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ABSTRACT
Objective United Nations Programme on HIV/AIDS reports
regularly on estimated levels and trends in HIV/AIDS
epidemics, which are evaluated using an epidemiological
model within the Estimation and Projection Package (EPP).
The relatively simple four-parameter model of HIV incidence
used in EPP through the previous round of estimates has
encountered challenges when attempting to fit certain data
series on prevalence over time, particularly in settings with
long running epidemics where prevalence has increased
recently. To address this, the most recent version of the
modelling package (EPP 2011) includes a more flexible
epidemiological model that allows HIV infection risk to vary
over time. This paper describes the technical details of this
flexible approach to modelling HIV transmission dynamics
within EPP 2011.
Methodology For the flexible modelling approach, the
force of infection parameter, r, is allowed to vary over time
through a random walk formulation, and an informative prior
distribution is used to improve short-term projections beyond
the last year of data. Model parameters are estimated using
a Bayesian estimation approach in which models are fit to
HIV seroprevalence data from surveillance sites.
Results This flexible model can yield better estimates of
HIV prevalence over time in situations where the classic EPP
model has difficulties, such as in Uganda, where prevalence
is no longer falling. Based on formal out-of-sample projection
tests, the flexible modelling approach also improves
predictions and CIs for extrapolations beyond the last
observed data point.
Conclusions We recommend use of a flexible modelling
approach where data are sufficient (eg, where at least
5 years of observations are available), and particularly where
an epidemic is beyond its peak.

INTRODUCTION
Every 2 years, the Joint United Nations
Programme on HIV/AIDS (UNAIDS) produces
estimates and projections of HIV/AIDS prevalence,
incidence and mortality by country.1 The technical
basis for this effort has been guided by recommen-
dations from the UNAIDS Reference Group on
Estimates, Modelling and Projections, and a suite
of analytic tools has been developed for this
purpose, including the UNAIDS Estimation and
Projection Package (EPP)2–7 and Spectrum.8–12 EPP
fits an epidemiological model to prevalence data
obtained from sentinel surveillance systems and
national population-based HIV seroprevalence
surveys, and Spectrum translates estimates of HIV
incidence into a range of corresponding population
health consequences, including AIDS mortality.
For the most recent round of estimates, EPP and

Spectrum have been integrated into a single soft-
ware package.
The first widely available version of EPP in 2003

incorporated a simple four-parameter model pat-
terned after the epidemiology of HIV in closed
populations.2 This model provided a good fit to
most generalised epidemics, but in concentrated
epidemics sometimes failed to produce flat enough
curves for populations with high levels of turnover,
for example, injecting drug users (IDU). This
problem was addressed in EPP 2005, which allowed
for movement between populations.4 However, in
the 2007 round of projections limitations in the
simple four-parameter model became apparent in a
few countries. In two countries incidence in the
fitted models fell unrealistically to zero in the near
future. In two other countries the model was
unable to replicate plateauing prevalence trends at
levels well below the peak prevalence or to repro-
duce epidemics where prevalence was again rising
after a steep initial decline. The simple four-
parameter model was not sufficiently flexible to
allow for complex trends after the epidemic peak.
To address this issue, EPP 2009 included an optional
modification to accommodate increases in preva-
lence following a period of decline by replenishing
the susceptible pool,7 but this modification was not
sufficient and proved to have limited utility.
To deal with these more variable epidemiological

patterns appearing in some long running epi-
demics, an alternative approach was suggested in
which the model allows the average infection rate
in a population to vary over time. Two specific for-
mulations of this approach were proposed: one
parameterised a time series of infection risks using
penalised B-splines,13 and another assumed that
infection risks follow a Gaussian random walk
with mean zero.14 These flexible models appeared
to provide better fits to recent prevalence trends in
several cases.
Here we describe the flexible epidemiological

model implemented in the UNAIDS EPP 2011
(hereafter EPP 2011), which was developed from
the previously proposed spline and random walk
models. In the Methods section we review the
general modelling approach in EPP, contrast the
‘classic’ and flexible epidemiological models, and
summarise the Bayesian estimation method used
for model fitting. In the Results section, we
present illustrative prevalence and incidence trajec-
tories for 10 countries with generalised epidemics
and 6 countries with concentrated epidemics, as
well as a summary of formal out-of-sample projec-
tion tests. In the Discussion section, we offer
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some conclusions and highlight model settings that the
end-user of EPP 2011 can alter if desired.

