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Lamins are nuclear intermediate filament proteins. They provide 
mechanical stability, organize chromatin and regulate transcrip‑
tion, replication, nuclear assembly and nuclear positioning. Recent 
studies provide new insights into the role of lamins in development, 
differentiation and tissue response to mechanical, reactive oxygen 
species and thermal stresses. These studies also propose the exist‑
ence of separate filament networks for A‑ and B‑type lamins and 
identify new roles for the different networks. Furthermore, they 
show changes in lamin composition in different cell types, propose 
explanations for the more than 14 distinct human diseases caused 
by lamin A and lamin C mutations and propose a role for lamin B1 
in these diseases.
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See the Glossary for abbreviations used in this article.

Lamins are evolutionarily conserved nuclear intermediate filament 
proteins. They are restricted to the animal kingdom and are the main 
constituents of the nuclear lamina, which is a meshwork of lamins at 
the nuclear periphery and their associated proteins. Similarly to most 
intermediate filament proteins, lamins have a conserved α‑helical 
coiled-coil rod domain flanked by variable amino-terminal head and 
carboxy-terminal tail domains [1]. The tail domain of lamins contains 
an immunoglobulin-like fold motif and a nuclear localization sig‑
nal. Except for lamin C, all lamins are translated as prelamins with 
a C-terminal CaaX motif, which undergoes farnesylation. In Xenopus 
oocytes, lamins form filaments of about 10 nm in diameter, which are 
arranged in a regular, parallel pattern [2,3]. The basic building-block 
for higher-order lamin assembly is the lamin dimer. The first step in 
this assembly involves head-to-tail polymerization of the lamin 
dimers [4]. These polymers associate laterally in an antiparallel fash‑
ion to form the protofilament, and then between three and four proto‑
filaments form the lamin filament [5]. However, the structure of lamin 
in somatic cells in vivo still needs to be determined. There is an uneven 
distribution of the lamin subtypes during development and through‑
out human tissues [6–8]. All somatic cell types, including embryonic 
stem cells (ESCs), express lamin B1 and/or lamin B2 (B-type lamins), 
which are encoded by LMNB1 and LMNB2 genes, respectively. 
Lamin A and lamin C are expressed from the LMNA gene through 

alternative splicing (A-type lamins), and differ from each other in their 
C-terminal tail domain. They are developmentally regulated and are 
not essential for somatic cell survival. Lamin A, lamin B1 and lamin 
B2 originate from prelamins. Their C-terminal CaaX motif undergoes 
farnesylation, aaX cleavage and carboxymethylation. Only lamin A 
is further cleaved 15 amino acids away from its farnesylated cysteine 
by the protease Zmpste24  [9]. Recent studies used fluorescence 
microscopy techniques in mammalian cells to show that A‑type and 
B‑type lamins form separate networks in certain cell types [10,11]. 
However, in Xenopus oocytes, ectopic expression of lamin A induces 
its assembly on top of the endogenous lamin B3 [3]. In addition, a 
Förster resonance energy transfer (FRET) study suggested that although 
homeotypic interactions are favoured over heterotypic interactions, 
both forms were found in vivo [12]. In vitro studies showed the for‑
mation of heterotypic interactions between A‑type and B‑type lamins. 
These interactions were mediated by consensus motifs at either end of 
the α‑helical rod domain [13,14]. Determining the exact composition 
of vertebrate lamin filaments in vivo is a major goal for future studies.

Lamins probably define the main nuclear architecture that pro‑
vides structural support to the nucleus. Lamins are also required for 
most other nuclear functions including the organization of chroma‑
tin, assembly and disassembly of the nucleus and chromosome seg‑
regation during mitosis, DNA replication, RNA polymerase II (Pol II) 
transcription, cell signalling and apoptosis [15,16].

