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ABSTRACT Genetic correlations between quantitative traits measured in many breeding programs are pervasive. These correlations
indicate that measurements of one trait carry information on other traits. Current single-trait (univariate) genomic selection does not
take advantage of this information. Multivariate genomic selection on multiple traits could accomplish this but has been little explored
and tested in practical breeding programs. In this study, three multivariate linear models (i.e., GBLUP, BayesA, and BayesCp) were
presented and compared to univariate models using simulated and real quantitative traits controlled by different genetic architectures.
We also extended BayesA with fixed hyperparameters to a full hierarchical model that estimated hyperparameters and BayesCp to
impute missing phenotypes. We found that optimal marker-effect variance priors depended on the genetic architecture of the trait so
that estimating them was beneficial. We showed that the prediction accuracy for a low-heritability trait could be significantly increased
by multivariate genomic selection when a correlated high-heritability trait was available. Further, multiple-trait genomic selection had
higher prediction accuracy than single-trait genomic selection when phenotypes are not available on all individuals and traits. Addi-
tional factors affecting the performance of multiple-trait genomic selection were explored.

THE principle of genomic selection is to estimate simulta-
neously the effect of all markers in a training population

consisting of phenotyped and genotyped individuals (Meuwissen
et al. 2001). Genomic estimated breeding values (GEBVs)
are then calculated as the sum of estimated marker effects
for genotyped individuals in a prediction population. Fitting
all markers simultaneously ensures that marker-effect esti-
mates are unbiased, small effects are captured, and there is
no multiple testing.

Current genomic prediction models usually use only
a single phenotypic trait. However, new varieties of crops
and animals are evaluated for their performance on multiple
traits. Crop breeders record phenotypic data for multiple
traits in categories such as yield components (e.g., grain
weight or biomass), grain quality (e.g., taste, shape, color,
nutrient content), and resistance to biotic or abiotic stress.
To take advantage of genetic correlation in mapping causal
loci, multi-trait QTL mapping methods have been developed
using maximum-likelihood (Jiang and Zeng 1995) and

Bayesian (Banerjee et al. 2008; Xu et al. 2009) methods. Calus
and Veerkamp (2011) recently presented three multiple-trait
genomic selection (MT-GS) models: ridge regression (GBLUP),
BayesSSVS, and BayesCp. The authors ranked the perform-
ances of these MT-GS methods (BayesSSVS . BayesCp .
GBLUP) based on simulated traits under a single genetic
architecture. Genetic correlation was shown to be a key fac-
tor determining the MT-GS advantage over single-trait ge-
nomic selection (ST-GS). A few issues for these MT-GS
methods still need attention. First, genetic architecture has
been shown to affect the performance of different ST-GS
methods differently (Daetwyler et al. 2010). Only a single
genetic architecture was tested to rank these MT-GS meth-
ods. Second, the performance of these MT-GS methods on
real breeding data were not shown since only simulated
data were tested. Third, heritability is a key factor affecting
GS performance. How heritability of multiple traits affects
the performance of MT-GS has not been evaluated. Finally,
no MT-GS packages are publicly available yet.

In addressing these issues, we also note and deal with
a statistical issue identified by Gianola et al. (2009) in the
BayesA and BayesB models of Meuwissen et al. (2001). In
particular, the posterior inverse-x2 distribution of marker
effects has only one more degree of freedom than its prior
distribution, which restricts Bayesian learning from the data
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by allowing the prior to dominate the posterior (Gianola
et al. 2009). One solution, called BayesCp (Habier et al.
2011), combines all markers with nonzero effects and esti-
mates for them a common variance. This approach pools
evidence from the markers and enables Bayesian learning.
The solution we propose here considers the parameters of
the marker effect variance prior as random variables and
estimates them in a full hierarchical BayesA.

Our objectives in this study are to: (1) solve the statistical
issue in conventional BayesA directly by the development of
full hierarchical Bayesian modeling; (2) develop and extend
two multiple-trait models (i.e., BayesA and BayesCp); (3)
test different MT-GS methods using simulated and real data
and compare them to ST-GS methods; and (4) investigate
factors affecting the performance of MT-GS methods.