METHODS
Overview of estimation procedure
Due to the paucity of reliable information on HIV incidence in
developing countries, sentinel surveillance systems for HIV were
designed to provide information on prevalence trends to policy
makers and programme planners. The main data source used in
EPP is surveillance data from various sites and years showing
HIV prevalence among antenatal clinic (ANC) patients and key
populations with elevated HIV risk, for example, men who have
sex with men (MSM) or female commercial sex workers (FSW).
The ANC data are primarily used to estimate prevalence in the
general population while the other data are used to estimate
prevalence among higher-risk populations. HIV prevalence
among ANC patients has been shown to be somewhat higher
than that in the general population.15 In an attempt to obtain
more representative estimates of HIV prevalence, since 2001, 32
countries in sub-Saharan Africa have conducted national
population-based household surveys, including Demographic
and Health Surveys and AIDS Indicator Surveys. These national
population-based HIV surveys are used in generalised epidemics
to calibrate overall population prevalence levels estimated from
ANC surveillance data.16 17

The UNAIDS EPP is based on a simple susceptible-infected-
recovered epidemiological model, formulated as a set of differ-
ential equations, and described in the next section. To obtain
probabilistic estimates and projections, a Bayesian approach is
used to integrate ANC surveillance data with the modelled
estimates of HIV/AIDS prevalence over time.7 16 Formally, the
epidemiological model provides a deterministic mapping from a
vector of input parameters, θ, to a vector of model outputs on
prevalence by year, ρ. A prior distribution is specified for the
model input parameters, and observed surveillance data give
the likelihood L(ρ) for the model output, using a hierarchical
random effects formulation. A prior on the model output ρ can
also be specified, using the Bayesian melding approach.18 19 The
chief endpoints of interest in this estimation approach are the
posterior distributions for prevalence and incidence over time,
the latter taken as an input for further analysis (of endpoints
such as AIDS mortality) in Spectrum.

The posterior distribution in EPP is estimated using the incre-
mental mixture importance sampling algorithm.20 The basic
idea is to approximate the posterior distribution gradually by a
mixture of Gaussian components and the prior distribution,
and it works as follows: (1) In an initial stage, a large number
of samples are drawn from the prior distribution for the input
parameter vector. For each sampled parameter vector, the
model is run, and the outputs used to compute the likelihood.
Importance weights are proportional to the likelihood, with
high importance weights indicating areas where the target
density is under-represented by the importance sampling distri-
bution. (2) In an importance sampling stage, undertaken over
k iterations, further inputs are drawn from a multivariate
Gaussian distribution centred at the current maximum-weight
input. Therefore, the new inputs fill in the under-represented
parts of parameter space iteratively. (3) In a resampling stage,
once a specified stopping criterion is satisfied, a number of
resampled input parameter vectors are drawn with replace-
ment, based on their importance weights. We chose 3000
resamples for the EPP 2011 implementation. For each input par-
ameter vector in the resample, quantities of interest computed
by running these parameters through the model (eg, HIV

prevalence and incidence over time) are realisations from their pos-
terior distributions. The algorithm ends when the expected frac-
tion of unique points in the resample is at least 1−1/e=0.632.
This is the expected fraction when the importance sampling
weights are all equal, which is the case when the importance sam-
pling function is the same as the posterior distribution.