B-type lamins, development and organogenesis
B‑type lamins are considered essential for cell survival. In support 
of this conclusion, downregulation of B‑type lamin genes in human 
HeLa cells leads to apoptosis [17], and Caenorhabditis  elegans 
embryos downregulated for lamin die at the 100–300-cell stage 
with many cellular phenotypes. Among these are cell-cycle aberra‑
tions, abnormal chromatin organization, mitotic defects, clustering of 
nuclear pore complexes, rapid changes in nuclear morphology and 
accelerated ageing  [18–20]. In addition, the only known heritable 
disease associated with B‑type lamins is autosomal-dominant leuko
dystrophy, which is caused by duplication in the LMNB1 gene [21], 
suggesting that other mutations in B‑type lamins might be lethal [22]. 
Surprisingly, lamin B‑null ESCs show no obvious difference when 
compared with wild-type ESCs, apart from a slight delay in entry to 
prometaphase, suggesting that B‑type lamins might not be essential 
for mouse ESCs [23]. B‑type lamins are also dispensable in some types 
of differentiated tissue, as hepatocytes and keratinocytes of mice defi‑
cient for B‑type lamins demonstrate no apparent phenotypes [24]. 
Given that until these studies B‑type lamins were always considered 
essential, it is probable that the observations in lamin B knockout 
mice reflect adaptive measures in the embryos.

Lamins in development, tissue maintenance and stress
Noam Zuela, Daniel Z. Bar & Yosef Gruenbaum+

Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, 
Jerusalem 91904, Israel 
+Corresponding author. Tel: +972 2 6585995; Fax: +972 2 6586975; E‑mail: gru@vms.huji.ac.il

Received 5 July 2012; accepted 1 October 2012; published online 13 November 2012

www.nature.com/doifinder/10.1038/embor.2012.167
mailto:gru@vms.huji.ac.il


©2012 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION� EMBO reports  VOL 13 | NO 12 | 2012 1071

reviewLamins in development and stress

B-type lamins have developmental roles in tissue differentiation 
and organ development. Drosophila cells, for example, mutated 
in the B‑type lamin DM0 have aberrations in the compound eye, 
the exoskeleton, the male and female reproductive systems and  
the brain. Mouse embryos lacking both lamin B1 and lamin B2 
show abnormal development in organs such as the lungs, the dia‑
phragm and the brain [23,25]. The role of B‑type lamins in the 
development of many organs raises the possibility that they evolved 
to facilitate the integration of different cell types into the highly 
elaborate tissue architecture found in animals. Such complex tis‑
sues include the brain, which requires B‑type lamins for its proper 
organization. In Xenopus retinal ganglion cell axons, lamin B2 is 
expressed outside the nucleus. Interestingly, lamin B2-deficient 
axons have mitochondrial dysfunction and defects in axonal trans‑
port, suggesting that the non-nuclear lamin B in axons is required 
for normal axonal functions [26].

Lack of B‑type lamins in mouse embryonic neurons causes 
abnormal nuclear morphology. These mutant mice also have 
severe neurodevelopmental abnormalities, including a reduced 
number of neurons and reduced cortex size (Fig 1A), as well as 
layer disorganization in the cerebral cortex (Fig  1; [23]). One 
explanation for the different outcomes of losing B‑type lamins 
in different tissues could be a redundancy in the functions of 
B‑type and A‑type lamins. During neuronal differentiation, for 
example, there are alterations in lamin subtypes. Lamin A and 
lamin  C are not expressed in PSA-NCAM-positive progenitor 
cells, whereas lamin B1 is expressed at high levels. The opposite is 
true for mature neurons in which lamin A and lamin C are highly 
expressed, whereas lamin B1 levels are reduced  [27]. Another 
example of alterations in lamin subtypes is vascular cells and 
cells lining the surface of the brain, which express large amounts 
of lamin A. By contrast, little or no lamin A is observed in glial 
cells. A study shows that high levels of miR‑9, a brain-specific 

miRNA, are responsible for the downregulation of lamin A—but 
not lamin C—in the brain [28].

