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To identify the proteins induced by Fe deficiency, we have com-
pared the proteins of Fe-sufficient and Fe-deficient barley (Horde-
um vulgare L.) roots by two-dimensional polyacrylamide gel elec-
trophoresis. Peptide sequence analysis of induced proteins revealed
that formate dehydrogenase (FDH), adenine phosphoribosyltrans-
ferase, and the Ids3 gene product (for Fe deficiency-specific) in-
creased in Fe-deficient roots. FDH enzyme activity was detected in
Fe-deficient roots but not in Fe-sufficient roots. A cDNA encoding
FDH (Fdh) was cloned and sequenced. Fdh expression was induced
by Fe deficiency. Fdh was also expressed under anaerobic stress and
its expression was more rapid than that induced by Fe deficiency.
Thus, the expression of Fdh observed in Fe-deficient barley roots
appeared to be a secondary effect caused by oxygen deficiency in
Fe-deficient plants.

In Fe-deficient calcareous soils graminaceous plants se-
crete mugineic acid family phytosiderophores, which are
natural Fe chelators, from the roots (Takagi, 1976) to solu-
bilize Fe required for plant growth. This Fe-acquisition
mechanism in graminaceous plants is called strategy II and
in nongraminaceous plants it is called strategy I (Takagi et
al., 1984; Marschner et al., 1986). The pathway of the bio-
synthesis of mugineic acid family phytosiderophores has
been established (Mori and Nishizawa, 1987, 1989; Shojima
et al., 1989, 1990; Mori et al., 1990; Ma and Nomoto, 1993).
Among the enzymes involved in this biosynthetic path-
way, Higuchi et al. (1994, 1996) purified nicotianamine
synthase and Kanazawa et al. (1994) purified nicotiana-
mine aminotransferase. Comparison of 2D profiles of pro-
teins in barley (Hordeum vulgare L.) roots under Fe-
sufficient and Fe-deficient conditions (Suzuki et al., 1995,
1997) allowed us to identify a 36-kD protein that was
specifically induced by Fe deficiency. In addition, several
genes related to the Fe-deficiency response have been re-
ported: Ids1 (Okumura et al., 1991), Ids2 (Okumura et al.,
1994), and Ids3 (Nakanishi et al., 1993). In this study, we
characterized several other proteins induced by Fe-

deficiency stress in barley roots, one of which was identi-
fied as FDH. FDH was induced not only by Fe deficiency
but also by anaerobic stress. The relationship between Fe
deficiency and anaerobic stress in barley roots is discussed.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Seeds of barley (Hordeum vulgare L. cv Ehimehadaka no.
1) were germinated at room temperature on paper towels
soaked with distilled water. Plants were transferred 4 d
after germination to a plastic net floating on tap water at
pH 5.5 in a greenhouse under natural light. On d 10, plants
were transferred to a continuously aerated nutrient solu-
tion of the following composition: 0.7 mm K2SO4, 0.1 mm
KCl, 0.1 mm KH2PO4, 2.0 mm Ca(NO3)2, 0.5 mm MgSO4, 10
mm H3BO3, 0.5 mm MnSO4, 0.2 mm CuSO4, 0.5 mm ZnSO4,
0.01 mm (NH4)6Mo7O24, and 0.1 mm Fe-EDTA. The pH of
the culture solution was adjusted to 5.5 daily with 1 n HCl.
Fe deficiency was started on d 20 using the same solution,
but without Fe-EDTA. The nutrient solution was changed
every 7 d. Plant roots were harvested 40 d after germina-
tion. Anaerobiosis was achieved by bubbling nitrogen gas
through the nutrient solution overnight to purge oxygen
gas in the solution, followed by a continuous flow of ni-
trogen gas throughout the anaerobic experiment.

