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Histone deacetylase 7 (HDAC7) is a T-cell receptor (TCR)

signal-dependent regulator of differentiation that is highly

expressed in CD4/CD8 double-positive (DP) thymocytes.

Here, we examine the effect of blocking TCR-dependent

nuclear export of HDAC7 during thymic selection, through

expression of a signal-resistant mutant of HDAC7 (HDAC7-

DP) in thymocytes. We find that HDAC7-DP transgenic

thymocytes exhibit a profound block in negative thymic

selection, but can still undergo positive selection, resulting

in the escape of autoreactive T cells into the periphery. Gene

expression profiling reveals a comprehensive suppression of

the negative selection-associated gene expression pro-

gramme in DP thymocytes, associated with a defect in the

activation of MAP kinase pathways by TCR signals. The

consequence of this block in vivo is a lethal autoimmune

syndrome involving the exocrine pancreas and other abdom-

inal organs. These experiments establish a novel molecular

model of autoimmunity and cast new light on the relation-

ship between thymic selection and immune self-tolerance.
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Introduction

The genetic basis of autoimmunity is only well understood

for a few relatively rare syndromes (Nagamine et al, 1997;

Bennett et al, 2001a). The search for novel molecular path-

ways that mediate self-tolerance is therefore an important

part of understanding autoimmunity and devising new thera-

peutic strategies. Several mechanisms exist to insure T-cell

self-tolerance. In the thymus, a complex process of clonal

selection determines cell fate based on the strength of the

interaction between the newly generated T-cell receptors

(TCRs) of CD4/CD8 double-positive (DP) thymocytes and

self antigens (Starr et al, 2003). If DP or more mature CD4

or CD8 single-positive (SP) thymocytes receive a TCR signal

above a critical threshold, then they are either deleted or

diverted into alternate lineages such as regulatory T cells

(Tregs). However, this process of negative selection is

insufficient to prevent autoimmunity. Autoreactive T cells

that escape negative selection in the thymus must be

suppressed, by both tolerogenic costimulatory receptors

such as PD-1 and CTLA4 (Tivol et al, 1995; Keir et al, 2007)

and Foxp3-expressing Tregs generated in the thymus and

periphery (Hori et al, 2003).

All these mechanisms must function to maintain self-

tolerance. A breakdown in any of them causes autoimmune

disease in animal models (Ramsey et al, 2002; Hori et al,

2003; Fife and Bluestone, 2008), and also in humans

(Nagamine et al, 1997; Bennett et al, 2001b). A common

molecular theme among these mechanisms of T-cell self-

tolerance is modulation of the developmental response to

signalling through the TCR, through either cell-intrinsic

changes associated with different developmental stages

(as in thymic selection), or cell-extrinsic costimulatory and

cytokine signals (as in peripheral tolerance and Treg

generation). Mutations affecting the way TCR signals

delivered in different contexts mediate developmental

responses are therefore likely to be common among

molecular lesions causing autoimmunity.

Some of the molecular elements linking TCR signalling to

negative selection are known. These include the Bcl-2 family

member Bim (Hildeman et al, 2002), the activity of JNK, ERK,

and p38 MAP kinases (Rincon et al, 1998; Sugawara et al,

1998; Sabapathy et al, 2001; Daniels et al, 2006), the orphan

steroid receptors Nur77 and Nor-1 (Woronicz et al, 1994;

Calnan et al, 1995; Cheng et al, 1997) and recently Schnurri-2

(Staton et al, 2011). However, no ‘master regulator’ of the

linkage between TCR signalling and negative selection in the

thymus has been identified, and it is still unclear what

switching mechanism can translate TCR signals of different

affinities into different developmental outcomes.

Class IIa histone deacetylases (HDACs) such as HDAC7 are

signal-dependent regulators of transcription that play impor-

tant roles in multiple developmental processes. They are

defined by a large non-catalytic N-terminal domain mediating

recruitment to specific promoters and signal-dependent shut-

tling between the nucleus and the cytoplasm. The subcellular

distribution of Class IIa HDACs is regulated by phosphoryla-

tion of conserved serine residues in this N-terminal regula-

tory domain (Grozinger and Schreiber, 2000; Wang et al,

2000; Kao et al, 2001; Parra et al, 2007). Phosphorylation of

these residues leads to nuclear export and removal from

target promoters (Grozinger and Schreiber, 2000; Lu et al,

2000; Wang et al, 2000; Kao et al, 2001; McKinsey et al, 2001).

Mutation of these sites prevents nuclear export in response
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to extracellular signals, and blocks signal-dependent

differentiation events in vitro (Zhou et al, 2000; Kao et al,

2001). Thus, the class IIa HDACs regulate the expression of

specific sets of developmentally important genes in response

to extracellular signals causing their phosphorylation.

Deletion of each of the individual class IIa HDACs in vivo

interferes with important developmental processes (Zhang

et al, 2002; Chang et al, 2004, 2006; Vega et al, 2004), as can

expression of signal-resistant mutants (Zhang et al, 2002).

Previous evidence suggests a role for HDAC7 in thymic

selection. HDAC7 is highly expressed in DP thymocytes and

regulates the orphan steroid receptor Nur77, which plays a

redundant role in negative selection (Woronicz et al, 1994;

Calnan et al, 1995; Cheng et al, 1997; Dequiedt et al, 2003). In

T-cell hybridomas, expression of a signal-resistant mutant of

HDAC7 (HDAC7-DP), in which the serine residues that

mediate TCR-dependent nuclear export have been mutated,

suppressed apoptosis in response to TCR signals (Dequiedt

et al, 2003). Conversely, thymus-specific deletion of HDAC7

results in excessive apoptosis of DP thymocytes, constitutive

activation of MAP kinase pathways, and constitutive gene

expression changes that normally occur only after TCR

engagement (Kasler et al, 2011). In this work, we examine

the effects of expression of HDAC7-DP specifically in

thymocytes. We identify a key role for HDAC7 nuclear

export in the process of negative selection in vivo, and

define a novel molecular model of autoimmune disease.