Materials and Methods

Data simulation

Genomic selection models were compared using simulated
data. Under the default simulation scenario, a pedigree
consisting of six generations (generation 0–5) was simulated
with an effective population size (Ne) of 50 haploids and
starting from a base population with 5000 SNPs obtained
using the coalescence simulation program GENOME (Liang
et al. 2007). Value 0 or 1 was assigned to the two possible
homozygote genotypes. This coalescent simulator assumes
a standard neutral model and provides whole-genome hap-
lotypes from a population in mutation–recombination–drift
equilibrium. The census population size from base to gener-
ation 4 was equal to Ne but increased to 500 in generation 5.
The simulated genome was similar to that of barley (Hordeum
vulgare L.) with seven chromosomes, each of 150 cM. In
total, 2020 SNPs were randomly selected from all polymor-
phic SNPs and 20 of those SNPs were randomly selected as
QTL. QTL effects on two phenotypic traits were sampled
from a standard bivariate normal distribution with correla-
tion 0.5. This choice assumes some level of pleiotropy at all
loci. The true breeding value for each individual was the
sum of the QTL effects for each trait. Normal error deviates
were added to achieve heritabilities of 0.1 for trait 1 and 0.5
for trait 2. All individuals have phenotypes on both traits.
The covariance of errors between traits was zero. A single
simulation parameter at a time was perturbed from the de-
fault scenario. Perturbed parameters included trait heritabil-
ity (using values 0.1, 0.5, and 0.8), genetic correlation
between traits (0.1, 0.3, 0.5, 0.7, and 0.9), error correlation
(20.2, 0, and 0.2), and number of QTL (20 and 200). Each
simulation scenario was repeated 24 times for each predic-
tion model to estimate the standard deviation of the pre-
diction performance. All simulated data are available in
supporting information, File S1.

Pine breeding data

Previously published pine breeding data (Resende et al.
2012) were used for model comparison. Deregressed esti-

mated breeding values (EBVs) given in this study for disease
resistance Rust_bin (presence or absence of rust) and Rust_
gall_vol (Rust gall volume) were fit in different models. A
total of 769 individuals had phenotypes for both traits and
genotypes. We filtered genotype data to retain polymorphic
SNPs with ,50% missing data resulting in 4755 SNPs for
analysis. Missing SNP scores were imputed with the corre-
sponding mean for that SNP. As for the simulated data,
value 0 or 1 was assigned to the two possible homozygote
genotypes and 0.5 to the heterozygote genotypes.

Linear regression model

Marker effects on phenotypic traits were estimated from the
mixed linear model:

y ¼ uþ
Xp
j¼1

X ja jd j þ e:

In univariate models, y is a vector (n · 1) of phenotypes on n
individuals, u is the overall population mean, X is a design
matrix (n · p) allocating the p marker genotypes to n indi-
viduals, aj is the allele substitution effect for marker j as-
sumed normally distributed aj � N(0, s2

aj
), dj is an indicator

variable with value 1 if marker j is in the model and value
0 otherwise, e is a vector (n · 1) of identically and indepen-
dently distributed residuals with e � N(0, s2

e).
In multivariate models with m traits, marker effects on

phenotypic traits were estimated from the mixed linear
model below.

y ¼ uþ
Xp
j¼1

X ja jd j þ e;

where y is a matrix (n · m) of m phenotypes on n individ-
uals, aj is a vector (1 · m) for the effects of molecular
marker j on all m traits and assumed normally distributed
aj�N(0, Saj), Saj is the variance–covariance matrix (m · m)
for marker j, e is a matrix (n · m) of residuals with each row
having variance Se(m · m).

Single-trait and multi-trait pedigree-BLUP
and GBLUP models

The numerator relationship matrix calculated from pedi-
gree and the realized relationship matrix derived from
SNPs were fit in ASReml (Gilmour et al. 2009) to predict
the breeding values of individuals for validation. For mul-
tivariate pedigree-BLUP and GBLUP estimation, the breed-
ing values of multiple traits for individuals for validation
were predicted from a multi-trait model in ASReml in
which an unstructured covariance matrix among traits
was assumed.

Single-trait BayesA (ST-BayesA) model

In the BayesA method, all dj = 1 so that all markers are fit in
the model. The prior distribution of marker substitution ef-
fect aj is normal N(0, s2

aj
) and the prior distribution for
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marker variance s2
aj

is a scaled inverse-x2 distribution with
x-2(n, s). The prior distribution of the error variance, s2

e , is
x22(22, 0). The univariate BayesA developed in this study
is different from the BayesA in Meuwissen et al. (2001) in
that the parameters of the x22(n, s) prior for s2

aj
were trea-

ted as unknown instead of being fixed. Below, we call the
BayesA model in Meuwissen et al. (2001) “conventional
BayesA” and the one developed in this study “full hierarchi-
cal BayesA.” Both n and s were given improper flat priors
and estimated from the data using the Metropolis algorithm
to sample from the joint posterior distribution (see Appen-
dix). Estimation for other parameters were the same as for
conventional BayesA (Meuwissen et al. 2001). In total,
50,000 MCMC iterations were conducted and the first
5000 iterations were discarded as burn-in for all ST-GS
Bayesian models. All Bayesian models were coded in C using
the GNU Scientific Library. The source code is available upon
request.

