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 Introduction 

 Endochondral bone formation is controlled by a hier-
archy of transcription factors that are expressed in a de-
fined temporal sequence ( fig. 1 ). RUNX2 is expressed very 
early in skeletal development, first appearing with the for-
mation of mesenchymal condensations in areas destined 
to become bone and persisting through subsequent stages 
of bone formation [Ducy et al., 1997]. Several other tran-
scription factors function together with RUNX2 to move 
cells down chondrocyte or osteoblast lineages. For osteo-
blasts, this is accomplished by Osterix (OSX), which com-
mits osteochondroprogenitor cells to the osteoblast lin-
eage [Nakashima et al., 2002]. Subsequently, another fac-
tor, ATF4, controls the transcriptional activity of mature 
osteoblasts [Yang et al., 2004]. RUNX2 also participates in 
the chondrogenic lineage. However, at early stages, it is 
likely suppressed by the chondrocyte-specific factors Sox 
8/9 [Zhou et al., 2006]. Evidence for this model largely 
comes from genetic studies showing bone phenotypes of 
decreasing severity as  Runx2, Osx  or  Atf4  are knocked 
out. Thus, skeletal development in  Runx2 -deficient em-
bryos fails to progress beyond the cartilage anlage stage 
[Komori et al., 1997; Otto et al., 1997]. These embryos ex-
hibit no sign of cartilage hypertrophy, bony collar devel-
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 Abstract 

 The differentiation of osteoblasts from mesenchymal pre-
cursors requires a series of cell fate decisions controlled by a 
hierarchy of transcription factors. These include RUNX2, Os-
terix (OSX), ATF4 and a large number of nuclear coregulators. 
During bone development, initial RUNX2 expression coin-
cides with the formation of mesenchymal condensations 
and precedes the branching of chondrogenic and osteogen-
ic lineages. Given its central role in bone development, it is 
not surprising that RUNX2 is subject to a variety of controls. 
These include posttranslational modification, especially 
phosphorylation, and interactions with accessory nuclear 
factors. Specific examples of RUNX2 regulation to be re-
viewed include phosphorylation by the ERK/MAP kinase 
pathway and interactions with DLX5. RUNX2 is regulated via 
phosphorylation of critical serine residues in the proline/ser-
ine/threonine domain. In vivo, the transgenic expression of 
constitutively active MAP kinase in osteoblasts accelerated 
skeletal development, while a dominant-negative MAPK re-
tarded development in a RUNX2-dependent manner. DLX5-
RUNX2 complexes can be detected in osteoblasts and this 
interaction plays a critical role in maintaining osteoblast-
specific expression of the bone sialoprotein gene. These 
studies allow us to begin understanding the complex mech-
anisms necessary to fine-tune bone formation as mesenchy-
mal progenitors progress down the osteoblast lineage. 
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opment, vascular invasion or marrow formation. In con-
trast, Osx –/–  embryos have hypertrophic cartilage, early 
collar formation and normal levels of RUNX2, suggesting 
that this factor is downstream of RUNX2 [Nakashima et 
al., 2002]. ATF4 –/–  mice form bone, but at reduced rates, 
consistent with this factor playing a regulatory role in 
bone formation [Yang et al., 2004].

  RUNX2 mRNA is present throughout bone develop-
ment beginning at embryonic day 9.5 (E9.5) in the mouse 
and persisting in active osteoblasts and osteocytes 
throughout adult life [Ducy et al., 1997]. There is good 
evidence that Runx2 regulates separate events at different 
times during skeletal development. As noted above, it has 
early roles in cartilage hypertrophy, bony collar forma-
tion and vascularization, but is also required for terminal 
differentiation of osteoblasts and osteocytes via induc-
tion of genes involved in extracellular matrix (ECM) for-
mation and mineralization. These findings suggest that 
other factors and signals must be able to modify Runx2 
activity according to stage of development without neces-
sarily altering levels of Runx2 protein.  Figure 2  illustrates 
how RUNX2 activity can be regulated without altering 
Runx2 protein levels. In this study, differentiation of 
MC3T3-E1 preosteoblast was induced by growth in 
ascorbic acid-containing medium, thereby allowing cells 
to secrete a collagenous ECM. As ECM accumulates, 
there is a dramatic induction of osteoblast marker genes 
such as bone sialoprotein (Bsp) and Ocn, but, surpris-
ingly, RUNX2 mRNA and protein levels remain relative-
ly constant.