Results

Blockade of HDAC7 nuclear export alters thymic

T-cell development

To study the role of HDAC7 in thymic T-cell development, we

employed a mutant HDAC7 lacking the phosphorylation sites

required for TCR-dependent nuclear export (HDAC7-DP,

Figure 1A). We introduced HDAC7-DP as a transgene in

C57BL/6 (B6) mice, using p1013lcr, a vector containing the

p56lck proximal promoter combined with the 30 locus-

controlling region of CD2 (Kasler et al, 2011). The pattern of

expression mediated by p1013lcr approximates that of

endogenous HDAC7, which is highly expressed from at

least the DN3 stage through the DP stage, but declines

through the SP stage and is nearly undetectable in lymph

nodes (Kasler et al, 2011). For the experiments presented

here, we chose transgenic lines that showed moderately

elevated total HDAC7 expression in thymocytes, with near

total disappearance of expression in peripheral lymph nodes

(Supplementary Figure S1A).

HDAC7-DP expression affected the thymic CD4/CD8 pro-

file, increasing the proportion of both CD4 and CD8 SP

thymocytes to DP thymocytes (Figure 1B). Analysis of mar-

kers of positive selection and maturity in DP and SP thymo-

cytes, including CD3e, TCRb, CD5, CD69, and CD24

(Figure 1C, see Supplementary Figure S1B and C for repre-

sentative data), mostly revealed a bias towards a more

mature phenotype in HDAC7-DP transgenic (HDAC7-DP TG)

thymocytes, particularly in the CD8 SP population, which is

composed of positively selected CD3hi CD8 SP thymocytes as

well as CD3 negative immature single-positive cells (ISPs).

One exception to this pattern was CD5, which is normally

upregulated during positive selection, but was suppressed in

all populations of HDAC7-DP TG thymocytes (Figure 1C;

Supplementary Figure S1C). Enumeration of thymic cell

populations revealed decreased cell numbers starting at the

DN3-DN4 transition, followed by a further reduction at

the ISP stage, followed by a rebound through the DP and SP

stages (Figure 1D). The number of mature CD8 SP thymocytes

in HDAC7-DP mice was approximately twice that of wild-type

littermates, in spite of a 35% decrease in the average number of

DP cells. Overall, this pattern suggested that while HDAC7-DP

might hinder maturation through the b-selection checkpoint

from the DN3 to ISP stages, it apparently facilitates maturation

from the ISP stage through the SP stage. Numbers of both

CD4þ and CD8þ T cells in the peripheral lymphoid organs

were approximately normal (Figure1D).

While these results suggested that HDAC7-DP affects

T-cell development, it was not clear if the effects were cell

autonomous, or to what extent they might have been

obscured by compensatory homeostatic mechanisms. We

therefore evaluated the effect of HDAC7-DP expression on

the competitive repopulation of mixed radiation chimeras.

Equal numbers of wild-type (CD45.1/.2 heterozygous)

and HDAC7-DP (CD45.2) bone marrow cells were transferred

into lethally irradiated BoyJ (CD45.1) recipients. After

7–8 weeks, we examined the proportions of cells from each

donor at different stages (for representative flow plots, see

Supplementary Figure S1D).

In the common lymphoid progenitor, the contributions of

HDAC7-DP and WT cells were nearly equal (Figure 1E).

However, HDAC7-DP cells already appeared to be at a dis-

advantage at the DN1 stage. There was a further drop in the

HDAC7-DP contribution through the DN3-DN4 and DN4-ISP

transitions, reaching a minimum at the ISP stage. As observed

in the transgenic animals, there was a substantial rebound

through the DP and SP stages, particularly for CD8 SP cells. In

contrast to what we observed in the transgenic animals, the

contribution of HDAC7-DP cells in the peripheral lymphoid

organs was markedly lower than that of WT cells,

again particularly for the CD8þ population. This suggested

that either the competitiveness or the localization of T cells

that had expressed HDAC7-DP during thymic selection was

abnormal. Finally, we noted a substantial decrease in the

proportion of Foxp3þ T cells in the HDAC7-DP CD4 SP

population in the thymus and in peripheral CD4þ T cells

(Supplementary Figure S1E and F), suggesting that HDAC7-

DP significantly impaired the generation of Tregs. A similar

decrease in Foxp3þ T cells was observed in the transgenic

animals (Supplementary Figure S1G). While less numerous,

these cells suppressed T-cell activation in response to poly-

clonal activators normally (Supplementary Figure S2A).

HDAC7-DP blocks negative thymic selection more

strongly than positive selection

We assessed the effect of HDAC7-DP on thymic selection in

models of positive and negative selection involving the H-Y

and OT-2 TCR transgenes. The H-Y TCR mediates negative

selection in males, due to strong interaction with a Y-encoded

ligand, but is positively selected in females (Bluthmann et al,

1988; Figure 2A). Expression of HDAC7-DP in H-Y males

increased the number of both DP and CD8 SP thymocytes by

B100-fold (Figure 2A and B). This effect was observed in

more than one line of HDAC7-DP X H-Y transgenic animals

(Supplementary Figure S2D). In females, the effect of HDAC7-

DP was more subtle, increasing the number of DP thymocytes
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by about two-fold without changing the number of CD8 SP

cells (Figure 2A and B). A similar pattern was observed in the

OT-2 TCR transgenic model, in which deletion can be induced

by expression of ovalbumin (Figure 2A, Barnden et al, 1998).