Multi-trait BayesA (MT-BayesA) model

The prior of the marker substitution effect vector, aj, was
normal, N(0, Saj), and the prior of Sajwas a scaled inverse-
Wishart distribution inv-Wis(n, Sm·m). The prior distribution
of the error variance, Se, was inv-Wis(22, ½0�m·m), where
½0�m·m is a symmetric zero matrix. Like univariate BayesA,
the (n, Sm·m) were given a flat prior and estimated from the
data using the Metropolis algorithm to sample from the joint
posterior distribution (see Appendix). Full conditional distri-
butions used for Gibbs sampling of parameters were as
follows.

For the variance of marker j’s effect, Saj , a scaled inverse-
Wishart distribution,

pðSaj

���n; Sm ·m; ajÞ ¼ inv-Wisðn þ 1; Smxm þ aTj ajÞ:

For the residual variance, Se, a scaled inverse-Wishart
distribution,

pðSe
��n; Smxm;ajÞ ¼ inv-Wisðn2 2; eTeÞ:

Given the error variance and the marker effects, the
overall mean u was sampled from the multivariate normal
distribution,

Nm·m

0
@1
n
ð1T1 ·ny21T1·n

Xp
j¼1

XjajÞ; Se=n

1
A:

In total, 110,000 MCMC iterations were conducted for all
MT-GS Bayesian models and the first 10,000 iterations were
discarded as burn-in.

Single-trait BayesCp (ST-BayesCp) model

The second Bayesian approach estimates the marker effects
by variable selection and has been named BayesCp (Habier
et al. 2011). We present the algorithm briefly. In BayesCp,

marker effects on phenotypic traits were sampled from a
mixture of null and normal distributions,

y ¼ uþ Pp
j¼1

X ja jd j þ e

�
aj
��p;s2

a
��� N

�
0;s2

a
�

probability ð1-pÞ
0 probability p

where dj = 0 with probability p and dj = 1 with probability
1 – p. The markers in the model shared a common variance
s2
a. The prior for the genetic effect of each molecular marker,

aj, depends on the variance s2
a and the probability p that

markers do not have a genetic effect. The procedures for
variable selection and parameter estimation are shown in
the Appendix.

Multi-trait BayesianCp (MT-BayesCp) model

In MT-BayesCp, marker effects on the phenotypic traits
were estimated by the same mixed linear model as univar-
iate BayesCp,

y ¼ uþ Pp
j¼1

X ja jd j þ e

�
aj
��p;s2

a
��� Nð0;SaÞ probability   ð12pÞ

0 probability   p;

where now y is a n · m matrix for m trait values on n
individuals, u is a n · m matrix representing the overall
mean for m traits in the population, aj is a 1 · m vector
for the genetic effects of marker j on the m traits, e is the
n · m matrix of residuals, and dj is the indicator variable as
in ST-BayesCp. The procedures for variable selection and
parameter estimation are shown in the Appendix.

Imputation of missing phenotypic data were imple-
mented in each MCMC iteration in MT-BayesCp. As in Calus
and Veerkamp (2011) for individual i, denote the set of
missing traits by m and the set of observed traits by o. The
expectation of yim can be split into two components, one
that depends only on the genotype of i and one that depends
on the residuals of the observed traits eio. The first compo-
nent is

um þ
Xp
j¼1

X ja jmd j;

while the mean and variance of the second component
comes from multivariate regression of the missing on the
observed and is given by Calus and Veerkamp (2011):

N
�
SemoSe21

oo eo;Semm 2SemoSe21
oo Seom

�
:

Estimation of trait genetic parameter
from MT-GS modeling

Three genetic parameters were calculated and compared for
multiple traits: (1) genetic correlation between traits; (2)
error correlation between traits; (3) heritability for each
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trait. Genetic correlation between trait t1 and t2 was calcu-
lated as sgt1 t2