Epidemiological model in EPP 2011: ‘classic’ formulation
The basis for modelling HIV incidence in the ‘classic’ formula-
tion of the epidemiological model in EPP has been described in
detail elsewhere.3 5 7 Briefly, the population 15 years and older
is divided into those not at risk; those at risk, but not yet
infected; and those at risk and living with HIV. Modelling of
the transmission of HIV infection is governed by four para-
meters: r, the rate of infection, assumed constant, t0, the start
year of the epidemic, f0, the initial fraction of the adult popula-
tion at risk of infection, and ϕ, a parameter modulating the
split between at-risk and not-at-risk populations in mature epi-
demics. In the epidemic start year, 0.025% of the at-risk but
not yet infected group moves to the infected group to initialise
the epidemic. The number of new entrants at time t depends
on the population size 15 years earlier, the birth rate and the
survival probability from birth to age 15.

As described elsewhere in this supplement,21 EPP 2011 has
been expanded to track the infected population’s progression
across CD4 cell count levels. CD4 counts are also used to
improve the realism of the effects of antiretroviral therapy. The
new implementation also includes more detailed population
demographics, for example, ageing out at age 50 and migration.

Epidemiological model in EPP 2011: flexible formulation
In EPP 2011, the option to run the classic model is retained,
but a new flexible specification for modelling transmission is
added as an option. The flexible model diverges from the classic
model in three key ways. The at-risk and not-at-risk groups are
combined, the infection rate r is allowed to vary over time in a
flexible way and therefore specified as r(t), and an equilibrium
constraint is imposed on projections beyond the last year of
data, to avoid explosive behaviour. These changes are described
in the following subsections.

Combining the at-risk and not-at-risk groups
The flexible model drops the distinction between individuals at
risk and not at risk of infection, treating all HIV negative
persons as being at risk.13 14 It divides the 15–49 year-old popu-
lation at time t into two general groups: Z(t) is the number of
uninfected individuals and Y(t) is the number of infected indi-
viduals. For parsimony in presentation, we describe here a sim-
plified version of the model without the details on CD4
progression that are included in the actual EPP 2011 model.
The simplified dynamics are as follows:

dzðtÞ
dt

¼ EðtÞ � rðtÞYðtÞzðtÞ
NðtÞ � p zðtÞ � a5oðtÞzðtÞ

NðtÞ þMðtÞzðtÞ
NðtÞ ;

dYðtÞ
dt

¼ ðrðtÞYðtÞztÞ
NðtÞ �HIVdeath� a5oðtÞYðtÞ

NðtÞ þMðtÞYðtÞ
NðtÞ ;

8>><
>>:

ð1Þ

where N(t)=Z(t)+Y(t) is the total population size, E(t) is the
number of new adults entering the population, r(t) is the
average infection risk, −a50(t) is the rate at which adults exit
the model after attaining age 50, and M(t) is the rate of net
migration into the population.
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Flexible specification for the infection rate, r(t)
The infection rate, r(t), is the expected number of persons
infected by one HIV positive person in year t in a wholly sus-
ceptible population. In the flexible model formulation, r(t) is
modelled as a random walk on the log scale; specifically the
first difference is modelled as a series of independent and identi-
cally distributed normal random variables, each with mean
zero and SD σ:14

log rðtÞ � log rðt� 1Þ ¼ DðtÞ ~Nð0;s2Þ ð2Þ

There are often no data in the early period of the epidemic. Let
t0 be the start year of the epidemic and t1 be the first year of
the observed data. We use the fact that, from (2), log r(t1)−log
r(t1)∼N(0, (t1−t0)σ2), and divide the changes from r(t0) to r(t1)
equally between each of the years of the ‘pre-data’ period.