Protein Extraction for 2D PAGE

The procedure for extraction of proteins was as de-
scribed by Damerval et al. (1986) with slight modifications.
The roots were homogenized in liquid nitrogen with a
mortar and pestle, and the powder was resuspended in a
cold solution of 10% (w/v) TCA in acetone with 0.1% (v/v)
2-ME. Proteins were allowed to precipitate for 60 min at
220°C and were then centrifuged at 16,000g for 30 min at
4°C. The supernatant solution was discarded and the pellet
was rinsed with cold acetone containing 0.1% (v/v) 2-ME
for 60 min at 220°C and then centrifuged at 16,000g for 30
min at 4°C. The supernatant solution was discarded and
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the pellet was dried under reduced pressure, dissolved (50
mL mg21 dry weight) in sample buffer (9.5 m urea, 2%
[w/v] Triton X-100, and 5% [v/v] 2-ME), and centrifuged
at 16,000g for 10 min at room temperature. The supernatant
solution was used for 2D PAGE. Protein concentrations
were estimated by the method of Bradford (1976).

2D PAGE

2D PAGE was performed following the method of
O’Farrell (1975). Gel length in the column (2.5 3 130 mm)
was 100 mm. To cover the pI range from 5.0 to 8.0, the gel
contained 1.6% (v/v) pH 5.0 to 8.0 ampholines and 0.4%
(v/v) pH 3.0 to 10.0 ampholines. Protein extracts (200 mg)
were subjected to IEF at 400 V for 15 h and at 800 V for 1 h,

and the gels were equilibrated for 15 min in the SDS-PAGE
sample buffer (2.3% [w/v] SDS, 10% [w/v] glycerol, 5%
[v/v] 2-ME, 62.5 mm Tris-HCl, pH 6.8, and 0.1% [w/v]
bromphenol blue), before loading onto slab gels for 12.5%
(w/v) SDS-PAGE in the second dimension. The gel was
stained with 0.25% (w/v) Coomassie brilliant blue R-250 in
a mixture of 50% (v/v) methanol and 10% (v/v) acetate
and destained in a solution of 50% (v/v) methanol and 10%
(v/v) acetate.

Chemical and Enzymatic Digestion of Proteins and Amino
Acid Sequence Analysis

Chemical or enzymatic digestion was used to determine
the internal sequence of the proteins. Chemical digestion
with CNBr was according to the method of Gross (1967)
with the following modifications. Isolated protein spots
from 50 2D PAGE gels were pooled by electroblotting onto
a PVDF membrane according to the method of Towbin et
al. (1979). Proteins were eluted from the membrane by
soaking in a 10-fold volume of 70% (v/v) formic acid
containing 1% (w/v) CNBr in a 1.5-mL microtube and
incubating overnight at 4°C. The supernatant was col-
lected, dried under reduced pressure, resuspended in the
SDS-PAGE sample buffer, and incubated overnight at
room temperature. Enzymatic digestion was performed
according to the method of Cleveland et al. (1977) or Ae-
bersold et al. (1987). After digestion of proteins, the pep-
tides were separated by electrophoresis using Tricine/SDS-
PAGE (Schägger and von Jagow, 1987) in 16.5% (w/v)
acrylamide gels. Peptides were transferred by electroblot-
ting onto a PVDF membrane and stained with Coomassie
brilliant blue. Each band on the PVDF membrane was cut
out and the amino acid sequence was determined by auto-
mated Edman degradation on a gas-phase sequencer (mod-
el 477A protein sequencer and model 120A PTH analyzer,
Applied Biosystems).

FDH Assay

For the assay of FDH activity, the roots were homoge-
nized in liquid nitrogen with a mortar and pestle, and the

Figure 1. 2D PAGE gel from barley roots grown under Fe-sufficient
(1Fe) and Fe-deficient (2Fe) conditions. Each gel was loaded with
200 mg of root proteins. Several spots of proteins that increased under
Fe deficiency are indicated with arrowheads. C, Adenine phospho-
ribosyltransferase; Y, IDS3; and W, FDH. Other spots are unknown
(Table I). Mr is reported in thousands.

