
second method since the manner in which the SNPs were cho-
sen to represent each LD block involved some randomness.
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Simulations

In the first set of simulations, we chose one known phenotype
(specifically, maltose 2% growth rate) from Warringer et al.
(2011). We randomly chose a certain number of causal SNPs,
n, from the 3723 SNPs used in our analysis. For each of the
strains containing the major allele of each of the causal SNPs,
we added a certain fixed effect, V, to the phenotypic value for
the trait. We set n to [3, 20, 100] and we set V to [1, 3] to
explore a wide range of genetic architectures. In addition, we
performed one simulation with n = 3 and V = 10 to simulate
the case of a few causal SNPs of large effect. After all the
effects attributed to these causal SNPs were assigned, we nor-
malized the phenotypic data by subtracting the mean and di-
viding by the standard deviation across all strains. The mean
and variance for the original maltose 2% growth rate trait
were 0.9347 and 0.5781, respectively.

For the second set of simulations, we used genotypic data
from Schacherer et al. (2009), which contains a larger set of
63 strains. To make the simulations comparable to our pre-
vious analyses using the strains from Liti et al. (2009), we
selected SNPs from the set of all 101,343 SNPs reported by
Schacherer et al. (2009) using the same SNP selection pro-
cedure that we used to select SNPs from the strains from Liti
et al. (2009). This procedure selected a total of 12,916 SNPs.
To compute the local and global ancestry covariates, we ran
STRUCTURE on this set of SNPs for K = 6 ancestral popula-
tions, which is consistent with the number of populations de-
scribed by Schacherer et al. (2009) and also with our previous
analysis of the strains from Liti et al. (2009). For the mixed
linear models, we generated an identity-by-state kinship ma-
trix based on the 12,916 SNPs selected using the EMMAX-KIN
program. To simulate the phenotypic data, we first let pheno-
types for all 63 strains be 0. Then we proceeded as with the
first set of simulations by randomly selecting n causal SNPs
and adding to the phenotypic values the phenotypic effect
V. As before, we let n = [3, 20, 100] and V = [1, 3], with an
additional simulation of n = 3 and V = 10 to simulate the case
of a few causal SNPs with a very large effect.

For both types of simulations, 200 iterations were run for
each pair of parameters, n and V. For each of these simulations,
we ran all GWAS methods analyzed in our previous analyses.
To compute the receiver operating characteristic (ROC) curves,
for each pair of parameters and each simulation, we deter-
mined the ranks of the n planted SNPs and then took the
average ranks over all simulated data sets. That is, we took
the average rank of the highest-ranked planted SNP, and
then we took the average rank of the next highest-ranked
planted SNP, etc. Finally, we plotted these average ranks
in the ROC curves.

Results

We obtained whole-genome resequencing data for 38
strains of S. cerevisiae (Liti et al. 2009) and processed the
raw data as previously described (Chen et al. 2010). We
obtained phenotypic data for 35 of the strains in 67 different
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environmental conditions (Warringer et al. 2011). There were
three measurements per environment—growth rate (pop-
ulation doubling time), adaptation (proliferation lag), and
efficiency (population density change)—resulting in 201 total
phenotypes for each strain.

Selecting SNPs for population structure analysis

We investigated the population structure of the 35 S. cerevisiae
strains using the program STRUCTURE (Pritchard et al. 2000a;
Falush et al. 2003). An important issue that has not received
much attention in the literature is how to select an appropriate
set of SNPs when running STRUCTURE (Miclaus et al. 2009).
STRUCTURE requires SNPs that are somewhat linked but
not so tightly linked that there is significant background
LD among the SNPs (i.e., LD present in the ancestral popula-
tions prior to admixture) (Falush et al. 2003). Indeed, we
found that the results of STRUCTURE were sensitive to
the choice of SNPs (Materials and Methods and Supporting
Information, Figure S1).