Previous versions of EPP estimated the year t0 in which
0.025% of the uninfected population is moved into the infected
category in order to initiate the epidemic. In the flexible model,
we fix t0 at 1975 and estimate the initial seed y(t0) and initial
infection rate r(t0) as parameters, to improve the efficiency of
the programme.13

We carry out Bayesian estimation with the following prior
distributions:

log yðt0Þ � Uniform½log 10�13; log 0:0025�;
log rðt0Þ � Uniform log

1
11:5

; log 10
� �

;

s2 � InverseGamma
v
2
;
vl
2

� �
:

8>>>>><
>>>>>:

ð3Þ

The lower bound of r(t0) for generalised epidemics is set at 1/11.5
because the epidemic would not spread if r(t0) were smaller than
1/11.5, since 11.5 is the expected length of the infectious period.
The alternative lower bound, 1/11.5+1/d, is recommended
for concentrated epidemics, where d is the mean duration that
people stay in the at-risk category. We chose ν=10 and λ=0.09 to
accommodate the observed changes in all the countries we have
considered.

The randomwalk model for r(t) was realistic for most countries,
but gave a posterior distribution of the incidence pattern over time
that had two unrealistic peaks in the mid-1990s in Kenya. We put
constraints on incidence rates directly, which follows the idea of
Bayesian melding.17 Specifically, we set an upper bound, 0.2, on
the average of the absolute values of the 2nd derivatives of inci-
dence rates to eliminate the bumpy incidence curves.

To improve sampling efficiency, we integrate out σ2 analytic-
ally, so that it is not included in the sampling algorithm.
Additionally, we include an optimisation stage after the initial
sampling stage in the incremental mixture importance sam-
pling procedure to reduce the time required for convergence.
Specifically, we set the maximum weight input from the initial
stage as the starting point, use the Nelder-Mead and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) methods to obtain a local
maximum of the posterior density of the input parameter
vector, θopt,22–24 and store the estimated inverse of the Hessian
matrix at the local maximum as Σopt. New inputs are drawn
from the multivariate normal distribution with centre θopt and
covariance matrix Σopt.

Additional constraint on projections beyond the last year
with data
To make short-term projections beyond the last year with data,
the variance of the random walk is needed for each trajectory.
Given the consecutive changes of log r(t), it is straightforward
to draw σ2 from its posterior distribution:

s2 � InverseGamma
vþ t2 � t1

2
;
vlþP t2

t¼t1DðtÞ
2

2" #
; ð4Þ

where Δ(t)=logr(t)−logr(t−1), and t1 is the starting year of
data and t2 is the end year of data. Without any further
assumptions, we can make projections by continuing the
random walk with the sampled variance σ2,

log rðtÞ � Nðlog rðt� 1Þ;s2Þ: ð5Þ

At the later stages in an epidemic, we expect prevalence to
approach an equilibrium, which leads to the following approxi-
mation for generalised epidemics:13

r~¼ 1=ðð1� rðt2ÞÞ=11:5Þ: ð6Þ

To improve the plausibility of future projections, we shrink the
random walk beyond the last data point towards the equilib-
rium approximation:

log rðtÞ � Nðlog r~;hðt� t2ÞÞ; ð7Þ

where η controls the amount of shrinkage towards equilibrium.
The shrinkage tends to project a flatter prevalence trajectory.
The variance term is proportional to the number of years after
t2, so the calibration becomes weaker in later years. To make
projections that incorporate the shrinkage, we continue the
random walk as follows:

log rðtÞ � Nðw1 log rðt� 1Þ þw2 log r~; ~sðtÞ2Þ; ð8Þ

where ð1=~sÞðtÞ2 ¼ ð1=s2Þ þ ð1=hÞðt� t2Þ;w1 ¼ ð~sðtÞ2=s2Þ, and
W2 ¼ ð~sðtÞ2=hðt� t2ÞÞ. We found that setting η=0.09 provided
acceptable results for the countries we have investigated.