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgt1 t1

sgt2 t2

p , where sg is the genetic variance–
covariance matrix for multiple traits. The sg was calculated
as ðPk2

k¼k1

Pp
i¼1varðSNPiÞ*aiaTi Þ=ðk2 2 k1 þ 1Þ, where var

(SNPi) is the genotype variance for SNPi and ai is the esti-
mated marker effect vector for SNPi in iteration k for an
analysis run over k2 iterations and with k1 burn-in iterations.
The error correlation was calculated as ðPk2

k¼k1set1t2
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

set1t1
set2 t2

p Þ=ðk2 2 k1 þ 1Þ, where se is the estimated error
variance–covariance matrix of multiple traits in MCMC iter-
ation k. The heritability of trait t was calculated as
sgt1 t1 =ðsgt1 t1þ set1 t1

Þ.
Model validation for simulated and real data

For each simulated data set of 500 individuals, a randomly
selected 400 formed the training set and the remaining 100
were for validation.

For the pine data set, 10-fold cross validation with a two-
step analysis scheme was applied. First, after removal of the
validation fold, the 4755 SNPs were ranked based on their
association with the traits of interest, quantified as the
P-value from a multivariate analysis of variance procedure.
Second, the 500 SNPs with the smallest P-values from this
analysis were used for ST- and MT-GS model fitting. The
two-step analysis was repeated for each of the 10 validation
folds.

For simulated (real breeding) data, the prediction accu-
racy was defined as the correlation between the simulated
true breeding values (observed phenotype data) and the
predicted GEBV values in the validation population. The
standard deviation of the prediction accuracy was reported.

Results

Estimating variance hyperparameters in Bayesian
genomic selection models

To implement the Bayesian learning in the prior selection for
marker variance, the parameters in the inverse-x2 (ST-
BayesA) or inverse-Wishart (MT-BayesA) distribution were

treated as unknowns. The conventional ST-BayesA model
assumed the same prior for marker variance with v =
4.012 and s = 0.002 used in Meuwissen et al. (2001). For
comparison, in conventional MT-BayesA v was set to 4.012
and S to a diagonal matrix with 0.002 on the diagonal. For
the two sets of simulated phenotypic traits controlled by 20
or 200 QTL, both conventional and full hierarchical ST-
BayesA and MT-BayesA were applied. Prediction accuracies
were similar between conventional and full hierarchical
models for the traits controlled by the 20 QTL genetic archi-
tecture (Table 1). In contrast, for the traits controlled by 200
QTL, the full hierarchical models exhibited higher prediction
accuracy for either one or both traits than the conventional
BayesA methods for both ST- and MT-BayesA. For the low-
heritability trait 1, the prediction accuracy (0.33) of MT-
BayesA with fixed prior was significantly lower than the
conventional ST-BayesA model. In contrast, the full hierar-
chical MT-BayesA increased the prediction accuracy by 51%
(from 0.33 to 0.50). A similar significant increase was ob-
served for the high-heritability trait 2 (from 0.53 to 0.73).
The different estimated priors for the marker variance in full
hierarchical models (Table 1) compared to the conventional
BayesA methods reflected the Bayesian learning process
from the data. To take advantage of the full hierarchical
ST- and MT-BayesA method, all BayesA analyses in all later
sections of this study adopted the corresponding full hierar-
chical models.

Prediction of breeding values using different ST- and
MT-GS methods

For comparison between the ST- and MT-GS methods, the
simulated data sets with 20 QTL and 200 QTL were
analyzed with four sets of ST- and MT-GS models: (1)
pedigree-BLUP; (2) GBLUP based on SNP; (3) BayesA, and
(4) BayesCp. In all cases, SNP-based genomic selection
model performed better than pedigree-based BLUP method
for both ST-GS and MT-GS methods for all simulated data
(Figure 1). With 20 QTL (Figure 1, A and B), the prediction
accuracies of low-heritability trait 1 increased 5, 4, 22, and

Table 1 Prediction accuracies of conventional (fixed hyperparameter) and full-hierarchical BayesA methods for ST- and MT-GS models