Lamin A and lamin C in development and organogenesis
Lamin A and lamin C in osteoblastogenesis. Lamin A and lamin C are 
required for osteoblastogenesis and bone formation in vivo. They do 
so by helping to maintain the pool of mesenchymal stem cells (MSCs) 
by keeping their non-differentiation state. In support of this role, 
mice lacking lamin A and lamin C show characteristics of bone loss, 
due to a reduction in the number of stem cells, which leads to a shift 
from an osteogenic fate towards an adipogenic fate—phenotypes 
that are normally related to ageing. This shift is a result of changes in 
the expression and protein levels of Runx2- and MAN1-dependent 
pathways, which are transcription factors important for osteoblast 
differentiation (Fig 2, dark brown arrows; [29–31]).

Glossary

ATM	 ataxia telangiectasia mutated
ATR	 ataxia telangiectasia and Rad3-related
Chk1/2	 checkpoint kinase 1/2
DM0	 Drosophila B-type lamin
DNAPKcs	 DNA-dependent protein kinase, catalytic subunit
ERK	 extracellular-signal-regulated kinase
Fos	 FBJ murine osteosarcoma viral oncogene homolog
iPSC	 induced pluripotent stem cell
JNK	 c‑Jun N‑terminal kinase
LAP2(α/β)	 lamina-associated polypeptide 2 (isoform alpha/beta)
LEF1	 lymphoid enhancer-binding factor
LEM2	 LAP2/emerin/MAN1 domain protein 2
MAPK	 mitogen-activated protein kinase
miRNA	 microRNA
MyoD	 myogenic differentiation 1
NURD	 nucleosome remodelling and histone deacetylation
Oct1	 POU class 2 homeobox 1
PCNA	 proliferating cell nuclear antigen
PPARγ	 peroxisome proliferator-activated receptor gamma
pRb1	 protein retinoblastoma 1
PSA-NCAM	 polysialylated neuronal cell adhesion molecule
RBBP4/7	 retinoblastoma binding protein 4/7
Runx2	 runt-related transcription factor 2
siRNA	 short interfering RNA
Zmpste24	 zinc metallopeptidase homologue of ste24
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Fig 1 | B‑type lamins are required for brain development. The genotype of the 
brain and the brain sections is indicated above the panels. (A) Mice mutant 
for lamin B have smaller brains; brains are from embryonic day (E)18.5 mouse 
embryos. (B) Staining of E18.5 neocortex coronal sections of mouse embryos 
for nucleic acids. Neurons from lamin B‑null mice have layer organization 
and migration defects. (C) Layer-specific labelling of the neocortex with 
Tbr1 (green) for early-born deep layer (V,VI) and Brn1 (red) for late-born 
outer neuronal layers (II–IV). DNA is labelled in blue. (D) BrdU (green) 
labelling of mid-to-late-born neurons from E18.5 mice embryos. The data 
for this figure have been used with permission from figure 4 in [23]. BrdU, 
bromodeoxyuridine; Brn1, POU domain, class 3, transcription factor 3; CP, 
cortical plate; IZ, intermediate zone; MZ, marginal zone; Tbr1, T-box, brain, 1; 
VZ, ventricular zone.
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Lamin A, lamin C and muscle cells. Mutations in the LMNA gene cause 
several muscle degeneration diseases including Emery–Dreifuss mus‑
cular dystrophy (EDMD), limb–girdle muscular dystrophy, congenital 
muscular dystrophy, heart–hand syndrome and dilated cardiomyo‑
pathy [16]. These diseases target muscle cells and vary in the age of 
onset, severity of the disease and in the molecular mechanism lead‑
ing to the disease. It is not clear why different lamin mutations affect 
different muscle cells and what causes the varying severity of these 
diseases. One probable explanation for the  interfamilial variability 
of phenotypes observed in these types of disease is the contribution 
of modifier genes. Indeed, a chromosomal region linked to the vari‑
ability in the age of onset of myopathic symptoms in striated muscle 
laminopathies has been identified [32]. Future studies will probably 
identify the specific modifier genes in this region. Mutations in genes 
encoding lamin-associated proteins such as emerin, LAP2 and LEM2 
can also cause muscle diseases [33–35], suggesting that maintaining 
muscle integrity requires lamin-based protein complexes (Fig 3).