Assessing model fit: estimation and projection for clinic
prevalence
To evaluate the goodness of fit and predictive validity of the
model, we estimated models based on the full data time series as
well as assessing 5-year out-of-sample projections from models fit
to truncated data. We use the sentinel surveillance data to assess
model fit, rather than national HIV prevalence data, because the
model is typically fit to prevalence data from sentinel surveillance
sites and then calibrated to match point estimates from national
population-based surveys. In generalised epidemics, ANC data
often include repeated measurements at the same clinic. We
approximate the likelihood by modelling the prevalence on the
probit scale and using a hierarchical normal linear model. We
denote by xst the observed prevalence at clinic s in year t, and by
bs the clinic effect. The likelihood is based on the following:

f�1ðxstÞ ¼ f�1(rt)þ bs þ 1st;
bs � Nð0; j2Þ;
1st � ð0; vstÞ;

8<
: ð9Þ
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with ðvst ¼ 2pxstð1� xstÞ=NstÞ expðF�1ðxstÞ2Þ where Nst is the
sample size at clinic s in year t. The function Φ is the standard
normal cumulative distribution function. Bayesian estimation
requires a prior for ξ2, and we use an Inverse Gamma (β1, β2) prior
with β1=0.58 and β2=93.17

As the data are observed at the clinic level, we can compare
the ANC data with the posterior samples of corresponding
clinic level prevalence to assess model fit. To obtain the poster-
ior distribution of clinic-specific prevalence, the clinic effects bs
need to be generated for each posterior sample. The posterior
density of bs is proportional to

exp � 1
2

XTs
t¼1

(F�1ðxstÞ �F�1ðrtÞ � bs)2

vst

 !

� 1
2
b2s þ

1
b2

� ��b2�ð1=2Þ
ð10Þ

We sample bs from P(bs|(Φ−1(xst)−Φ−1(ρt))) using importance
sampling.16

We calculate the coverage and the width of the 95% clinic-
specific intervals, and the mean absolute errors of the clinic-
specific posterior median averaged over the held-out 5 years of

Figure 1 Estimation and projection of HIV prevalence and incidence in 10 countries with generalised epidemics: Botswana, Ethiopia, Gabon,
Ghana, Kenya, Namibia, Rwanda, Tanzania, Uganda, and Zambia. Coloured dots show observed prevalence from different sites. The black solid line is
the median of the classic Estimation and Projection Package (EPP) model trajectories, the blue solid line is the median of the flexible model
trajectories, the dashed lines are the 95% credible intervals, and the red solid line is the data trend averaged over all clinics at each year.
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test data. For each dataset, the coverage of clinic-specific inter-
vals is defined as the proportion of ANC data that fall within
the corresponding clinic-specific intervals.

RESULTS
We compared results from the classic EPP model to the
new flexible model in terms of fits to surveillance data in
10 countries with generalised epidemics: Botswana, Ethiopia,
Gabon, Ghana, Kenya, Namibia, Rwanda, Tanzania, Uganda
and Zambia, and in 6 countries with concentrated epidemics:
Mexico, Ukraine, Moldova, Nepal, Australia and Algeria. These

countries are at different stages of the epidemic and have differ-
ent amounts of data. Note that the results are based on illustra-
tive HIV prevalence data for these countries, which may not be
complete. These results should therefore not be seen as
replacing or competing with official estimates regularly pub-
lished by countries and UNAIDS.

Estimation and projection using the full data
Figure 1 presents the estimation and projection of HIV preva-
lence and incidence for 10 countries with generalised HIV/
AIDS epidemics based on the full prevalence data series. Both

Figure 2 Estimation and projection of HIV prevalence among high risk populations in Mexico, Ukraine, Moldova, Nepal, Australia, and Algeria. The
high risk populations are sorted by columns: injecting drug users (IDU), men who have sex with men (MSM), female commercial sex workers
(FSW), and clients of sex workers (Client). Coloured dots are observed prevalence from different sites. The blue solid line is the median of the
flexible model trajectories and the blue dashed lines show the 95% credible intervals of the flexible model trajectories.
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classic and flexible models provide reasonable fits to the
observed ANC data, and their posterior medians are very close
in many cases. The classic EPP model projects HIV incidence in
Ethiopia to reach 0% in 2015 with near certainty, which seems
overoptimistic. The flexible model implies more uncertainty
about HIV incidence in this case. For Rwanda and Uganda, the
classic model estimates a sudden increase in prevalence in the
early period of the epidemic and the incidence could be as high
as 15%; the flexible model estimates a steady increase in preva-
lence with smoother changes in incidence.