We thus performed a comparison of SNP spacing pro-
duced by the two SNP selection procedures, sliding-window
selection and sequential selection (Materials and Methods).
We found that SNPs selected by the sliding-window procedure
were more uniformly distributed across the genome while
sequentially selected SNPs tended to form clusters (Figure
S2). Sequential SNPs were chosen in a manner consistent
with the recombination landscape of the genome (Mancera
et al. 2008), with fewer SNPs chosen around the centromeres
where recombination is low and more SNPs chosen around
recombination hotspots, while windowed SNPs were more
uniform across the genome (Figure S2). Thus we performed
all further analyses with SNPs selected by the sequential
method. When we set the LD cutoff to D'?2 = 0.16, the se-
quential procedure resulted in a set of 3723 SNPs. To confirm
the clustering result of STRUCTURE, we performed principal
components analysis using the 3723 SNPs and found that the
non-admixed strains found by STRUCTURE cluster together
(Figure S3).

Preliminary analysis of the phenotypic data

We started by computing the variance of each phenotype
across all strains. We also measured the degree of population
structure underlying each phenotype by performing GWAS
using a general linear model with no correction for population
structure (Materials and Methods). One empirical way to
ascertain the existence of population structure in GWAS is to
plot the P-values produced by a statistical method as a Q-Q
plot. A standard result states that, under the null hypothesis
(in this case, the hypothesis of no population structure), the P-
values are uniformly distributed. Since population structure is
expected to produce spurious associations when in fact there
are none, in the presence of population structure the ob-
served P-values will tend to be smaller than expected. We
defined the amount of population structure remaining after
statistical correction by taking the mean squared distance
(MSD) between the points generated by the Q-Q plot and
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Table 2 Environment types that are significantly structured
compared to the background

Environment P-value
Rapamycin 0.0006
CucCl2 0.0024
LiCl 0.026
Kcl 0.084
pH 0.095

The level of population structure was measured by the MSD statistic from the Q-Q
plot produced by a general linear model.

the corresponding point on the line Y = X (i.e., the expected
P-values).

The top 10 conditions that are most genetically struc-
tured as measured by the MSD statistic are: rapamycin 0.5
pg/ml adaptation; rapamycin 1 pg/ml adaptation; pH 3.5
adaptation; LiCl 150 mM efficiency; CuCl2 0.75 mM rate;
CuCl2 0.375 mM rate;KCl 1.45 M rate; CoCl2 0.015 mM
adaptation; maltose 2% rate; and LiCl 225 mM efficiency.
The average phenotypic variance for these 10 conditions (0.77)
was significantly higher than the average phenotypic variance
for all 201 conditions (0.30; P-value 0.0036, 100,000 boot-
strap replicates). This suggests that conditions with high lev-
els of population structure (at the genotype level) also have
more varied phenotypes. We repeated the analysis with a dif-
ferent measure of population stratification, the variance in-
flation factor (Devlin and Roeder 1999), instead of the MSD
statistic and obtained a nearly identical result (data not
shown).

There are a total of 67 types of environments, for example,
environments with various levels of pH or glucose concen-
tration. Five environment types were significantly structured
compared to background (Table 2). We conclude that it is
important to account for population structure when per-
forming GWAS in S. cerevisiae.

Comparison of statistical methods for GWAS

To assess the performance of different statistical methods for
correcting for population structure, we carried out GWAS
analysis for all 201 phenotypes using the methods listed in
Table 1 (Materials and Methods). We found a wide range of
significant SNPs called by the different statistical methods,
highlighting the importance of considering different statis-
tical methods in GWAS (Table 3). We combined the best
scoring method (according to the MSD statistic) for each
phenotype into a meta-statistical method that we will refer to
as the “BEST” method.

Some SNPs were found to be statistically significant in
multiple phenotypes, and we call these “pleiotropic SNPs.”
When removing pleiotropic SNPs, we still found a wide range
of numbers of SNPs found by the different statistical methods
(Table 3). The number of GWAS loci detected under the Holm
correction, a commonly used Bonferroni-type multiple testing
correction, was small (fewer than two per phenotype for
the general linear model). This is consistent with the power
of the study based on the number of strains, and we discuss
this point at greater length in the Discussion.