Degree of freedom Scaled Prediction accuracye

BayesA typea Datab Model typec Trait 1 Trait 2 Trait 1 Trait 2 Trait 1 Trait 2

ST GA20 Fixed 4.012 4.012 0.002 0.002 0.49 6 0.15 0.80 6 0.07
ST GA20 Full 4.041 2.509 0.002 0.002 0.49 6 0.15 0.81 6 0.06
ST GA200 Fixed 4.012 4.012 0.002 0.002 0.53 6 0.10 0.61 6 0.10
ST GA200 Full 4.380 2.060 0.002 0.002 0.51 6 0.11 0.70 6 0.07
MT GA20 Fixed 4.012 4.012 0.002 0.002 0.54 6 0.15 0.80 6 0.08
MT GA20 Full 3.235 3.235 0.002 0.003 0.60 6 0.14 0.83 6 0.06
MT GA200 Fixed 4.012 4.012 0.002 0.002 0.33 6 0.13 0.53 6 0.10
MT GA200 Full 3.088 3.088 0.004 0.012 0.50 6 0.10 0.73 6 0.06
a ST, single-trait BayesA; MT, multiple-trait BayesA.
b Two data sets simulated for traits controlled by either 20 QTL (GA20) or 200 QTL (GA200).
c Fixed, fixed hyperparameter BayesA; Full, full hierarchical BayesA model.
d Scale parameter in ST-BayesA or scale matrix for MT-model in which only the values on diagonal were shown here for comparison.
e Mean 6 standard deviation of the prediction accuracy was reported.
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36% using the MT-GS compared to ST-GS for pedigree-
BLUP, GBLUP, BayesA, and BayesCp, respectively. In both
ST- and MT-GS analysis, Bayesian methods outperformed
both pedigree-BLUP and GBLUP with the 20 QTL scenario
and BayesA was slightly better than BayesCp. For the high-
heritability trait 2, the prediction accuracies of ST-GS and
MT-GS were almost the same. In contrast, under the 200
QTL scenario (Figure 1, C and D), neither the ST or MT
Bayesian methods outperformed GBLUP and within each
type of method, the prediction accuracies between ST- and
MT-GS were very similar.

Effect of heritability on predictions using multi-trait GS

Four combinations of trait heritability were simulated to test
the effect of heritability on MT-GS accuracy. MT-BayesCp
was used for this comparison. Under the ST-BayesCp anal-
ysis, the prediction accuracy for the low-heritability trait
(h2 = 0.1) was 0.49. Given the genetic correlation of 0.5,
the MT-BayesCp prediction accuracy of the low-heritability
trait 1 was 0.67 and 0.70 when the heritability of correlated
trait 2 was 0.5 and 0.8, respectively (Table 2). In contrast,
the prediction accuracy for the medium- (h2 = 0.5) or high-
(h2 = 0.8) heritability traits did not change as the heritabil-
ity of the correlated trait changed.

Effect of genetic correlation between traits
on the prediction of multi-trait GS

As genetic correlation increased between traits, the pre-
diction accuracies increased for the low-heritability trait 1
(Figure 2). When the genetic correlation was 0.1 between
the two traits, the prediction accuracy for the low-heritability
trait was 0.63, which was already higher than the prediction
accuracy based on the univariate analysis (0.49). As the
genetic correlation increased, the prediction accuracies for
the low-heritability trait also increased. In contrast, for the
high-heritability trait 2, no obvious change in prediction
accuracy was observed as the genetic correlation increased
from 0.1 to 0.9.

Effect of error correlation between traits
on the prediction of multi-trait GS

Phenotypic correlation between traits contains both genetic
and error correlations. The error correlation under the de-
fault simulation scenario was zero (Materials and Meth-
ods). Three data sets were simulated with different error
correlations (20.2, 0, and 0.2), while keeping other
parameters at their default settings (Figure 3). The MT-
GS model was able to separate error correlation from
genetic correlation and estimate the heritability well.
Furthermore, for both low- and high-heritability traits,
the prediction accuracies were consistent across the three
data sets.

Real pine breeding data analysis using multi-trait GS

The MT-GS models were applied to two disease-resistance
traits in published pine breeding data (Resende et al. 2012)
using a two-step analysis that reduced marker numbers by
selecting on the rank of marker effect (see Materials and
Methods) (Figure 4). Compared to prediction in the original
publication (Resende et al. 2012), the ST-GS models in this
study showed similar results for all models (GBLUP, BayesA,
and BayesCp). This result suggests that the two-step analy-
sis may be a useful variable selection method when millions
of SNP markers from new sequencing technologies are used
in genomic selection.

Figure 1 Comparison of ST-GS (shaded) and MT-
GS (solid) for correlated low-heritability (h2 = 0.1)
trait 1 (A and C) with high heritability (h2 = 0.5)
trait 2 (B and D) under the genetic architecture of
20 QTL (A and B) and 200 QTL (C and D). Genetic
correlation between the two traits under each of
genetic architectures is 0.5.