Expression of HDAC7-DP resulted in a 10-fold increase in the

numbers of both DP and CD4 SP cells in OT-2 X act-Ova mice

(Figure 2A and C), while causing a two-fold increase in DP

cells and no change in CD4 SP cells in OT-2 mice not

expressing Ova (Figure 2A and C). Thus, if the efficiency of

negative selection is regarded as the number of DP and SP

cells present and the efficiency of positive selection is

regarded as the ratio of SP cells present to DP cells, HDAC7-

DP causes a 10- to 100-fold decrease in the efficiency of

negative selection and only a two-fold decrease in the

efficiency of positive selection for these TCR transgenes.

This interpretation is supported by examining the effect of

HDAC7-DP on the DP/SP ratio in a polyclonal repertoire

(Figure 1D and E). The overall increase in the SP/DP ratio

caused by HDAC7-DP suggests that the defect in negative

selection predominates over the defect in positive selection.

Thus, thymocyte death in response to strong TCR signals

appears to be strongly inhibited, while maturation the SP

stage is only mildly impeded. The defect in thymocyte death

appears to be specific to negative selection, as spontaneous

apoptosis and death in response to dexamethasone treatment

appear normal in HDAC7-DP TG thymocytes (Supplementary

Figure S2B and C).

This apparent specific block in negative selection in

HDAC7-DP TG thymocytes suggests that autoreactive thymo-

cytes can escape to the periphery in these animals, a hypoth-

esis that could be directly demonstrated in the case of the OT-2

X act-Ova system. In OT-2 X act-Ova X HDAC7-DP mice, we

typically observed two-fold more CD4-positive and three-fold

more CD4/Va2-positive T cells than in OT-2 X act-Ova mice

(Figure 2D and E). Consistent with this observation, in the

polyclonal repertoire of peripheral T cells in WT: HDAC7-DP

mixed radiation chimeras, expression of CD69 in the HDAC7-

DP TG population was markedly elevated (Supplementary

Figure S2E). Similarly, a substantially greater proportion of

T cells from the HDAC7-DP population had an effector

memory (i.e., CD62L�CD44þ ) phenotype (Supplementary

Figure S2F), suggesting a more activated phenotype than

their wild-type counterparts.

HDAC7 functions as a molecular ‘safety switch’ for the

negative selection programme

To better understand the molecular basis of suppression of

negative selection by HDAC7-DP, we examined the way that
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Figure 1 Expression of HDAC7-DP alters T-cell development. (A) Locations of S-A mutations in HDAC7-DP and the resultant alteration of
HDAC7 function. (B) Representative scatter plots showing change in thymic CD4 and CD8 expression profiles in WTcontrol (left) and HDAC7-
DP TG (right) mice. (C) Effect of HDAC7-DP on expression of CD3e, TCRb, CD5, CD69, and CD24 in DP, CD4 SP, and CD8 SP thymocytes, gated
as shown in Supplementary Figure S1C. Bars show percent ±s.d. for five control/HDAC7-DP TG littermate pairs. *P¼ 6�10� 5� 0.014,
two-tailed paired T-test. (D) Percent relative to WT littermate controls of cells present at the indicated developmental stages in HDAC7-DP TG
mice. Data are from six control/HDAC7-DP TG littermate pairs±s.e.m. *P¼ 0.0057�0.039, two-tailed paired T-test. (E) Log2 ratio of WT/
HDAC7-DP cells present at indicated stages in radiation chimeras reconstituted with equal amounts of wild-type control and HDAC7-DP bone
marrow. Data are from eight animals engrafted with WTand transgenic bone marrow at a 1:1 ratio, ±s.e.m. *P¼ 2.7�10� 9� 0.026 versus WT
cells, two-tailed T-test; **P¼ 0.001�0.04 versus previous stage, two-tailed paired t-test. (D, E) CLP, common lymphoid progenitor; DN1-DN4,
double-negative 1–4 thymocytes; ISP, immature single-positive; DP, CD4/CD8 double-positive; SP4, 8, CD4, 8 single-positive; Spl4, 8, spleen
CD4, CD8 T cells.
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Figure 2 HDAC7-DP expression blocks negative thymic selection and permits escape of autoreactive T cells to the periphery.
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HDAC7-DP affects gene expression globally in thymocytes.

Gene expression profiles were generated for OT-2 and OT-2 X

HDAC7-DP TG DP thymocytes that had received negatively

selecting TCR signals, 2.5 h after i.p. administration of their

ovalbumin-derived cognate antigen (i.e., Ova stimulation).

Comparison of the gene expression profiles from these

Ova-stimulated thymocytes, both with one another and

with previously generated expression profiles for wild-type

and unstimulated OT-2 DP thymocytes (Kasler et al, 2011),

yielded information about how HDAC7-DP affects gene

expression changes associated with both positive and

negative thymic selection (Figure 3A, see Supplementary

Table S1 for a summary of differentially expressed genes in

all comparisons).

Expression of HDAC7-DP in Ova-stimulated thymocytes

had a broad suppressive effect on the gene expression

programme normally associated with negative selection.