Table 3 SNPs found significant across all phenotypes after
correction for FWER (Holm) and FDR (Benjamini-Hochberg), both
at a threshold of 0.05

Including duplicates Unique SNPs
Method Holm BH Holm BH
R-LM 389 2662 99 1200
R-Q 249 1024 106 415
EMMAX-K 235 353 31 57
EMMAX-QK 68 97 14 29
R-LA 431 2154 220 891
R-LAQ 191 1261 107 723
EMMAX-KLA 637 1477 65 171
EMMAX-KLAQ 90 144 17 44
BEST 162 359 63 177

The multiple testing corrections were applied to each condition separately, not to all
201 phenotypes all together. SNPs that are found to be significant in multiple
phenotypes are included multiple times under the “Including duplicates” but only
once under the “Unique SNPs.” BH, Benjamini-Hochberg.

We compared the P-values produced by the different sta-
tistical methods (Table 4) and found a strong Pearson cor-
relation between the MLM methods implemented in EMMAX
and TASSEL when only the kinship matrix K was used (R =
0.82). However, this correlation was much lower with the
addition of the global ancestry covariate Q (R = 0.25). Addi-
tionally, we found that the methods R-LA and R-LAQ both
exhibited relatively low correlations to the other methods.
Surprisingly, R-LM, which used no covariates for correction, had
a fairly high correlation with EMMAX-K. We are not sure why
the EMMAX and TASSEL implementations of the MLM differ.
To the best of our knowledge, the only difference between the
two programs is the implementation of the compression
method, and this might be the reason for the different results.

For each GWAS method and phenotype, we generated
a Q-Q plot (Figure 1). Using the MSD statistic, we found that
the EMMAX-KLA method was the most effective overall at
correcting for population structure, followed by R-LAQ (Table
5; Table S1; Figure 2). Our data highlight the importance of
correcting for the local ancestry, not just the global ancestry, of
a strain when performing GWAS.

The results from the GWAS analysis reported above used
the set of 3723 SNPs produced by our sequential SNP selection
procedure (Materials and Methods). While removing SNPs in
high LD is not required for GWAS, it reduces the multiple
hypothesis testing burden while retaining most of the statistical
power to detect associations; a similar strategy is used when
selecting tag SNPs in human GWAS. To test the robustness
of our choice of SNPs for the GWAS analysis, we selected an
expanded set of 15,812 SNPs by choosing 1 SNP for each
window of 10 SNPs. We then performed GWAS with the
linear model with no covariates for the six copper-tolerance
phenotypes. While using the expanded set of SNPs resulted in
more SNPs declared significant, the end result was similar
because of the higher multiple testing burden for the ex-
panded set of SNPs (data not shown).

We repeated our analyses using the variance inflation
factor (VIF) (Devlin and Roeder 1999) as a measure of the
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Table 4 Correlation coefficients between the P-values produced by different GWAS methods

R-LM R-Q EMMAX-K EMMAX-QK EMMAX-KLA EMMAX-KLAQ TASSEL-K TASSEL-QK  R-LA R-LAQ
R-LM 1 0.1684 0.7341 0.2024 0.0753 0.0936 0.6397 0.1460 0.0850 0.0566
R-Q 1 0.2540 0.2847 0.1686 0.0557 0.3073 0.8103 0.2886 0.0989
EMMAX-K 1 0.3338 0.1374 0.1241 0.8153 0.2603 0.0977 0.0619
EMMAX-QK 1 0.2493 0.4173 0.2888 0.2542 0.1190 0.0492
EMMAX-KLA 1 0.2683 0.1084 0.1289 0.2208 0.1027
EMMAX-KLAQ 1 0.0869 0.0408 0.0849 0.0738
TASSEL-K 1 0.3425 0.1039 0.0630
TASSEL-QK 1 0.2476  0.0947
R-LA 1 0.2654
R-LAQ 1

degree of population stratification instead of the MSD sta-
tistic. We note that the mean of the test statistics has been
proposed as a good estimator for the variance inflation fac-
tor (Reich and Goldstein 2001; Devlin et al. 2004), so our
MSD statistic has some basis in formal statistical theory.
Overall, EMMAX-KLA still performed better than the other
GWAS methods under the VIF statistic (data not shown).
We also checked the genes found statistically significant by
the “BEST” method where we now have two “BEST” methods:
“BEST-VIF” and “BEST-MSD.” After FDR multiple testing cor-
rection, “BEST-MSD” found 58 conditions with significant
genes while “BEST-VIF” found 48. Under about half the con-
ditions, there were identical sets of significant genes. We ob-
served very similar results for the Holm correction (data not
shown). Thus our use of the MSD statistic did not affect our
overall conclusions.