There are three non-mutually exclusive models that explain 
the muscle pathology caused by lamin mutations. Lamin A and 
lamin C are probably the main structural elements of the nucleus 
that protects it from mechanical stress [36]. The first model pro‑
poses that lamin A and lamin C mutations impair the ability of 
the lamin filaments to resist mechanical stress, leading to the 

distortion of muscle nuclei and abnormal mechanical signalling, 
which eventually leads to cell death and tissue degeneration [36]. 
Lamin A and lamin C filaments also serve as hubs for the forma‑
tion of numerous protein complexes, and are required for devel‑
opmental gene positioning. According to the second model, 
muscle-specific mutations in the LMNA gene cause mislocaliza‑
tion of muscle-specific genes, as well as abnormal formation of 
lamin A- and lamin C-containing muscle-specific protein com‑
plexes, which in turn lead to muscle deterioration. For example, 
an array of the muscle-specific promoter myo‑3 is localized at the 
nuclear periphery in all C. elegans non-muscle cells. On differen‑
tiation of muscle cells, the myo‑3 promoter migrates to the nuclear 
interior where it actively transcribes the gene [37]. Expression of  
the Y45C lamin EDMD mutation (Y59C in C. elegans lamin) inhib‑
its the migration of the myo‑3 promoter to the nuclear interior in 
most body muscle cells. In correlation, the expression of the pro‑
moter is significantly lower and the animal shows muscle-specific 
phenotypes. Interestingly, the effect of this EDMD-linked mutation 
is muscle-specific even in C.  elegans, in which the position and 
expression of an array of the gut-specific promoter pha‑4 is not 
affected by this EDMD lamin mutation [38]. An example of a poten‑
tially different mechanism leading to EDMD comes from analysis of 
the ΔLys 32 EDMD mutation (ΔLys 46 in C. elegans). C. elegans lamin 
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containing the ΔLys 46 mutation have a defective lamin assembly 
in vitro, and displace emerin and LEM2 from the nuclear periphery 
in vivo [39]. C. elegans lamin is also implied in muscle integrity, as 
several lamin EDMD mutations or loss of emerin plus LEM2 disrupt 
muscle attachment to the cuticle [39,40]. The third model is based 
on the fact that the muscle phenotypes are post-natal. According to 
this model, lamins are required for regulation of cell-type-specific 
gene expression during adult stem cell differentiation [41]. The 
pRb1–MyoD molecular pathway is perturbed in satellite muscle 
cells taken from emerin-null mice or from knockout mice express‑
ing the LMNA gene lacking in exons 8–11 [42,43]. This leads to a 
reduction in MyoD levels, as well as a reduction in its downstream 
targets desmin and M‑cadherin. Reduced levels of both phospho‑
rylated and non-phosphorylated pRb1 were also observed in these 
satellite cells. In these EDMD models a disruption in cell-cycle exit 
and differentiation is also evident (Fig 3, purple arrows; [44,45]). It 
would be important to test these signalling pathways in mice, which 
are completely null for lamin A expression.

LMNA mutations can not only cause myofibre damage and 
degeneration of post-mitotic myofibres, but also directly com‑
promise satellite cell performance, thus exacerbating myofibre 
damage and degeneration. They do so by compromising its regen‑
erative response [46]. The specific contribution of each proposed 
mechanism to the different LMNA disease phenotypes remains 
to be determined. Lamin A and lamin C have an additional role 
in transcriptional activation during the early stages of muscle dif‑
ferentiation. During the initial stages of myoblast differentiation, 
prelamin  A is found in euchromatic complexes with its binding 

partner LAP2α. The protein levels and cellular localization of pre
lamin A and LAP2α regulate the expression of caveolin 3, thus trig‑
gering early differentiation events. When the formation of this 
complex is compromised it probably contributes to the muscle 
phenotypes observed in these diseases [47].