This could be illustrated by plotting the gene expression

changes normally occurring due to Ova stimulation

(Figure 3B, horizontal axis) against the differences observed

between Ova-stimulated OT-2 and OT-2 X HDAC7-DP thymo-

cytes (Figure 3B, vertical axis). Genes that were induced by

Ova stimulation were also highly likely to be suppressed by

the expression of HDAC7-DP (Figure 3B, lower right quad-

rant). Conversely, genes normally suppressed by Ova stimu-

lation were highly likely to be induced in HDAC7-DP X OT-2

thymocytes relative to their OT-2 counterparts (Figure 3B,

upper left quadrant). This negative correlation is especially
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differentially expressed during negative selection, based on three littermate pairs of OT-2 and OT-2 X HDAC7-DP ova-injected mice. Black
numbers indicate how many genes in each quadrant are differentially expressed for both comparisons. P-values shown for each quadrant are
according to the binomial distribution for the number of overlapping genes indicated. (C) Graph showing fold upregulation of 67 genes
upregulated two-fold or more in OT-2 DP thymocytes 2.5 h after agonist peptide injection versus unstimulated OT-2 thymocytes (blue symbols).
Corresponding fold induction values are shown in red for OT-2 X HDAC7-DP TG DP thymocytes versus unstimulated OT-2 thymocytes. Dashed
line indicates 1.5-fold threshold for significant induction. (D) Graph showing fold upregulation of top 67 genes induced during positive
selection (OT-2 versus WT, blue symbols). Corresponding values are shown in red for Ova-stimulated OT-2 X HDAC7-DP TG DP thymocytes
versus wild-type thymocytes. Dashed line indicates 1.5-fold threshold for significant induction. (E) Expression of Nur-77 (assayed by western
blot), Nor-1, and GADD45b (assayed by northern blot) in OT-2 thymocytes (left), OT-2 thymocytes 2.5 h after antigenic peptide injection (middle),
and OT-2 X HDAC7-DP TG thymocytes 2.5 h after antigenic peptide injection (right). (F) Expression of CD5 (top) and CD2 (bottom) in OT-2 (grey
histograms) and OT-2 X HDAC7-DP TG (black histograms) DP thymocytes. Figure source data can be found with the Supplementary data.
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strong for the genes most highly induced in negative selec-

tion. Of the 67 genes that were upregulated by two-fold or

more after Ova treatment, only 15 were still significantly

upregulated in HDAC7-DP X OT-2 thymocytes (Figure 3C, blue

versus red symbols). Among the most highly induced genes

that were strongly suppressed by HDAC7-DP were the death-

inducing orphan steroid receptors Nur-77 and Nor-1, the

BH3-only molecule Bim, which is required for negative

selection, and the mediator of TCR-induced MAP kinase

activation GADD45b (Figure 3C, circled symbols; Figure 3E).

This finding, that HDAC7 comprehensively regulates the

gene expression programme associated with negative selec-

tion, seemed somewhat at odds with our prior findings

concerning the effect of loss of HDAC7 in thymocytes

(Kasler et al, 2011). In that study, we showed that HDAC7 is

exported from the cell nucleus during positive selection, and

that loss of HDAC7 resulted in the constitutive occurrence of

gene expression changes in DP thymocytes that normally

only occur after positive selection. However in the present

study, we found that positive selection is the only modestly

impaired in HDAC7-DP TG thymocytes (Figure 2A–C). We

believe that the resolution to this discrepancy lies in the

relative proportion of the gene expression changes associated

with positive and negative selection that are affected by

HDAC7. While over 75% of the gene expression changes

that normally occur during negative selection do not occur in

the presence of HDAC7-DP (Figure 3C), a significant but

much smaller fraction of the changes that occur during

positive selection are similarly affected. When we examined

the top 67 genes induced during positive selection (OT-2

versus WT, Figure 3D, blue symbols), we found that only

21% of these were not induced in HDAC7-DP X OT-2 thymo-

cytes versus wild-type thymocytes (Figure 3D, red symbols).

Thus, while some gene expression changes clearly were

suppressed (Figure 3D and F), they were apparently insuffi-

cient to block the entire process. It therefore appears that

while nuclear export of HDAC7 largely mediates a change in

gene expression that occurs during positive selection, that

change is more critical for the execution of subsequent

developmental programmes (e.g., negative selection) than

for positive selection itself.

This dampening of the transcriptional response associated

with negative selection suggests that in addition to directly

regulating death mediators like Nur77, HDAC7-DP must also

act high in the cascade of molecular events associated with

TCR signalling. We previously observed changes in many

genes involved in TCR signalling in thymocytes lacking

HDAC7, and also an increase in the basal activity of p38,

JNK, and Erk MAP kinases (Kasler et al, 2011). Conversely,

when we examined the activation state of MAP kinases in

peptide-stimulated OT-2 or OT-2, HDAC7-DP TG thymocytes

at 3 h post injection, we saw strong suppression of the

activation of p38 and Erk kinases at this time point

(Figure 4A and B). To get a broader picture of how HDAC7-

DP affects the activation of MAP kinases in thymocytes, as

well as to rule out suppressive mechanisms involving defects

in antigen-presenting cells or differences in the periphery,

we examined the activity of P38 and Erk in OT-2 and OT-2 X

HDAC7-DP DP thymocytes at different time points after

ex vivo stimulation with a-CD3 and a-CD28 (Figure 4C–E).

While there was some activation of P38 and Erk observable in

HDAC7-DP thymocytes in this format, P38 activity was

significantly reduced at all time points (Figure 4D), While

Erk activity was significantly reduced at 100 and 150 min

(Figure 4E). Splenic CD4þ T cells from these animals

were also activated ex vivo, using autologous APC and Ova

peptide, and upregulation of CD69 and CD25, as well as the

ability to dilute CFSE, were normal in the CD4 T cells of the

OT-2 X HDAC7-DP animals (Supplementary Figure S2G and

H). The activation of both P38 and Erk kinases has been

implicated in the negative selection of autoreactive thymo-

cytes (Sugawara et al, 1998; Daniels et al, 2006), so it is likely

that the ability of HDAC7-DP to block their activation in

response to TCR ligation is an important component of its

broad suppression of the negative selection programme. In

summary, our observations suggest that HDAC7 regulates a

functional cassette of genes during positive selection that are

required to enable the Erk and p38 MAP kinase pathways to

respond appropriately to negatively selecting TCR signals.

In addition to this mode of action, HDAC7 also directly

represses pro-apoptotic genes like Nur-77 that are not

strongly induced during positive selection but require

nuclear exclusion of HDAC7 in order to be induced during

negative selection (Dequiedt et al, 2003).