Table I. Sequences of CNBr digestion fragments

Spot Fragment Sequence

W N terminus AHT?AGLKKI
WCN-7 DTQAVADA?SRGHIA?YGS?
WCN-6 FVLITGPFHAPYVTHGERIK
WCN-5 AHTSAGSKKIVGVFYQAGEY
WCN-4 RILKLLRN
WCN-3 RILFKLRNFLPGYQQVMKGE

Y N terminus Blocked
YCN-4 ENILHATPAPV
YCN-3 ?EQFFHLPA?DKA?LY?E
YCN-2 GIQADYFEGD L?G?NVIL?I

C N terminus Blocked
CLP-1 GKPGEVISEEYSLEYG?DKI
CLP-2 RIPGEVIP
CCNS-2 HVGHVSPNDRDLIVDDLIHQ
CCNM-1 HDGAVAKLASRLGAKVVEIA
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powder was resuspended in the following buffer: 100 mm
Tris-HCl, pH 8.0, 1 mm PMSF, 1 mm EDTA, and 0.2% (w/v)
Triton X-100. FDH activity on nondenaturing polyacryl-
amide gels was visualized according to the method of
Uotila and Koivusalo (1979) as follows. A 7% (w/v) native
acrylamide gel was used with the discontinuous buffer
system of Laemmli (1970). One-hundred micrograms of
soluble protein from roots or leaves was fractionated at 100
V for 2 h at room temperature and then incubated in
darkness for 30 min at room temperature in the following
solution: 100 mm sodium phosphate buffer, pH 7.0, 50 mm
sodium formate, 0.8 mm NAD1, 0.03 mg mL21 phenazine
methosulfate, and 0.4 mg mL21 nitroblue tetrazolium.

Cloning of cDNA Encoding FDH

A pYH23 cDNA library prepared from poly(A1) RNA of
Fe-deficient barley roots (kindly provided by Hirotaka
Yamaguchi, The University of Tokyo) was screened with
an FDH PCR product corresponding to the partial amino
acid sequences of FDH: GGIGTITTYTAYCARGCIGGIGA-
RTAY and GCRTCIGCIACIGCYTGIGTRTCCAT (shaded
sequences in Fig. 3). The PCR probe was labeled with a
random-primer-labeling kit (version 2, Takara Biomedicals,
Gennevilliers, France) in the presence of [a-32P]dATP. The
cloned cDNA was sequenced according to the protocol of a
sequencing kit (Dye Terminator Cycle Sequencing Ready
Reaction kit, Perkin-Elmer) using a DNA sequencer (model
A373, Applied Biosystems). Hybridization probes for
Southern blotting were prepared by digesting the cloned
cDNA corresponding to the FDH gene (Fdh) with SacI, and
the smaller fragment (Fig. 3, underlined) was radiolabeled
as described above. The labeled DNA was purified on a
Nick column (Pharmacia) and used as a probe for both
Southern and northern hybridization analyses.

Genomic Southern Hybridization

Barley genomic DNA was prepared from leaves by the
method of Murray and Thompson (1980) using cetyltri-
methylammonium bromide. The DNA was digested with
BamHI, EcoRI, or HindIII, separated on a 0.8% (w/v) aga-
rose gel (30 mg per lane), and alkali-transferred onto a
nylon membrane (Hybond-N1, Amersham). The mem-
brane was hybridized with the labeled SacI fragment of Fdh
with 53 SSPE, 43 Denhardt’s solution, and 100 mg mL21

salmon-sperm DNA at 65°C overnight. The washing con-
ditions were three times with 23 SSPE plus 0.1% (w/v)
SDS at 65°C for 30 min.

RNA Isolation and Northern Hybridization

Total RNA was isolated from roots or leaves according to
the procedure of Logmann et al. (1987). RNA (10 mg per
lane) was separated on 1.2% agarose gels containing 5%
(v/v) formaldehyde and blotted onto nylon membranes
(Hybond-N1, Amersham). The membrane was hybridized
with the SacI fragment of Fdh under the same conditions
described above. The washing conditions were: 63 SSPE at
65°C for 10 min and then twice with 23 SSPE plus 0.1%

(w/v) SDS at 65°C for 10 min. The radioactivity was de-
tected and quantified using an image analyzer (BAS-2000,
Fuji, Tokyo, Japan).