A role for prelamin A and LAP2α is also suggested in the triggering 
of early differentiation events in the mouse myoblast cell line C2C12 
(Fig 2, turquoise arrows). C2C12 cells expressing the EDMD lamin 
mutations R545C or R453W have an abnormally structured nuclear 
lamina. In addition, myogenic differentiation is inhibited at an early 
step due to a lack of myogenin, the level of active RNA Pol II is 
reduced and the distribution of the transcription repression chroma‑
tin marker H3K27 is abnormal. In the myoblast line C2C12, the per‑
sistent pool of hyperphosphorylated retinoblastoma protein (ppRb) 
enables elevated PCNA expression, which causes cells to continue to 
cycle and become hypersensitive to apoptosis induction (Fig 3, dark 
blue arrows; [48,49]). A similar persistence of ppRb is found in mice 
lacking emerin expression, which leads to an inhibition in the onset 
of myoblast differentiation. The muscle phenotypes of the emerin-
null mice are less severe than those in mice with LMNA mutations. 
A possible explanation for this difference could be an upregulation 
of lamin A in the emerin-null mice, partly compensating for the loss 
of emerin, and thus leading to the amelioration of the muscle pheno
types. However, in the case of mice lacking LMNA, emerin cannot 
adequately compensate for the loss of lamin A and lamin C due to 
its dependence on A‑type lamins for its proper localization to the 
nuclear envelope [50]. Emerin, lamin A and lamin C also influence 
cellular differentiation and nuclear remodelling by modulating the 
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expression level and distribution of β‑catenin, a central regulatory 
molecule of the Wnt signalling pathway (Fig  3, dark red arrows). 
Absence of emerin, a key β‑catenin mediator, would limit plasti
city and adipogenic potential of the cells by impairing the balance 
between β‑catenin and PPARγ signalling [51].

Lamin, Hutchinson–Gilford progeria syndrome and ageing. 
Hutchinson–Gilford progeria syndrome (HGPS) is a premature 
ageing disease. Most HGPS patients carry a de novo heterozygous 
mutation in exon 11 of the LMNA gene, which causes accumula‑
tion of a truncated form of permanently farnesylated lamin A, 
termed ‘progerin’. HGPS patients have bone and skin abnormali‑
ties, impaired growth and cardiovascular problems that ultimately 
lead to death at about 13  years of age. HGPS cells have many 
phenotypes including distorted nuclear structure, loss of peripheral 
heterochromatin, impaired DNA damage response (DDR), short‑
ened telomeres and early senescence. These abnormalities are also 
observed in cells lacking the lamin A‑processing protease Zmpste24 
suggesting that permanent farnesylation is a key player in the toxic 
effects of progerin [52–54]. It is worth noting that progerin is also 
detected in cells from normal ageing individuals, where it causes 
similar phenotypes, and thus could potentially contribute to the nor‑
mal ageing process [55–57]. Despite these observations, the extent 
to which lamin A and lamin C contribute to cell senescence and 
ageing in the general population is unknown [58].

In HGPS fibroblasts, there is a decreased interaction of progerin 
with RBBP4/7 (Fig 2, light blue arrows). In turn this leads to depletion 
of the NURD complex, which affects heterochromatin formation, 
transcription regulation and the DDR. Dysfunctional chromatin and 
altered telomeres induce the activation of the p53/p21-dependent 
senescence programme (Fig  2, light blue arrows; [59–61]). 
Embryonic fibroblasts of mice deficient for Zmpste24 delay recruiting 
DDR proteins, which compromises DNA repair leading to defective 
homologous recombination and enhanced non-homologous end 
joining (Fig 2, green arrows). miR‑29, a tumour suppressor miRNA, 
probably regulates the DDR in a p53-dependent fashion. Human 
cells with a depletion of lamin A and lamin C also show an increase 
in DNA double-strand breaks, which leads to activation of the cell-
cycle checkpoint proteins ATM and ATR, and to high levels of Chk1 
and Chk2 phosphorylation (Fig 2, green arrows; [62–64]).