HDAC7-DP TG mice develop lethal multi-organ

autoimmunity

Monitoring the health of the HDAC7-DP TG mice, we found

that from 5 weeks to 6 months of age, B80% of HDAC7-DP

mice ceased to thrive, lost weight (Figure 5A), and became

moribund (Figure 5B). Gross pathologic examination of the

sick animals revealed a greatly distended digestive tract

(Figure 5C), filled with abnormal faecal material. Staining

of the faecal pellets with Sudan IV demonstrated steatorrhea

(Figure 5D). Histologic examination of the pancreas in these

animals revealed obliteration of the exocrine areas, with the

islets remaining largely intact (Figure 5E).

Leukocytic infiltrates were frequently observable in histo-

logic sections (Figure 5F). Staining of infiltrating cells from

the pancreatic tissue showed the abnormal presence of

B cells, CD4þ , and CD8þ Tcells (Figure 5G). Auto-antibodies

to pancreas were also present in the sera of nearly all sick

HDAC7-DP TG animals, which could be demonstrated by

reactivity against sections of pancreatic tissue (Figure 6A)

and also by western blot (Supplementary Figure S3A). While

clinically prominent, exocrine pancreatitis was not the only

disease observed in HDAC7-DP TG mice. Western blotting

revealed autoantibodies specific for a broad array of tissues

(Figure 6B; Supplementary Figure S3B), and histologic

examination revealed the frequent presence of destructive

leukocytic infiltrates in the stomach and liver (Figure 6C).

Importantly, expression of HDAC7-DP on a lymphocyte-

deficient (Rag1� /� ) background abrogated this pathology.

These animals neither lost weight nor died at a greater

frequency than littermate non-transgenic Rag1-deficient ani-

mals (Figure 6D; Supplementary Figure S3C), indicating that

lymphocytes were required for autoimmunity.

Autoimmunity can be dominantly transferred by

HDAC7-DP bone marrow or peripheral T cells

Beyond demonstrating the requirement for lymphocytes,

further experiments were required to specifically tie autoim-

munity in HDAC-DP mice to the defect in thymic negative

selection, rather than other possible mechanisms. Ruling out
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mechanisms involving Tregs was particularly important,

since we did observe some deficiency in the thymic genera-

tion of Tregs (Supplementary Figure S1E–G), and autoimmu-

nity similar to what we observed has been elicited by

mutations models impairing both negative selection and

Treg function (Niki et al, 2006; Meagher et al, 2008). Other

alternative mechanisms such as a defect in antigen

presentation or some abnormality in B cells also needed to

be ruled out. We therefore set up adoptive transfer

experiments, in which splenic lymphocytes from HDAC7-DP

TG or WT littermate mice were transferred into Rag1-

deficient hosts. All recipients received wild-type B cells,
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Blocking HDAC7 nuclear export causes autoimmunity
HG Kasler et al

4459&2012 European Molecular Biology Organization The EMBO Journal VOL 31 | NO 23 | 2012



alone or together with wild-type Tcells, HDAC7-DP Tcells, or

a 1:1 mixture of WT and HDAC7-DP T cells. Both groups that

received HDAC7-DP T cells died at a higher frequency than

those that received no T cells or WT T cells only (Figure 6E).

The animals receiving HDAC7-DP T cells also developed

steatorrhea and lost weight, in contrast to those that

received no or only wild-type T cells (Supplementary Figure

S3D and E).

These experiments demonstrated that peripheral T cells

from HDAC7-DP T mice were sufficient to induce autoimmu-

nity, and also suggested that wild-type Tregs were not able to

rescue the phenotype. However, defects in T-cell homeostasis,

due to lymphopenia resulting from the developmental dis-

advantages of HDAC7-DP T cells, might still have caused

autoimmunity that could not be readily suppressed by the

normal regulatory cells co-transferred into Rag1-deficient

recipients. Alternatively, defects in thymic antigen presenta-

tion rather than intrinsic defects in the response of thymo-

cytes to TCR signalling may have been responsible for the

negative selection defect. To rule out these mechanisms,

we evaluated the effect of HDAC7-DP haematopoietic stem

cells in mixed radiation chimeras. We determined that a 1:5

or 1:10 ratio of WT: HDAC7-DP bone marrow cells was

optimal to produce a 1:1 ratio of peripheral T cells derived

from these lineages (Figure 7A). Cohorts were established

that received WT and HDAC7-DP bone marrow cells at these

ratios, as well as mice reconstituted solely with WT cells.

Examining the ratio of Tregs to conventional Tcells in a broad

collection of peripheral T cells from these animals, we saw

no significant difference between the WT-only and 1:5 WT:

HDAC7-DP chimeras (Supplementary Figure S3F).

Within 8 weeks of engraftment, mice that had received

HDAC7-DP bone marrow began to lose weight, and by

20 weeks post engraftment, 5/8 of the 1:5 and 7/8 of the

1:10 chimeras had either died or become moribund

(Figure 7B and C). As expected, histologic examination of

the 1:5 chimeras revealed severe autoimmune destruction of

the exocrine pancreas, as well as destructive immune infil-

trates in the liver (Figure 7D). Finally, examination of pan-

creas-infiltrating cells in a separate cohort of 1:5 WT: HDAC7-

DP chimeras showed that the infiltrates were predominantly

composed of CD8þ T cells derived from HDAC7-DP donor

(Figure 7E), suggesting that autoimmune attack was

mediated only by the T cells expressing HDAC7-DP. These

results provided strong evidence that the profound defect in

negative selection caused by blockade of HDAC7 nuclear

export in thymocytes is sufficient to lead to lethal autoimmu-

nity affecting multiple organ systems.

Discussion

In this work, we show that nuclear export of HDAC7

functions as a TCR-dependent genetic switch controlling the

transcriptional programme associated with negative thymic

selection. Thymocytes expressing the signal-resistant HDAC7

mutant HDAC7-DP can undergo positive selection, but fail to

be deleted in response to strong TCR engagement and instead

escape to the periphery, causing lethal autoimmune disease.