Table 2 Prediction accuracy for traits with different heritabilities

Heritability Prediction accuracya

Trait 1 Trait 2 Trait 1 Trait 2

0.1 0.5 0.63 6 0.10 0.86 6 0.05
0.1 0.8 0.70 6 0.08 0.94 6 0.02
0.5 0.8 0.89 6 0.04 0.93 6 0.03
0.8 0.8 0.93 6 0.03 0.94 6 0.03
a Accuracy from the MT-BayesCp for traits simulated with the parameters under the
default simulation except different heritabilities.
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The phenotype and genotype data used for ST-GS analysis
were also fit with three MT-GS models. Within each of
GBLUP, BayesA, and BayesCp, the MT-GS exhibited similar
prediction capability to the ST-GS models (Figure 4). This

prediction pattern was similar to the pattern for the poly-
genic genetic architecture in the simulation study. With MT-
GS models it is also possible to predict a trait when individ-
uals have been measured for other traits. For example, by
setting each 10% of the Rust_gall_vol values to missing
(similar to 10-fold cross-validation) and using both marker
and Rust_bin data to predict these values, MT-BayesCp had
a prediction accuracy of 0.48 (Figure 4), which was a 60%
increase relative to the ST–GS method (0.30).

Discussion

Hyperprior optimization of Bayesian model for ST-GS
and MT-GS methods

The conventional, fixed hyperparameter BayesA model
allows locus-specific marker variances for markers in the
model. This is a natural way to model the assumption that
some markers are in strong LD with important QTL while
others are not (Meuwissen et al. 2001). BayesA is easy to

Figure 2 Effect of genetic correlation (x-axis) on the prediction accuracy
(y-axis) of low-heritability trait 1 (:) and high-heritability trait 2 (•) using
MT-BayesCp.

Figure 3 Effect of error correlation (20.2, 0, and 0.2 for
columns I, II, and III) on genetic parameter estimation and
prediction accuracy using MT-BayesCp. True parameter
values are shown with dashed lines. (A) Genetic correla-
tion; (B) error correlation; (C) heritability for low-heritability
trait (shaded bar; h2 = 0.1) and high-heritability trait (solid
bar; h2 = 0.5); (D) prediction accuracy low-heritability trait
(shaded; h2 = 0.1) and high-heritability trait (solid; h2 =
0.5).
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implement using conjugate priors through Gibbs sampling
and has at times been shown, in both simulated and empir-
ical data, to achieve higher prediction accuracy than ridge
regression (Hayes et al. 2010; Meuwissen et al. 2001). In
BayesA, the hyperprior for the marker-specific variance is
a scaled inverse-x2 distribution with two parameters, degree
of freedom n, and scale s. Because most markers, in partic-
ular SNPs, are biallelic, we estimate only a single marker-
substitution effect per locus and the posterior and prior dis-
tributions differ by only a single degree of freedom (Gianola
et al. 2009; although note that in the original publication,
BayesA was applied not to biallelic markers but to multi-
allelic marker haplotypes, Meuwissen et al. 2001). Conse-
quently, the scale parameter s in the prior has a strong effect
on the shrinkage of marker effects. To address this draw-
back, Habier et al. (2011) developed BayesDp that treated
the scale parameter s as a random variable to be estimated
but still treated the degrees of freedom as known although
this parameter strongly affects the shape of distribution. Thus
BayesDp reduced the problems of BayesA but did not solve
the dominance of the prior over the posterior distribution.
Gianola et al. (2009) suggested several possible solutions in-
cluding development of a full hierarchical approach to esti-
mating the optimal priors from the data instead of assigning
fixed values. In this study, both the degrees of freedom and
the scale s parameter were given a flat prior and estimated
using Metropolis sampling (Appendix). Under a simulated
polygenic architecture, the full hierarchical BayesA model
performed significantly better than the conventional fixed
prior BayesA, and the difference was more important for
multi- than single-trait analyses. Given that the genetic archi-
tecture of traits of interest is unknown in practice use of the
full hierarchical BayesA appears prudent.

Comparison of single-trait and multi-trait GS models

Daetwyler et al. (2010) investigated the impact of genetic
architecture on the prediction accuracy of genomic selec-
tion. They found that the GBLUP linear method showed
relatively constant performance across different genetic
architectures while the Bayesian variable selection method
(BayesB) gave a higher accuracy compared to GBLUP when
the traits were controlled by few QTL. This observation de-
rived from simulation was also confirmed in real breeding
data from different traits of Holstein cattle (Hayes et al.
2010). In a previous MT-GS study (Calus and Veerkamp
2011), different MT-GS methods were compared with each