  There are at least 3 possible ways RUNX2 transcrip-
tional activity could be regulated in the absence of chang-
es in RUNX2 protein levels. First, covalent modification 

could alter RUNX2 transcriptional activity. Second, lev-
els of cofactors or ability of cofactors to interact with 
RUNX2 could be regulated. Lastly, Runx2 protein levels 
could be controlled by proteosome-mediated degrada-
tion. All 3 types of regulation have been previously de-
scribed, although we will focus on the first 2.

  Posttranslational Modification 

 The first example involves a pathway incorporating 
integrin-mediated activation of the ERK/MAP kinase 
pathway that results in phosphorylation and stimulation 
of RUNX2 transcriptional activity. Integrins provide a 
direct link between cells and ECM to convey information 
about mechanical loads and ECM stiffness experienced 
by bone to control differentiation [You et al., 2001; Engler 
et al., 2006]. Integrins are also important signal transduc-
tion molecules in their own right that activate Ras-ERK 
and p38 MAP kinase, calcium channels and mechano-
sensors [Hynes, 2002].

  Osteoblast differentiation requires synthesis of a col-
lagen-containing ECM. As is shown in  figure 2 , bone sia-
loprotein and osteocalcin are only expressed in cells 
grown under conditions where they can synthesize a col-
lagenous matrix [Franceschi, 1992]. Using a combination 
of chemical inhibitors and genetic approaches, we previ-
ously established that the response of osteoblasts to ECM 
is mediated by  � 2 � 1 integrins and the ERK/MAP kinase 
pathway [Xiao et al., 1997, 1998, 2000].

  The role of RUNX2 in MAPK responsiveness was es-
tablished in studies with the Ocn gene. MAPK activation 
via transfection of cells with constitutively active MEK1 
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  Fig. 1.  Transcription factor control of skel-
etal lineages. Major transcription factors 
that, based on genetic studies, are involved 
in osteoblast and chondrocyte differentia-
tion are included in this chart. Also shown 
is the sequential nature of transcription 
factor expression with RUNX2 persisting 
throughout osteoblast and chondrocyte 
lineages [Franceschi et al., 2007]. 
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(MEK-SP) could induce Ocn expression, while domi-
nant-negative MEK1 (MEK-DN) was inhibitory [Xiao et 
al., 2000]. Mutational analysis of the Ocn promoter for 
MAPK-responsive sequence elements established the in-
volvement of 2 RUNX2-binding sites called OSE2a and 
b. Mutation of either site reduced MAPK responsiveness 
[Frendo et al., 1998].

  As might be expected, activation of MAPK, either by 
ECM synthesis or transfection with MEK-SP, results in 
increased RUNX2 phosphorylation [Xiao et al., 2000]. 
Examination of different truncations of the RUNX2 pro-
tein showed that the C-terminal proline/serine/threo-
nine region of RUNX2 was required for both MAPK re-
sponsiveness and phosphorylation [Xiao et al., 2000]. 
More detailed deletional analysis further localized a min-
imal region for MAPK responsiveness between amino ac-
ids 254 and 320 (data not shown). The specific identifica-
tion and functional significance of ERK/MAPK phos-
phorylation sites in RUNX2 will be reported elsewhere. 

A number of other stimuli that act through the ERK/
MAPK pathway, including FGFR2 activation by FGF2 
and mechanical loading of osteoblasts, also stimulate 
RUNX2 phosphorylation and transcriptional activity 
[Wang et al., 2002; Xiao et al., 2002; Ziros et al., 2002; Kim 
et al., 2003; Kanno et al., 2007].
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  Fig. 2.  RUNX2 protein levels are not well correlated with tran-
scriptional activity. MC3T3-E1 clone 4 preosteoblast cells were 
grown in control (–) or ascorbate-containing medium (+). At the 
times indicated, RUNX2 protein levels were determined by West-
ern blotting ( a ), while  Runx2  (Osf2),  Ocn  and  Bsp  mRNA levels 
( b–d ) were measured on Northern blots ( b ) and quantified by 
densitometry.  c  Runx2.  d  Ocn and Bsp. Open symbols = Control; 
closed symbols = ascorbate.  S ,  U  = Ocn mRNA;  ) ,  $  = Bsp 
mRNA [Xiao et al. 1998]. 