The generation of Tregs is also impaired in HDAC7-DP TG

thymocytes, but this block is not as categorical as the block in

negative selection, and the defect in Treg generation is not

dominant in the induction of autoimmunity. The specificity of

HDAC7 as a gatekeeper for the genetic programme mediating

negative selection is indicated by the very broad manner in

which induction of the major known mediators of deletion is

suppressed by HDAC7-DP.
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While HDAC7 apparently suppresses the transcriptional

programme associated with negative selection, prior studies

of its thymic function indicate that its nuclear export occurs

during positive rather than negative selection, and many of

the genes it regulates show expression changes during that

process (Kasler et al, 2011; Figure 3D). It thus appears that

HDAC7 nuclear export mediates a change in gene expression

during positive selection that is required for negative selec-

tion. DP cells with enforced nuclear HDAC7 appear to have

fewer developmental options than DP cells with cytoplasmic

HDAC7, suggesting that HDAC7 nuclear export is required to

enable the next set of developmental choices for thymocytes

that have been positively selected (Figure 7F). The molecular

mechanisms underlying this developmental effect include

both the direct repression of pro-apoptotic genes like

Nur-77 and a broad dampening effect on the gain of the

TCR signalling pathway with respect to activating down-

stream effectors like MAP kinases. Supporting the latter

mechanism, a recent study has shown that expression of

HDAC7-DP in mature CD8 T cells strongly suppresses their

activation and function as cytotoxic Teffectors (Navarro et al,

2011). Once HDAC7 is lost from the nucleus, thymocytes

become more prone to apoptosis, an effect that is strongly

evident when HDAC7 is deleted from thymocytes (Kasler

et al, 2011). Its nuclear localization prior to positive selection

may thus represent an important ‘safety’ mechanism that

prevents transient stochastic excitations of the TCR pathway

from prematurely causing negative selection of DP thymocytes.

From a molecular standpoint, a noteworthy aspect of the

effect of HDAC7-DP in thymocytes is the suppression of p38

and Erk kinase activation in response to strong TCR signals.

These MAP kinase modules are implicated in the life/death

decision during thymic selection (Sugawara et al, 1998;

Daniels et al, 2006), and the broad importance of these

pathways in regulating cellular response programmes is

consistent with the categorical role that HDAC7 plays thymic
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selection. It is likely that this mechanism of action is involved

in other developmental programmes that are enabled by class

IIa HDACs. For example, cardiac hypertrophy and type II

diabetes are processes that are regulated both by Class IIa

HDACs (Mihaylova et al, 2011; Wang et al, 2011) and also by

MAP kinases (Peter et al, 2007; Gehart et al, 2010).

The activity of MAP kinases is also critical for the activa-

tion of peripheral T cells, and the finding that constitutive

nuclear localization of HDAC7 suppresses CD8 effector

function suggests that HDAC7 may play a role in regulating

T-cell activation in the periphery as well as the thymus

(Navarro et al, 2011). Since the localization of HDAC7 in

most cells appears to be cytoplasmic from the SP thymocyte

stage forward, regardless of TCR signalling (Kasler et al, 2011;

Navarro et al, 2011), a key question in investigating the

possibility of this mechanism will be what extracellular

signals might drive it back into the nucleus in mature

T cells. One particularly compelling finding in this regard is

that the cAMP-PKA pathway promotes dephosphorylation

and nuclear localization of class IIa HDACs, thus

suppressing insulin signalling (Mihaylova et al, 2011; Wang

et al, 2011). This pathway has long been known to exert a

repressive effect on T-cell activation and function (Mosenden

and Tasken, 2011), so the notion that nuclear localization

of HDAC7 or another class IIa HDAC via this pathway

may contribute somehow to the suppression of peripheral

immune responses is intriguing. Future studies in our

laboratory and others will no doubt help resolve these

possibilities.

From a cellular standpoint, these studies shed new light on

the relationship between thymic selection and immune self-

tolerance. The two main extant physiologic models of auto-

immunity that are due to defects in negative thymic selection

are deficiency of Bim and deficiency of AIRE (Bouillet et al,

2002; Anderson et al, 2005a, b). NOD mice, which develop

type 1 diabetes later in life, also show a broad dampening of

the transcriptional programme associated with negative

selection (Zucchelli et al, 2005); however, there are multiple

models of how autoimmunity is initiated in the NOD strain.

Each of these strains in which negative selection is impaired

exhibits a different autoimmune phenotype. Deficiency of

Bim, which results in a profound block in apoptosis

of autoreactive thymocytes (Bouillet et al, 2002), results in

a Lupus-like syndrome that has a slower onset than

autoimmunity in HDAC7-DP TG mice (Bouillet et al, 1999).

This becomes substantially more fulminant and lethal if the

Fas death receptor is also deleted (Hutcheson et al, 2008;

Weant et al, 2008). Deficiency of AIRE, which is required for

the presentation of peripheral antigens to SP thymocytes in

the thymic medulla, results in an apparently broader tissue
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distribution of autoimmune infiltrates than expression of

HDAC7-DP in thymocytes, but with less lethality (Anderson

et al, 2002). Remarkably, combining the AIRE� /� and NOD

genotypes results in a syndrome that has some resemblance

what we observe in our model, with exocrine pancreatitis

also representing the dominant clinical feature (Niki et al,

2006). Further experiments, particularly combining HDAC7-

DP with these genotypes, will be required to resolve the

epistatic relationships between these genetic lesions. The

question of why such a strong block in negative selection,

elicited either by expressing HDAC7-DP or by combining loss

of AIRE with other mutations affecting this process, should

show an altered or restricted tissue distribution relative to

negative selection of AIRE alone will also require further

investigation. Again, combining HDAC7-DP expression with

other lesions affecting negative selection and investigating its

effects in different background strains will most likely prove

informative. Lastly, although these studies elucidate a clear

nuclear mechanism of action for HDAC7 in thymocytes, they

do not address what function it may have in the cytoplasm,

since the endogenous HDAC7 in HDAC7-DP TG animals is

exported from the nucleus normally.