Functional analysis of GWAS SNPs

For the remaining analyses, we took the best correction
method for each phenotype and used the P-values generated
by that method. We refer to this meta-statistical method as
the “BEST” method. To investigate the functional significance
of the statistically significant SNPs, we examined the fraction
of significant SNPs contained in genes. We found that 75% of
SNPs called statistically significant under the FDR correction
were in genes compared to 63% of all SNPs used in our
analysis (P-value < 1le-4).

We also examined the biological functions of the GWAS
SNPs using the GO term enrichment program FuncAssociate
(Berriz et al. 2003). We found several interesting enriched
functions, including biotin biosynthesis for the phenotype
pH 3.5 adaptation (Fisher’s exact test, P-value 0.001). Be-
cause of the small number of SNPs, most functions did not
reach statistical significance. Nonetheless, among the un-
corrected P-values, we observed many suggestive functions,
such as glucoside transport for the phenotype, glucose 8%
efficiency (Fisher’s exact test, uncorrected P-value 0.003),
and oligosaccharide metabolic process for the phenotype glu-
cose 0.5% rate (Fisher's exact test, uncorrected P-value
0.003). Although these functional results are preliminary, they
suggest that more highly powered GWAS in S. cerevisiae may
be able to elucidate important biochemical pathways.

Next we followed up on several associations previously
detected by Cubillos et al. (2011) and Warringer et al. (2011).
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These researchers studied four broad phenotypes and their
associated genes: copper tolerance, associated with CUP1/2;
NaCl and LiCl tolerance, associated with ENA1/2/5; galactose
growth, associated with GAL1/2/3; and maltose growth,
associated with MAL31/32/33. To determine if the GWAS
methods that we tested discovered the previously published
associations, for each condition, gene, and GWAS method, we
searched for all SNPs that were nominally significant at a P-
value threshold of 0.05 in the vicinity of the relevant gene(s).

We computed how many relevant SNPs that each GWAS
method found for all four reported associations and the
percentage of SNPs found compared to the total number of
nominally significant SNPs found by each algorithm (data not
shown). The closest SNP to CUP1 and CUP2 (chr08:214751)
was found by EMMAX-QK and LM-Q, while the next closest
SNP (chr08:221695) was found by EMMAX-KLAQ and LM.
For NaCl tolerance, four SNPs that fell within the ENA1 gene
were discovered by several GWAS methods. Similarly for LiCl
tolerance, four SNPs were discovered, three of which fell
within ENA1, and one of which fell 1743 bp downstream
of ENAS5 (chr04:525679). The GWAS methods combined
also discovered four SNPs associated with the maltose growth
environments, all of which were located within MAL31. No
significant SNPs were found in or near GAL1/2/3 by any of
the GWAS methods only because there were few SNPs in
our set near these genes (data not shown). We conclude that
the GWAS methods are often able to recover previously known
associations.

Evolutionary analysis of GWAS SNPs

It is also important to understand the nature of the evolu-
tionary forces acting on SNPs that affect phenotypic variation.
To address this issue, we considered the distributions of minor
allele frequencies of the 3723 SNPs used in our analysis and
all intergenic SNPs and compared them to the distribution
of minor allele frequencies of the SNPs that were found to be
statistically significant by the GWAS methods. We did not
attempt to root the SNPs to obtain derived allele frequencies,
similar to a previous study (Chen et al. 2010).

Overall, significantly associated SNPs were highly enriched
for rare alleles compared to either the 3723 SNPs used in our
analysis or all intergenic SNPs (Table 6). These results were
robust whether we used an FWER or an FDR multiple testing
correction method and whether we considered nonpleiotopic
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or pleiotropic SNPs. Note that in general GWAS methods have
more statistical power for SNPs with higher MAF, so our
tests were conservative because they showed that GWAS
SNPs were nonetheless enriched in lower MAF. Also, the
strain sampling and SNP selection procedures should not
bias our result because all sets of SNPs should be equally
affected.