  Fig. 3.  Altered skeletal development in    TgMek-dn  and  TgMek-sp 
 mice.    a  Whole mounts of E15.5 skeletons stained with alcian blue 
and alizarin red.  d  Effects of transgene expression on embryo 
weights.  b ,  e  Cranial bones showing differences in mineralization 
( b ) and quantification of mineralized area (expressed as percent 
of total calvarial area) ( e ).  c ,  f  Hindlimbs showing differences in 
the size of bones with transgene expression ( c ) and quantification 
of femur lengths ( f ).  g  Histology of long bones from wild-type, 
 TgMek-dn  and  TgMek-sp  mice. Note the delay in bony collar and 
trabecular bone in  TgMek-dn  embryos. Statistical analysis: values 
are expressed as means  8  SD, n = 8/group.  *  Significantly differ-
ent from wild type at p  !  0.01. Reproduced from Ge et al. [2007].         
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  In vivo Manipulation of ERK/MAPK Signaling Alters 

Bone Development 

 We took a transgenic approach to examine the impor-
tance of the ERK/MAPK pathway and RUNX2 phos-
phorylation in osteoblast function in vivo [Ge et al., 2007]. 
Mice were generated using a 0.6-kb mOG2 promoter to 
specifically drive MEK-SP and MEK-DN expression in 
osteoblasts. Transgene expression was detected only in 
bones and had a developmental time course of expression 
that parallels expression of the endogenous Ocn gene. 
ERK1/2 phosphorylation in calvarial osteoblasts derived 
from these animals was shown to increase by 50% in cells 
from  Mek-sp  mice and to decrease by 50% in  Mek-dn  cells 
[Ge et al., 2007]. Thus, transgene expression leads to sub-
tle changes in MAPK activity that resemble fluctuations 
normally induced by physiological stimuli. Skeletal whole 
mounts revealed that  Mek-dn  decreased skeletal size and 
calvarial mineralization, while these parameters were in-
creased in  Mek-sp  mice ( fig. 3 a–f). Histology of long 
bones revealed an additional interesting difference be-
tween wild-type and transgenic mice ( fig. 3 g). At E15.5, 
long bones are normally undergoing endochondral ossi-
fication in diaphyseal regions. However, in  Mek-dn  mice, 
this process is drastically delayed with only early bony 
collar formation being visible. In contrast, in  Mek-sp  
mice, endochondral bone formation is accelerated.

  Transgenic modification of osteoblast MAPK activity 
was also found to alter RUNX2 phosphorylation and 
transcriptional activity. RUNX2 phosphorylation was in-
creased in  Mek-sp  cells as was luciferase activity of an  Ocn  
reporter gene. Also, as expected,  Mek-sp  stimulated in 
vitro osteoblast differentiation as measured by induction 
of osteoblast marker mRNAs or mineralization, while 
differentiation was inhibited in Mek-dn cells [Ge et al., 
2007].

  To provide evidence that MAPK effects on skeletal de-
velopment are mediated by RUNX2, we used a genetic 
approach.  Runx2  +/–  mice are known to have a character-
istic phenotype (hypoplastic clavicles, patent fontanelles) 
that resembles the human genetic disease cleidocranial 
dysplasia [Otto et al., 1997]. We reasoned that if MAPK 
acts by altering RUNX2 activity, calvaria and clavicles 
should be selectively sensitive to the  Mek  transgene when 
RUNX2 is limiting (that is, in  Runx2  +/–  mice). To test this, 
 Runx2  +/–  mice were crossed with  Mek-sp  or  Mek-dn  
transgenic lines and the resulting skeletal phenotypes 
were examined at E19 ( fig. 4 ). Note the reduced calvarial 
mineralization and tiny clavicles in the  Runx2  +/–  embry-
os. The presence of the  Mek-sp  transgene led to a clear 

rescue of the cleidocranial dysplasia phenotype with in-
creased clavicle size and calvarial mineralization. In the 
presence of  Mek-dn , effects on  Runx2  +/–  mice were even 
more dramatic. In this case, the  Mek-dn  transgene exac-
erbated effects of  Runx2  haploinsufficiency with a fur-
ther reduction in calvarial mineralization and near dis-
appearance of clavicles. Notably,  Runx2  +/–   Mek-sp  em-
bryos did not survive the birth process due to severe 
skeletal defects. These experiments provide strong evi-
dence that the ERK/MAPK pathway, via actions on 
RUNX2 transcriptional activity, is important for normal 
osteoblast differentiation and bone formation in vivo.