One of the models for HGPS suggests that premature exhaus‑
tion of stem cells is the reason for the inhibition of tissue regen‑
eration. This is especially true for tissues with an elevated degree 
of cell turnover. These tissues are likely to rapidly deplete their 
pool of stem cells [65]. In support of this model, expression of 
progerin in skin cells resulted in impaired function and deple‑
tion of epidermal stem cells, as well as downregulation of both  
the Notch and Wnt signalling pathways [66]. Downregulation of the 
Wnt signalling pathway and accumulation of prelamin A were also 
observed in the hair follicle stem cells of Zmpste24-deficient mice, 
leading to their reduced proliferation capacity [67]. Mice carrying 
the progeric mutation LMNAΔ9 show compromised extracellular 
matrix synthesis, which is caused by reduced function of LEF1 due 
to inhibition of the Wnt signalling pathway [68]. Progerin functions 
downstream from the Notch signalling pathway, as demonstrated 
by the deregulation of several downstream effectors from the Notch 
signalling pathway and the disruption of differentiation pathways in 
human MSCs expressing progerin. Indeed, MSCs give rise to many 
of the affected tissues in HGPS [69].

Autopsy- and biopsy-based research of HGPS patients is limited, 
due to the rarity of the disease and their death at an early age. Our 
understanding of the pathophysiology of this disease stems from 
patient-derived fibroblasts and progerin expression in cell lines. 
Animal models fail to mimic all of the symptoms seen in the human 
disease. The use of pluripotent HGPS cells (HGPS-iPSCs) can provide 
one way to overcome this problem. This unique model system for 
studying human premature ageing is based on the fact that HGPS-
iPSCs are indistinguishable from normal iPSCs and human ESCs in 
many aspects. When the HGPS-iPSCs are differentiated to a meso‑
dermal lineage they show a characteristic HGPS phenotype  [70]. 
The diminished DNAPKcs/Ku80 protein expression in HGPS-iPSCs 
is also found in normal ageing cells, and thus can serve as a marker 
for both a normal and premature ageing process [70]. When HGPS-
iPSCs are differentiated into vascular smooth muscle cells (VSMCs), 
the contractile properties of these cells are changed, probably due to 
an accumulation of cytoplasmic calponin 1 inclusion bodies (Fig 2, 
pink arrows). When subjected to repeated pulses of electrical stimu‑
lation, these HGPS-VSMCs also show increased senescence (Fig 2, 
blue arrows) and are hypersensitive to hypoxia [71].

There are more than 400 mutations described in the LMNA locus. 
The effect of these mutations on tissue development and maintenance 
is not restricted to bones, muscle cells or ageing. In mouse 3T3‑L1 
cells expressing the familial partial lipodystrophy mutations R482Q 
or R482W, for example, lipid accumulation is inhibited and the 
ability of these cells to differentiate to adipocytes is hampered [72]. 
One therapeutic approach that could be used to treat laminopathies 
is the use of helper-dependent adenoviral vectors (HDAdVs). These 
vectors allow the insertion of long homologous  DNA regions that 
facilitate targeted integration through homologous recombination 
and maintain genetic and epigenetic cell profiles. Genetic correc‑
tion of HGPS-iPSCs using this method eliminated the expression of 
progerin, restored the expression of wild-type lamin A, corrected 
the nuclear architecture and established a normal cell senescence 
programme [71]. Other potential therapeutic approaches towards 
treatment of HGPS include reactivating the Wnt signalling pathway, 
which is downregulated in HGPS, and inhibiting the JNK and ERK 
pathways in cardiomyopathy [66,73].