Figure 2 presents flexible model projections from six coun-
tries with concentrated HIV/AIDS epidemics. The illustrative
examples include the four most common high-risk sub-
populations for contracting and transmitting HIV: IDU, MSM,
FSWand clients of sex workers (Client). We see that the flexible
model works for countries with small amounts of data, such as
Moldova MSM and FSW, and for countries with only one site,
such as Australia IDU and MSM. However, the prevalence tra-
jectory of the flexible model is mainly driven by the clinic data,
for example, Moldova IDU and Nepal IDU. For countries with
very sparse data, we may incorporate additional constraints
based on expert knowledge to eliminate unrealistic patterns in
the flexible model.

Out-of-sample projection
To assess short-term projections, we summarise the coverage
and the width of the 95% prediction intervals and MAE for 10
countries with generalised epidemics in table 1. If the model
perfectly described the mechanism that generates the data, we
would expect 95% of the clinic data to fall between the 2.5th
and the 97.5th clinic-specific posterior quantiles. The coverage
of the classic EPP model is smaller than 95%, so that the pre-
diction intervals are not wide enough. The flexible model pro-
vides improved coverage. For Ethiopia, Ghana and Tanzania,
the flexible model provides narrower prediction intervals and
better coverage than the classic model. For Gabon, Namibia,
Rwanda and Zambia, the flexible model improves coverage by
providing wider prediction intervals. When we take the poster-
ior median as the point estimate, the MAE for Ethiopia,
Namibia, Tanzania, Uganda and Zambia are substantially
reduced by using the flexible model. The flexible model has a
larger mean absolute error for Gabon and Botswana but its pre-
diction intervals still cover the data average. Figure 3 shows the
out-of-sample projections from the classic EPP model and the
flexible model. The data to the right of the vertical line were
used only to validate the projection and not for estimating the
model parameters.

We also experimented with other choices of η which is the
control parameter for short term projections (see section
‘Additional constraint on projections beyond the last year with
data’). Smaller ηs made a stronger equilibrium assumption, and
hence did not capture the recent HIV prevalence changes; on
the other hand, larger ηs did not provide enough shrinkage
towards the equilibrium prevalence, and the prediction inter-
vals were too wide.

DISCUSSION
The flexible epidemiological model implemented in EPP 2011
includes several modifications to the previous approach, namely
combining the at-risk and non-at-risk groups, using a stochastic
random walk model to allow the infection rate to vary over
time, replacing the random starting year of the epidemic t0
with the random seed y(t0) that initialises the epidemic at the
fixed starting year, and calibrating the projection towards an

equilibrium value for prevalence. The new flexible epidemio-
logical model provides better estimates and short-term projec-
tions of HIV/AIDS prevalence in the small number of cases
where the classic EPP model has difficulties.

In some settings, users of the flexible model may wish to
change the values of a few advanced control parameters. By
default, the start year of the epidemic is set at t0=1975 for gen-
eralised epidemics and is set from a database of estimated start
years for national epidemics. However, the user can define the
start year to be any year between 1970 and 1990, and later
start years can be used if more appropriate. In our experience,
prevalence projections from the flexible model are relatively
insensitive to reasonable changes in t0 except in cases where
surveillance data only become available near or after the time
of peak prevalence. In those cases the early epidemic prevalence
trend may vary substantially and should be constrained using
prevalence conditions set based on expert knowledge of histor-
ical prevalence studies in the country. There are also two vari-
ance terms that provide additional control over model output
when needed: the variances of the random walk, λ, and the
equilibrium parameter, η, which have default values of 0.09.
Larger values of λ allow bigger changes in r(t) between years,
which can yield more rapid changes in HIV prevalence and inci-
dence and wider CIs. Smaller values of η result in future projec-
tions that trend more strongly towards equilibrium for
prevalence.