The observation that perturbing HDAC7 function in thy-

mocytes can cause lethal autoimmunity opens up new

signalling pathways as potential targets in the treatment of

human autoimmune disease. Although autoimmune exocrine

pancreatitis is a minor human clinical entity, differences in

genetic background, even within the same species, can have

strong effects on what tissues come under attack. Thus,

human syndromes distinct from what we have observed in

B6 mice may be related to HDAC7. In addition to polymorph-

isms in HDAC7 itself, defects in the multiple pathways that

regulate its nuclear versus cytoplasmic localization in differ-

ent cellular contexts may be among human mutations that

cause autoimmunity. Based on what we have observed, a

defect in the proximal TCR signalling apparatus that some-

how selectively affects class IIa HDAC nuclear export in

thymocytes might be a potent inducer of autoimmunity.

Recent findings that attenuation of the function of proximal

elements in the TCR signalling pathway, such as Zap-70, can

lead to autoimmunity (Tanaka et al, 2010) are particularly

encouraging in this regard, and will greatly inform our future

efforts to better understand the possible role of HDAC7 in the

genetics of human autoimmune disease.

Materials and methods

Mouse strains
All experimental strains were on a C57BL/6 (B6) genetic back-
ground. B6, BoyJ, OT-2, and Rag1� /� mice were obtained from
Jackson Laboratories, and H-Y mice from Taconic Farms. Mice
expressing the HDAC7-DP transgene were prepared by pronuclear
injection of p1013 LCR-HDAC7-DP into B6 recipients following
standard protocols. P1013 LCR is described elsewhere (Kasler
et al, 2011). The coding sequence for HDAC7-DP (Human HDAC7,
with the mutations S155A, S358A, and S486A) was inserted into the
Bam H1 site of p1013LCR.

Antibodies
Antibodies used for western blotting were as follows: HDAC7: H-273
rabbit polyclonal (Santa Cruz Biotech); b-actin: C-4 (MP
Biomedicals); phospho-Erk: D13.14.4E (Cell Signaling); Phospho-
p38: rabbit polyclonal cat # 9211 (Cell Signaling); Erk: 3A7 (Cell
Signaling); P38: rabbit polyclonal cat # 9212 (Cell Signaling).
Antibodies used for flow cytometry and cell sorting were as follows:

CD4: GK1.5, fluorescein isothiocyanate (-FITC), phycoerythrin
(-PE), or Alexa-Flour 647 (-AF647)-conjugated (UCSF hybridoma
core facility); CD8a: YTS169.4-AF647 (UCSF HCF), PerCP
(BioLegend), or 53-6.7-PE (BD); CD3e: 145-2C11-FITC, PE-Cy7
(UCSF HCF), or -APC (BD); CD44: IM7.8.1-FITC (Invitrogen);
CD24: 30-F1-PE (eBioscience); CD25: 3C7-PE (BD); CD2: RM2-5-
FITC (BD); CD5: 53-7.3-APC (eBioscience); CD62L: MEL-14-PE
(BD); CD147: RL73-PE (eBioscience); CF11b (Mac-1): M1/70-APC
(eBioscience); Ly-6G (Gr-1): RB6-8C5-APC (eBioscience);
Ter-119: TER-119-APC (eBioscience); NK1.1: clone PK136-APC
(eBioscience); control rat IgG1: R3-34-PE (BD); CD45.1: A20.1-7-
A647 (UCSF HCF); CD45.2: clone 104-PerCP (Biolegend); TCRb:
H57-597-APC-eFluor780 (eBioscience); Va2: B20.1-biotin (eBio-
science). PE-conjugated, a-galCer-loaded CD1d tetramers were
obtained from Proimmune LLC.

Flow cytometry
Cell suspensions were prepared from mouse thymus, spleen, and
lymph nodes, and stained with fluorochrome-conjugated antibodies
by standard techniques. Pancreas-infiltrating leucocytes were iso-
lated as follows: after removal of pancreatic lymph nodes,
whole pancreas was minced finely and sequentially digested at
371C in 1 ml DMEM media containing 1 mg/ml collagenase IV for
1 min, at 0.5 mg/ml for 10 min, and at 0.2 mg/ml for 5 min, with
collection of suspended calls at each step. For analysis of early
thymic and bone marrow subsets (Figure 1D and E; Supplementary
Figure S1C), T-cell precursors were identified by gating on cells with
no expression of CD3, CD4, CD8, NK1.1, Mac-1, Gr-1, B220, or
Ter119 (i.e lin� ). Within the lin� population, DN1-DN4 stages were
identified by expression of CD25 and CD44, and the CLP population
was identified by expression of IL7Ra, c-Kit, and Sca-1. Analytical
flow cytometry was performed using a FACS Calibur flow cytometer
(BD). Data processing for presentation was done using FlowJo 7.5
(Treestar Inc.). Cell sorting was performed using the BD FACS-Aria.

Microarray analysis
Both the previously published gene expression data used
for comparison in this work (Kasler et al, 2011) and the new
data are archived in the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE26488. DP thymocytes
were isolated from three littermate pairs of OT-2 and OT-2, HDAC7-
DP TG animals injected with agonist peptide (chicken ovalbumin,
residues 323–339, 200 ml i.p., 50mM solution in PBS) 2.5 h pre-
viously. Total RNA was prepared from thymocytes using the RNeasy
kit (Qiagen). Array probes were prepared using the Affymetrix
GeneChip WT labelling system, and hybridized to Affymetrix
mouse Gene 1.0 ST arrays. Arrays were scanned using an
Affymetrix GCS3000 scanner and the GCOS 1.4 data acquisition
software, and data were normalized using RMA in Affymetrix
Expression Console. Significant differential expression was scored
using the Stanford University SAM analysis package (Tusher et al,
2001). Significance was assessed using the 2-class permuted t-test
method. Genes were scored as differentially expressed based
on a SAM score of 41.85 and a mean fold differential expression
value of 1.5.