Lamins and stress
Lamins and mechanical strain. Lamins have a key role in protect‑
ing the nucleus from mechanical insults. This includes regula‑
tion of cell and nuclear shape and stiffness, and  induction of 
mechanical-strain-induced  transcription regulation. However, 
the importance of lamins in determining these properties varies 
between tissues [36]. Although mouse ESCs lacking all lamins had 
no apparent phenotype, LMNA-null mouse embryo fibroblasts 
showed nuclear deformation, reduced nuclear stiffness and defec‑
tive mechanotransduction [23]. The viability of fibroblasts lacking 
lamin A and lamin C was significantly reduced under mechani‑
cal strain and the transcriptional response to mechanical stimuli 
was impaired, whilst the viability under unstrained conditions was 
similar to wild-type fibroblasts [74]. Mice that are heterozygous 
for LMNA—reduced lamin A and lamin C expression—show 
less resistance to mechanical stress and impaired induction of 
the mechanotransduction response [75]. Slightly different results 
were obtained in HGPS cells. In the presence of progerin, nuclei 
showed higher stiffness in late passages, but also reduced viability 
under mechanical strain [76].
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Lamins and heat shock. When exposed to high temperatures, cells 
activate a heat shock response that includes post-translational modi‑
fications of specific proteins, changes in protein localization and 
function, as well as an increase in the translation of a group of pro‑
teins termed heat shock proteins (HSPs). Most HSPs have a role in 
the proper folding or unfolding of other proteins, specifically during 
stressful conditions [77]. The exact nature of the heat shock response 
varies not only between organisms, but also between tissues in an 
organism and depends on the severity of the heat shock [78]. When 
subjected to severe hyperthermia, human U‑1 melanoma and HeLa 
CCL2 cells show an increase in lamin B expression, starting early 
after heat exposure and gradually increasing [79]. By contrast, HeLa 
S3 cells show no significant response during or shortly after heat 
shock. In these cells, lamin B1 protein levels decrease after 20 h of 
recovery [80]. Interestingly, there is no correlation between the lamin 
B1 expression levels and cell survival, suggesting that lamin B1 has 
a role in the recovery phase of the heat shock response [79,81]. 
Changes in protein levels after heat shock were also reported for 
emerin. Following a mild heat shock and a 12 h recovery period, 
emerin levels increased briefly and then decreased significantly [80]. 
By contrast, both the localization and expression levels of lamin A 
and lamin C, or the LAP2β protein, did not change [80].

αB-crystallin is a heat shock protein that is expressed in multiple tis‑
sues. Heat shock of the undifferentiated mouse C2C12 myoblast cells 
increases the expression levels of αB-crystallin and the protein trans‑
locates into the nucleus. In the nucleus, αB-crystallin and Hsp25, but 
not Hsp70, co-localize with nucleoplasmic lamin A, lamin C and the 
splicing factor SC‑35. Speckles containing lamin A and lamin C help to 
organize splicing factors and RNA Pol II transcription. The interaction 
of lamin and αB-crystallin/Hsp25 might stabilize the internal architec‑
ture of the speckles. This interaction is developmentally specific, as it 
is detected in myoblasts but not in myotube nuclei [82]. It is worth 
noting that αB-crystallin also interacts with cytoplasmic intermediate 
filaments including desmin [83], and mutations in αB-crystallin can 
cause desmin-related myopathy [84]. Thus, small HSPs might have a 
general role in regulating intermediate-filament-related structures.

In summary, heat shock can cause multiple changes in the lev‑
els and composition of nuclear lamina proteins, as well as changes 
in protein complexes containing nuclear lamina proteins and HSPs. 
The roles of these heat-shock-induced changes in nuclear lamina 
organization and activity, and the cellular response to heat shock, 
require further investigation. 

Lamins and DNA repair. Insults to DNA molecules, either due to 
metabolism or external factors, are common and must be addressed 
promptly to enable normal cell function and to prevent senescence 
or malignant transformations. Lamin A and lamin C have key roles 
in promoting both DNA repair and preventing DNA damage forma‑
tion. These include helping to maintain the integrity of telomeres, 
stabilizing 53BP1, promoting non-homologous end joining (NHEJ) 
and preventing senescence. Specifically, loss of LMNA leads to 
mislocalization and shortening of telomeres, as well as alterations 
to the chromatin structure of the telomeres [85]. In turn, abnormal 
telomeres cause genomic instability, including an increase in telo‑
meric signal-free ends and DNA double-strand breaks  [86]. Loss 
of LMNA also prevents dysfunctional telomere maintenance by 
NHEJ through increased 53BP1 degradation [85,87]. Low levels of 
lamin A and lamin C probably contribute to tumour formation and 
progression, as they might lead to an abnormal DDR [88].