  RUNX2 Interaction with DLX5 Is Necessary for

Bone-Specific Activation of  Bsp  

 RUNX2 directly or indirectly interacts with a large 
number of nuclear factors. For example, CBF- �  forms 
heterodimers with all members of the Runx family [Ito, 
2004], while ATF4-RUNX2 interactions may mediate 
some of the responses of osteoblasts to parathyroid hor-
mone [Jiang et al., 2004; Xiao et al., 2005]. SMAD pro-
teins, mediators of BMP/TGF- �  actions, can also stimu-
late RUNX2 activity [Afzal et al., 2005]. In addition, there 
are a number of inhibitory factors. SOX9, mentioned 
above, suppresses RUNX2-dependent chondrocyte hy-
pertrophy [Zhou et al., 2006]. TWIST may prevent 
RUNX2 stimulation of mineralization in developing cra-
nial bones to prevent craniosynostosis [Bialek et al., 2004]. 
Lastly, histone deacetylases are known to bind RUNX2 
and keep chromatin in a deacetylated, inactive state [Imai 
et al., 2004].

  Studies on  Bsp  revealed an important regulatory func-
tion of interactions between RUNX2 and DLX5 [Roca et 
al., 2005]. We previously characterized a 2.4-kb promoter 

  Fig. 4.  Genetic interactions between    Mek-dn  and  Mek-sp  trans-
genes and  Runx2.   TgMek-dn  or  TgMek-sp  mice were crossed with 
RUNX2 +/–  mice to generate the genotypes indicated.  a–d  Partial 
rescue of cleidocranial dysplasia phenotype in                      RUNX2  +/–  mice 
with  Mek-sp.   a  Skeletal whole mounts of newborn mice stained 
with alcian blue and alizarin red (top), isolated clavicles (middle) 
and crania (bottom).  b–d  Measurements of femur length ( b ), clav-
icle areas ( c ) and mineralized area of calvaria (expressed as a frac-
tion of total calvarial area) ( d ).  e–h  Increased severity of cleido-
cranial dysplasia phenotype with  Mek-dn.  Groups are as in panels 
 a–d . Statistical analysis: values are expressed as means  8  SD, n = 
8/group. Comparisons are indicated by bars.  *  p  !  0.01. Repro-
duced from Ge et al. [2007].         
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binds DLX5 ( fig. 5 a). Interestingly, levels of RUNX2 as-
sociated with chromatin do not appreciably change dur-
ing osteoblast differentiation. In contrast, DLX5 only be-
comes chromatin associated in differentiated cells 
( fig. 5 b). However, total DLX5 protein was equivalent in 
control and differentiated cells indicating that the affin-

fragment of this gene and showed that it contains suffi-
cient information to drive osteoblast-selective expression 
in vivo [Benson et al., 2000; Gopalakrishnan et al., 2003]. 
Detailed characterization of the proximal Bsp promoter 
identified 2 RUNX2-binding sites (R1, R2) and an adja-
cent homeodomain protein-binding site (C site) that 
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  Fig. 5.  In vivo binding of RUNX2 and 
DLX5 to chromatin sites in differentiated 
and undifferentiated cells.  a  Schematic of 
the proximal  Bsp  promoter. RUNX2 and 
homeodomain (DLX5) protein-binding 
sites are indicated.            b  Comparison of                      Bsp  
chromatin occupancy by RUNX2 and 
DLX5. Chromatin immunoprecipitation 
assays were used to detect RUNX2 and 
DLX5 bound to the proximal  Bsp  promot-
er in control (–AA) and differentiated 
(+AA) MC3T3-E1 clone 4 cells. Antibodies 
used for chromatin immunoprecipitation 
are indicated. Note that RUNX2 remains 
chromatin associated regardless of differ-
entiated state, while Dlx5 is only present in 
differentiated cells.      c  Functional interac-
tion between R2 and C sites. 2.5-kb Bsp-
luc reporter constructs containing all pos-
sible combinations of R1, R2 and C site 
mutations were transfected into MC3T3-
E1 cl4 cells and grown under differentiat-
ing conditions. Note that mutation of ei-
ther R2 or C is as inhibitory as mutation of 
both sites, while mutation of either site to-
gether with R1 gives maximal inhibition. 
 d  Protein-protein interactions between 
DLX5 and RUNX2. Pull-down assays
with nuclear extracts from differentiated 
MC3T3 cells were used to show physical 
association between these 2 factors [Roca 
et al., 2005]. ChIP = Chromatin immuno-
precipitation; IP-Ab = chromatin immu-
noprecipitation antibodies; WB = Western 
blot.                           
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