Northern and western blotting
DP thymocytes for western blotting from Ova peptide-injected mice
were prepared by FACS. For ex vivo activation, thymocytes were
isolated by magnetic bead sorting for CD8 expression, followed by
2 h resting in RPMI/10% FBS. Cells were then plated at 2�106 cells/
ml, with 2mg/ml a-CD28, in 6-well dishes coated overnight at 41C
with a-CD3 (10 mg/ml). Cell lysates were prepared using RIPA buffer
with protease and phosphatase inhibitors (Sigma). For assay of
autoantibodies, tissue extracts were prepared from B6/Rag1� /�

mice using 1% SDS containing 0.2 M Tris–HCl (pH 6.8) with
protease inhibitors (Sigma). After SDS–PAGE, proteins were trans-
ferred onto nitrocellulose membranes, and blocked in TBS, 0.1%
Tween-20 (TBS/T), 4.0% BSA. Sera were incubated with mem-
branes at 1:250 dilution. After incubation with HRP- or IRDye-
(LiCor) conjugated antibodies, signal was detected using chemilu-
minescence and film or a LiCor Odyssey scanner, respectively. For
quantitative western analysis shown in Supplementary Figure S3B
and Figure 4B, films were optically scanned. For Figure 4D and E,
membranes were scanned with a LiCor Odyssey scanner. Bands
were quantified using ImageJ (Wayne Rasband, National Institutes
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of Health). For northern blotting, total RNA was prepared
from thymocytes using Trizol. RNA (15 mg/lane) was resolved by
formaldehyde agarose electrophoresis and transferred onto charged
nylon membranes. Membranes were hybridized with 32P end-
labelled DNA oligonucleotide probe, washed, exposed to storage
phosphor screens (Fuji), and imaged using a Molecular Imager FX
scanner (Bio-Rad). Northern probe sequences were as follows:
GAPDH: 50-gtcattgaga gcaatgccag ccccggcatc gaaggtggaa-30. Nor-1:
50-agcttcaggt agaagatgcg ctggaggccc tgggtacaga-30. GADD45b:
50-tctcagtctc ctcttgcctg aggtgccctc cttccgacct-30.

Adoptive transfer of lymphocytes
Tand B cells were isolated from spleens of HDAC7-DP and littermate
control mice using magnetic beads (Miltenyi). Rag1� /� recipients
(8 for each group) were injected via tail vein with 5�106 WT B cells
alone, 5�106 WT B cells together with 5�106 HDAC7-DP T cells,
5�106 WT B cells together with 5�106 littermate control Tcells, or
5�106 WT B cells together with 2.5�106 HDAC7-DP and 2.5�106

littermate control T cells. Recipients were weighed weekly. Loss of
20% of starting body weight was treated as a study end point.
Faecal samples were collected weekly and fatty acid quantified by
CHCl3-MeOH extraction, followed by K2Cr2O7/H2SO4 treatment and
OD measurement at 450 nm.

Haematopoietic chimeras
Recipients (8- to 10-week-old BoyJ) mice were irradiated with a split
dose of 700þ500 Rads, 3 h apart, from a 137Cs source (J.S.
Shepherd and Associates). Mice were reconstituted with 5�106

bone marrow cells from WT (CD45.1/.2 heterozygote) or HDAC7-
DP TG (CD45.2) donors, injected retro-orbitally in 200ml of PBS.

Histology/immunofluorescence imaging
For histology, animals were trans-cardially perfused with PBS
followed by PBS/3% paraformaldehyde (PFA), fixed 18 h at 41C in
PBS/3% PFA, then stored in 70% EtOH. Paraffin-embedded tissues
were sectioned and H-E stained according to standard protocols.
Histologic images were acquired using a Zeiss Axio Observer.z1
microscope. For IF imaging, Frozen tissue sections from perfused/
fixed mice were further acetone-fixed, washed with PBS/T, blocked
with PBS/Tþ 1% BSA, and incubated overnight at 41C with diluted

(1:50 in PBS) sera as indicated (Figure 5C). Slides were incubated
with Alexa 488-conjugated a-mouse secondary antibodies in
PBSþ 1% BSA, followed by TOPRO3 dye in PBS. Slides were images
acquired with a Leica TCS SP5 laser-scanning confocal microscope.

Assay of ex vivo proliferation and Treg function
To assess Treg function, WTand HDAC7-DP splenic CD4þCD25hi Treg
cells were sorted by FACS. CD4þCD25�CD44�CD69� responder
cells were isolated from Boy/J mice using magnetic beads. CFSE-
labelled responder cells (5�104) were added to 96-well plates with a
1:1 mixture of aCD3 and aCD28 microbeads (Invitrogen) as well as
the indicated number (Supplementary Figure S2A) of CD4þCD25hi

suppressor cells. After 3 days, cells were stained for CD4 and CD45.1
to distinguish responders and suppressors, and analysed by flow
cytometry. To assay ex vivo proliferation of OT-2/HDAC7-DP cells,
splenocytes were prepared from OT-2 and OT-2/HDAC7-DP mice,
CFSE labelled and cultured at 5�106/ml in RPMI/5% FBS supple-
mented with 20 U/ml IL-2 and 0.5mM Ova323–339. Surface marker
expression and CFSE dilution were measured by flow cytometry at
indicated intervals (Supplementary Figure S2G and H).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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