As mentioned above, the roles of lamin A and lamin C in genome 
stability are also observed in patients and in cell lines derived from 
patients. For example, cells expressing progerin have increased 
DNA damage and defective DNA repair [87,89,90]. Specifically, 
the recruitment of 53BP1 and RAD51 to DNA damage sites is 
impaired  [87]. As progerin affects telomere organization, these 
phenotypes might be mediated by telomere-localized DNA dam‑
age signalling. In support of this hypothesis, overexpression of the 
catalytic subunit of telomerase can rescue these phenotypes [91]. 

Lamins and oxidative stress. Reactive oxygen species (ROS) are nat‑
ural by-products of metabolism and are important in cell signalling 
and homeostasis. However, under stress, their amount might increase 
to potentially harmful levels that can jeopardize the cell. Several anti‑
oxidant enzymes, including glutathione transferase, catalase and 
glutathione peroxidase, are probably associated with the nuclear 
periphery, thus potentially preventing damaging agents from entering 
the nuclear interior [92]. Lamin B1 acts to sequester Oct1, and lack 
of lamin B1 leads to activation of several Oct1 target genes and to 
elevated ROS levels. Lamin B1 deficiency also makes cells more sen‑
sitive to extrinsic oxidative stress, a phenotype that can be rescued by 
Oct1 siRNA in mouse embryonic fibroblasts [93].

Lamin B1 was also shown to be involved in DNA damage sig‑
nalling [94]. Ataxia telangiectasia is an autosomal-recessive genetic 
disorder, resulting from a mutation in the ATM gene, a kinase acti‑
vated by DNA double-strand breaks. In ataxia telangiectasia cells, 
lamin B1 levels are elevated and the nuclear envelope becomes 
lobulated (Fig 4). This phenotype is also seen in cells from aged 
individuals or in cells expressing progerin and is generally asso‑
ciated with senescence. The role of lamin B1 was confirmed by 
overexpression in primary fibroblasts, where it induces senescence 
[95]. The high levels of lamin B1 probably result, at least in part, 
from the high ROS levels present in ataxia telangiectasia  cells. 
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Fig 4 | Impact on nuclear shape by oxidative stress or by an ataxia telangiectasia 
cell mutation. Upper panel: wild-type fibroblast not treated (NT) or treated 
with H2O2 stained with lamin B1 antibodies. Lower panel: wild-type and ataxia 
telangiectasia primary cells stained with lamin B1 antibodies. Arrows indicate 
examples of alterations in nuclear morphology. The data have been taken with 
permission from figures 2 and 5 in [95].
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Indeed, treating ataxia telangiectasia  cells with the antioxidant 
N‑acetyl‑l-cysteine reduces the levels of lamin B1, whereas treating 
lymphoblasts and primary fibroblasts with pro-oxidants increases 
the amount of lamin B1. Interestingly, in these ataxia telangiecta‑
sia cells, the levels of lamin B1 are regulated by the p38 MAPK, in 
an ATM-independent manner [95].

Cells lacking lamin A also have elevated ROS levels. Lamin A 
has an additional role in the DDR by serving as a sensor of oxida‑
tive damage in the nucleus. The cysteine residues in the C‑terminal 
tail domain of lamin A are damaged by oxidative stress, and under 
low oxidative stress conditions it could act as a sink to protect less 
abundant proteins, as well as lamin-binding proteins, from oxidative 
damage. However, oxidized lamin A also promotes cellular senes‑
cence, presumably by changing its interactions with key pathways 
such as the Rb–LAP2α pathway or the ERK–fos pathway [96]. 

Conclusions and future perspectives
Nuclear lamins are essential components of the nuclear architecture 
and are important in development and differentiation. Lamins are 
also required for the response to internal and external stress con‑
ditions. Studies in mammalian cells, mouse models and C. elegans 
provide important new insights into the mechanisms by which the 
lamin-based response to signals that drive development and differ‑
entiation are governed, and into lamin-mediated protection of cells 
from different stress conditions.

Many interesting properties of lamins remain to be determined 
(Sidebar A). These include understanding the assemblies of B‑type 
and A‑type lamins in vivo both in the cell periphery and in the nucleo‑
plasm, as well as elucidating the roles of lamins in metabolism, the 
DDR, Pol II transcription and regulating euchromatin–heterochromatin 
transition during differentiation and ageing.
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