other and with the corresponding ST-GS methods with sim-
ulated data under a single genetic architecture. In our study,
genetic architecture affected the relative superiority of MT-
GS over ST-GS. Under a major QTL genetic architecture, the
Bayesian models performed better than GBLUP in both single-
and multi-trait models, and the multi-trait analysis was
strongly beneficial. Under the polygenic genetic architec-
ture, however, GBLUP was equal to the Bayesian models
and multi-trait analysis provided a slight improvement at
best. This observation suggests that MT-GS can capture
the genetic correlation between traits when major QTL are
present more efficiently than when they are not. In addition,
if other phenotypes are available on individuals that have
missing data, phenotype imputation with MT-GS methods
can be very useful (Calus and Veerkamp 2011), which was
shown in the MT-BayesCp analysis of real pine data.

Genetic correlation between traits is the basis for the be-
nefit of MT-GS models. Among traits measured by breeders,
not all traits are genetically correlated with other traits. For
two traits simulated without genetic correlation, we found
that MT-GS was inferior to ST-GS (data not shown). The
decreased accuracy presumably arises because sampling
leads to nonzero estimates of correlation in the training
population and then to erroneous information sharing
across traits in the validation population. To avoid the appli-
cation of MT-GS on traits that are not genetically correlated,
we can estimate that correlation between traits using the
GEBVs derived from ST-GS models and apply MT-GS only
where it is likely to be beneficial.

Low-heritability traits benefit from correlated
high-heritability traits

Genetic correlation between traits has previously been
exploited to improve the statistical power to detect QTL
controlling traits of interest (Jiang and Zeng 1995; Fernie
et al. 2004; Chesler et al. 2005; Banerjee et al. 2008; Breitling
et al. 2008; Xue et al. 2008; Xu et al. 2009). In genomic
prediction rather than QTL identification, we have found
that low-heritability traits can borrow information from cor-
related high-heritability traits and consequently achieve
higher prediction accuracy. This improvement was not ob-
served, however, for the high-heritability trait. This charac-
teristic of MT-GS could be very important in plant breeding
since many traits of interest have low heritability. In addi-
tion, plant breeders often want to reduce the undesirable
genetic correlation between traits (Chen and Lubberstedt

Figure 4 Comparison of ST-GS (shaded) and MT-GS
(solid) for two disease-resistance traits of pine tree: Rust_
bin (A) and Rust_gall_vol (B). The striped bars show pre-
diction accuracy for MT-BayesCp when the phenotype for
the focal trait was unknown, but that for the other trait
was observed.
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2010). It is important to note that MT-GS is modeled by
directly taking advantage of such genetic correlation, whether
it is favorable or unfavorable, and is not designed to break the
undesirable genetic correlation.
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Appendix

Metropolis Algorithm for Single-Trait BayesA Model

The joint posterior probability used for sampling the n and s parameters is

pðm;aj;s
2
j ;s

2
e ; n; s

��yÞ ¼ P
n

i¼1
pðyi

��m;aj;s
2
j ;s

2
e ; n; sÞ · P

p

j¼1
pðaj

��s2
j Þ · P

p

j¼1
pðs2

j
��n; sÞ · pðn; sÞ;

where pðyijm;aj;s
2
j ;s

2
e ; n; sÞ and pðajjs2

j Þ are normal distributions, pðs2
j jn; sÞ is a scaled inverse-x2 distribution and pðn; sÞ is

an improper constant prior. The symmetrical jumping distribution to sample the candidates of n or s was normal with the
existing value of (n, s) as mean and variance 0.2. To avoid the negative values sampled from the normal distribution, the
absolute sampled values were used as the candidates. The usual Metropolis rule was used: if the posterior density of
the candidate values was higher than that of the existing values, the candidate values were accepted. If not, the candidates
were accepted with probability equal to the ratio of the candidate to the existing density.
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Metropolis Algorithm for Multi-Trait BayesA Model

The joint posterior probability used for sampling the n and Sm ·m parameters is

pðm; aj;Saj ;Se; n; Sm ·m
��yÞ ¼ P

n

i¼1
pðyi

��m; aj;Saj ;Se; n; Sm·mÞ · P
p

j¼1
pðaj

��SajÞ

· P
p

j¼1
pðSaj

��n; Sm ·mÞ · pðn; Sm ·mÞ;

where pðyijm; aj;Saj ;Se; n; Sm·mÞ and pðajjSajÞ were multivariate (m · m) normal distributions, pðSaj jn; Sm·mÞ was a scaled
inverse Wishart distribution and pðn; Sm·mÞ was constant. The jumping distribution to sample the candidate of n is the
normal distribution with the existing value of n as mean and variance equal to 0.2. The jumping distribution to sample the
candidate scale matrix S*m·m was scaled-inversed-Wishart(100, Sm·m).