For illustrative purposes, results presented here do not incorp-
orate prevalence data from national population-based surveys.
However, in EPP 2011, flexible model estimates and projections
are calibrated to these data in the same manner as the classic
model.16 The probabilistic framework for the calibration pro-
cedure is available in the article by Alkema, Raftery and Clark
(2007).17

The random walk model implemented in EPP 2011 is flexible
enough to capture a wider variety of epidemic patterns than
the classic formulation. However, the algorithm for estimating
it converges more slowly than for the classic model, as the flex-
ible model contains a greater number of model parameters to
estimate. Model fitting speed tends to be slowest in countries
with extensive time series data in large numbers of sites.
Additionally, constraints on prevalence in the pre-surveillance
period and a constraint on the change of incidence as described

Table 1 Comparisons between the classic Estimation and Projection
Package (EPP) model and the flexible model: coverage and width of
95% prediction intervals and mean absolute errors of the clinic-specific
posterior median for 10 countries with generalised epidemics

Coverage of
prediction interval

Width of
prediction interval

Mean absolute
error

Classic Flexible Classic Flexible Classic Flexible

1 Botswana 0.556 0.556 0.106 0.125 0.048 0.052
2 Ethiopia 0.365 0.673 0.086 0.079 0.054 0.027
3 Gabon 0.667 0.889 0.084 0.111 0.027 0.034
4 Kenya 0.440 0.440 0.052 0.053 0.029 0.029
5 Ghana 0.852 0.930 0.041 0.040 0.009 0.008
6 Namibia 0.766 0.915 0.127 0.132 0.042 0.032
7 Rwanda 0.800 0.800 0.057 0.058 0.017 0.017
8 Tanzania 0.784 0.829 0.086 0.077 0.028 0.024
9 Uganda 0.407 0.778 0.047 0.070 0.025 0.022
10 Zambia 0.657 0.886 0.092 0.118 0.032 0.028
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in ‘Flexible specification for the infection rate, r(t)’ have some-
times been used to eliminate unrealistic patterns of prevalence
and incidence in the flexible model. Those constraints are set
based on local expert knowledge, but must be set with caution,
because if set too aggressively they may result in a prevalence
trajectory that does not match ANC data.

In conclusion, EPP 2011 includes an additional, more flexible
modelling option that improves its ability to estimate compli-
cated patterns of HIV prevalence and incidence that have been
challenging for the classic model to reproduce. Future improve-
ments to the model should further investigate flexible, parsimo-
nious models that can be estimated efficiently. Such approaches

Figure 3 Out-of-sample projection of HIV prevalence and incidence in 10 countries with generalised epidemics: Botswana, Ethiopia, Gabon,
Ghana, Kenya, Namibia, Rwanda, Tanzania, Uganda, and Zambia. Coloured dots show observed prevalence from different sites. The black solid
line is the median of the classic Estimation and Projection Package (EPP) model trajectories sampled from the posterior distribution, the blue
solid line is the median of the flexible model trajectories, the dashed lines are the 95% credible intervals, and the red solid line is the data trend
averaged over all clinics at each year. The data to the right of the vertical line are used only to validate the projection but not for estimating the
model parameters.
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are currently being studied for incorporation into Spectrum/
EPP 2013.

Key messages

▸ Longer running HIV epidemics are producing more complex
patterns of rising and falling incidence, challenging the static
model with a fixed infection rate in earlier versions of the
United Nations Programme on HIV/AIDS Estimation and
Projection Package (EPP).

▸ A new ‘Variable-R’ model is proposed in which the infection
rate is allowed to vary over time, adjusting as needed to fit
the observed prevalence.

▸ The model allows fits in countries where the EPP Classic
model was not successful: those with rising post-peak
prevalence trends or zero incidence due to emptying of the
at-risk population.
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