Simulation study of S. cerevisiae GWAS

To complement our GWAS analysis on real data, we performed
two sets of simulations over a wide range of genetic architec-
tures: one set based on the existing phenotypic data from
Warringer et al. (2011) and one set with purely simulated
phenotypes (Materials and Methods). To determine the per-
formance of each GWAS method, we plotted ROC curves to
compare the average ranks of the randomly chosen causal
SNPs (Materials and Methods). In general, all the GWAS
methods performed better in the simulations with simpler
genetic architectures (i.e., fewer causal SNPs of larger ef-
fect). All methods performed close to random in the sim-
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ulations involving 100 SNPs (Figure S4), but they performed
much better with three SNPs and large phenotypic value
(Figure S5). The purely simulated phenotypes generally
performed better than the phenotypes based in the existing
phenotype (Figure S6), perhaps due to the larger sample size
in the analyses involving the data set of Schacherer et al.
(2009). These simulation results are consistent with the re-
cent results of Connelly and Akey (2012).

In most cases, EMMAX-K performed the best in terms of
the ROC curves, having a lower rate of false positives. To
address why the methods based on local ancestry appear
to be performing worse according to the ROC curves, we
computed the variance of the ranks in the simulations. We
observed that the methods based on local ancestry have
higher variance (data not shown), presumably because when
randomly selecting SNPs to be causal SNPs, some of the SNPs
chosen were correlated with local ancestry so their effect was
inadvertently corrected by the GWAS method. This raises an
important broader point: while we have concentrated on
trying to reduce false positive associations so far, any such
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Figure 2 Mean Square Distance (MSD) score for each algorithm tested.

method will necessarily also reduce the power of the
statistical approach. Nonetheless, we have shown above
that the statistical power of our local ancestry approach is
not extremely low because it still is able to recover biologically
meaningful associations previously published in Cubillos et al.
(2011) and Warringer et al. (2011).

Discussion

GWAS have proven to be a highly effective way to map the
genes underlying complex phenotypic traits in many species. In
all applications of GWAS, it is crucial to control for underlying
population structure, since it can cause spurious associations.
Here we have performed an empirical study of statistical
methods for correcting for population structure when per-
forming GWAS in the important model organism, S. cerevisiae.
Our main results are that GWAS is indeed a feasible approach
in S. cerevisiae and that it is important to take into account the
local ancestry of an S. cerevisiae strain when performing
GWAS. At a practical level, the EMMAX mixed linear model
implementation (Kang et al. 2010) using an identity-by-state
kinship matrix as a random effect and local ancestry inferred
by STRUCTURE (Falush et al. 2003) as a fixed effect per-
formed best in our experiments. Importantly, our work also
shows that existing methods for detecting local ancestry, such
as STRUCTURE (Falush et al. 2003) and WINPOP (Pasaniuc
et al. 2009), are effective in S. cerevisiae, at least for the pur-
poses of GWAS. Nonetheless, the demographic history of S.
cerevisiae is complex (Liti et al. 2009; Schacherer et al. 2009)
and properly modeling it will probably require more special-
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Table 5 Statistical method and phenotypes where
it performed best

No. of phenotypes where

Statistical method method performed best

R-LM 11
R-Q 22
R-LA 14
R-LAQ 49
EMMAX-K 36
EMMAX-QK 5
EMMAX-KLA 62
EMMAX-KLAQ 2

Boldface type indicates the method which performed the best over all conditions.

ized statistical methods than the methods designed for the
comparatively simpler cases of recent punctate admixture
in human populations, particularly Latinos and African-
Americans (Verdu and Rosenberg 2011).