Variable Selection Procedure and Posterior Distributions for Single-Trait BayesCp

The posterior distribution of dj is

Pr
�
dj ¼ 1 jy;m;a2j; d2js

2
a;s

2
e ;p

�¼ f
�
rj
��dj ¼ 1; uj

�ð12pÞ
f
�
rj
��dj ¼ 0; uj

�
p þ f

�
rj
��dj ¼ 1; uj

�ð12pÞ;

where a2j and d2j are all marker effects and indicator variables except for marker j, respectively, rj equals xjT(xjaj + e), and xj
is the genotype vector for marker j.

In addition, f ðrjjdj ¼ 1; uj Þ is proportional to ðvdÞ21=2expð2 r2j vd=2Þ, where vd can be two possible values, v0 or v1,
depending whether the marker is in the model or not,

v0 ¼ xTj xj s
2
e

v1 ¼ ðxTj xjÞ2s2
a þ xTj xj s

2
e :

Then if the Prðdj ¼ 1jy;m;a2j; d2j;s
2
a;s

2
e ;pÞ is larger than the value sampled from a unit uniform distribution, the marker is

included in the model. For markers in the model, the posterior distribution of marker effect, aj, is a normal distribution,

N
��
xj
�
y2 x2ja2j

����
xjTxj=s2

e þ 1=s2
a
�
·s2

e
��
; xjTxj=s2

e þ 1=s2
a
�
;

where x2j and a2j are the marker genotype and effect excluding marker j, s2
a, is the common variance shared by all the

markers in the model. For the markers not in the model, the marker effect is equal to zero. The posterior distribution of
overall population mean m and error variance s2

e is the same as in ST-BayesA. Full conditional distributions used for Gibbs
sampling for parameters were as follows.

For the common variance of marker effect, s2
a, a scaled inverse-x2 distribution,

P
�
s2
a

��a� ¼ inv-x2
�
nþ k; sþ aTa

�

where n, the degree of freedom in the prior, was assigned a value of 3, k is the number of markers included in the model, and
s, the scale parameter in the prior, is 0.01. For the probability of marker having a zero effect, p, a beta distribution:

pðp��d;m;a;s2
a;s

2
e ; yÞ � bðp2 kþ 1; kþ 1Þ:

Variable Selection Procedure and Posterior Distributions for Multi-Trait BayesCp

The posterior distribution of dj is similar to the ST-BayesCp except several parameters become matrices,

Prðdj ¼ 1jy;m; a2j; d2j;Sa;Se;pÞ ¼
f ðrjjdj ¼ 1; uj Þð12pÞ

fðrjjdj ¼ 0; uj Þp þ fðrjjdj ¼ 1; uj Þð12pÞ;

where rj is equal to xjT(xjaj + e), f ðrjjdj; uj Þ is proportional to
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ðdetðvdÞÞ21=2exp
�
2

rjv drTj
2

	
;

where vd can be two possible values, v0 or v1, depending whether the marker is in the model,

v0 ¼ xTj x jSe

v1 ¼ ðxTj xjÞ2Sa þ xTj x jSe:

The posterior distribution for p in MT-BayesCp is a beta distribution as in the ST-BayesCp. The prior of Se and common
variance–covariance across markers between traits Sa were inv-Wishart(n, Sm·m), where n was the number of traits plus 1
and Sm·m is a diagonal matrix with size equal to number of traits and 0.01 on the diagonal. Full conditional distributions
used for Gibbs sampling for parameters were as follows:

For the common variance of marker, Sa, a scaled inverse Wishart distribution

pðSajaÞ ¼ inv-Wishart
�
n þ k; Sm·m þ aTa

�
;

where k was the number of markers in the model after the previous variable selection procedure and a was the matrix of
estimated marker effects. For the error variance, Se, a scaled inverse Wishart distribution

pðSejeÞ ¼ inv-Wishart
�
n þ n; Sm·m þ eTe

�
;

where n was the number of individuals in the training population. Given the error variance Se and marker effect a, the
overall population mean vector is sampled from the multinormal distribution,

Nðy2Xa ; Se=nÞ:

The posterior distribution for aj is a multinormal distribution,

NððxTj xjS21
e þ S21

a Þ21S21
e ðxTj ðeþ Xa*j ÞÞT ; ðxTj x jS

21
e þ S21

g Þ21Þ:
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