There are many differences between performing GWAS
in S. cerevisiae and humans. First, the burden of multiple
hypothesis testing correction is much lower in S. cerevisiae
because it has a much smaller genome size. Our analysis
used only 3723 SNPs compared to the ~500,000 typically
used in human GWAS studies. If a simple Bonferroni-type
correction is used, we would expect an S. cerevisiae GWAS
to be far more powerful than a comparable GWAS in humans.
Second, the extent of linkage disequilibrium is much less in S.
cerevisiae, so GWAS in S. cerevisiae is more likely to pinpoint
the actual causal variant than in humans, where it is more
likely to find an association with a tag SNP. The S. cerevisiae
genome is also much more gene-rich than the human genome,
so each significant SNP is easier to link to a putative causal
gene than in the human case. Third, since it is relatively cost-
effective to fully resequence S. cerevisiae genomes, we were
able to use whole-genome resequencing data compared to
the SNP genotyping chips still typically used in human GWAS
studies (although continued decreases in sequencing cost
may make whole-genome resequencing for humans feasible
at some point in the future). Thus GWAS in S. cerevisiae can in
principle test causal SNPs for association rather than tag
SNPs. It has previously been shown that the power to de-
tect association is much higher when testing the causal
SNPs than when testing a tag SNP (Ohashi and Tokunaga
2001). Fourth, with S. cerevisiae it is possible to perform rep-
licate phenotypic measurements to reduce the environmental
noise. For all of these reasons, we believe that the power of
GWAS in S. cerevisiae mitigates the relatively small sample
sizes of individuals used in our study. We also note that it
is possible to study many environmental conditions in S.
cerevisiae, such as drug treatments, which would be impossible
or unethical to do in humans.

S. cerevisiae is an important model organism for many
aspects of molecular biology. Recent work on mapping com-
plex traits in this species using recombinant inbred lines has
yielded many important insights (Ehrenreich et al. 2009). In
addition to its use as a model organism, S. cerevisiae is also



Table 6 Minor allele frequencies for nonpleoitopic and pleiotropic SNPs found by the BEST method

Type of SNP Multiple testing correction P-value vs. GWAS P-value vs. intergenic Mean MAF No. of SNPs
Nonpleiotropic Holm 1.676e-15 0.0088 0.1329 63
FDR 1.251e-17 4.975e-85 0.1227 359
Pleiotropic Holm 0.0028 7.692e-07 0.0898 14
FDR 1.005e-12 0.0125 0.1228 47

The BEST method refers to the best method of correction for each condition separately. The P-values are from one-sided Wilcoxon tests. By comparison, the mean MAF for

intergenic SNPs was 0.1684, and the mean MAF for GWAS SNPs was 0.1839.

an important agricultural species in its own right. Thus we
hope that the statistical methods for GWAS investigated
here will lead to further advances in our understanding
of the genotype-phenotype map in this important species.
Our comparisons to previous mapping results in S. cerevi-
siae (Cubillos et al. 2011; Warringer et al. 2011) are prom-
ising in this regard. A recent study of GWAS in S. cerevisiae
also found similar results to our study (Connelly and Akey
2012). In particular, they showed through simulations on
the same set of S. cereivisae strains that GWAS in S. cerevisiae
is generally difficult because of the complex population struc-
ture but is feasible for Mendelian trait and cis QTL map-
ping. One difference is that Connelly and Akey (2012)
stressed the difficulties of GWAS in S. cerevisiae whereas
we have stressed the relative utility of using local ancestry
corrections in S. cerevisiae GWAS, while continuing to ac-
knowledge the overall difficulty of using GWAS methods in
this species. Nonetheless, our improved GWAS performance
on the larger set of S. cerevisiae strains from Schacherer et al.
(2009) suggests that increased sampling and sequencing of
strains will improve GWAS results in the future. Such stud-
ies will be facilitated by the small size of the S. cerevisiae
genome (~12 Mb), the decreasing cost of DNA sequencing,
and the relative tractability of high-throughput phenotyping in
yeast (Ohya et al. 2005).

In addition, there are many other studies of GWAS in
other model organisms that are similar to our study, including
studies in mice (Payseur and Place 2007), Arabidopsis (Zhao
et al. 2007), maize and rice (Brachi et al. 2011), tomato (Ranc
et al. 2012), dog (Tsai et al. 2012), and Drosophila mela-
nogaster (Mackay et al. 2012). Recent admixture is a pervasive
phenomenon in many species. For example, there is strong
evidence of non-African admixture in the DPGP D. mela-
nogaster lines from Africa (J. Pool, unpublished results).
GWAS in admixed human populations is also an important
current research problem, and a very interesting goal for
the future will be to combine admixture mapping with asso-
ciation mapping (Seldin et al. 2011; Shriner et al. 2011).
Thus we believe that our results will also be useful for GWAS
analyses in humans and other model systems as well.
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