RESULTS

2D Electrophoresis of Barley Root Proteins

Proteins prepared from Fe-sufficient and Fe-deficient
roots and analyzed on 2D PAGE gels showed different
protein patterns after Coomassie brilliant blue staining
(Fig. 1). In the roots of Fe-deficient plants, the protein spots
named C, D, G, V, W, X, and Y were present at higher
concentrations than in Fe-sufficient plants (Fig. 1). Protein
spots C, D, G, and V had previously been observed to
increase during Fe deficiency (Mori et al., 1988; Suzuki et
al., 1995), but the W, X, and Y spots were newly identified
in this study.

Amino Acid Sequences of Each Protein

Among the seven proteins with increased concentrations
in Fe-deficient roots, the D protein has been previously
identified as a 36-kD peptide (Suzuki et al., 1995). Three
proteins (C, W, and Y) were successfully sequenced. The
N-terminal sequence of protein W was sequenced by Ed-
man degradation, but the N termini of C and Y appeared to
be blocked. The W protein appeared to be FDH (EC 1.2.1.2)
based on homology of the sequences of internal peptides
from CNBr digestion fragments (WCN-3, -4, -5, -6, and -7 in
Table I) to other FDH sequences (the SwissProt and Gen-
Bank databases were used for the homology search). FDH
was previously reported to be expressed in Fe-deficient
roots of tomato and in the roots of the nicotianamine-free
mutant chloronerva by Herbik et al. (1996). The C protein
was transferred onto a PVDF membrane and digested with
CNBr (CCNS-2 and CCNM-1 in Table I) or lysilendopep-
tidase (CLP-1 and CLP-2 in Table I). The sequences of
peptides from C obtained by chemical or enzymatic diges-
tion suggested that it is adenine phosphoribosyltransferase
(EC 2.4.2.7). The sequences of CNBr digestion fragments

Figure 2. FDH assay on nondenaturing polyacrylamide gel. Each
lane was loaded with 100 mg of soluble proteins from barley roots or
leaves of Fe-sufficient (1Fe) or Fe-deficient (2Fe) plants.
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from the Y protein (YCN-2, -3, and -4 in Table I) completely
matched the translated products from the cDNA sequence
of the Ids3 gene (Nakanishi et al., 1993, accession nos.
D37796 and D10058). Thus, FDH, adenine phosphoribosyl-
transferase, and the Ids3 gene product showed increased
accumulation in Fe-deficient barley roots.

FDH Assay

An increase in FDH activity (Fig. 2) was also detected in
Fe-deficient roots, confirming the accumulation of FDH
observed by 2D PAGE. FDH activity was not detected in
Fe-deficient leaves, Fe-sufficient roots, or Fe-sufficient
leaves at the protein concentration tested (100 mg).

Isolation of Barley cDNA Encoding FDH

A cDNA library prepared from poly(A1) RNA of Fe-
deficient barley roots was screened with a PCR probe
designed to encode FDH (Fig. 3). Several clones were thus
identified. The cloned cDNA encoded 377 amino acids of
an open reading frame corresponding to a protein with a
molecular mass of 41.5 kD and a pI of 6.7. The deduced
molecular mass and pI were those of W in 2D PAGE. A
sequence consisting of 21 amino acids at the N terminus
might be a transit peptide targeted to mitochondria, based
on comparison with potato (Solanum tuberosum) tuber FDH
(Colas des Francs-Small et al., 1993). Comparison of barley
FDH with FDH from other plants or bacteria is shown in
Figure 4. The NAD1-binding site from Lys-193 to Asn-228

Figure 3. DNA and deduced amino acid se-
quence of barley FDH. Position of primers
for PCR are shaded and the SacI fragment is
underlined.
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(Lamzin et al., 1992) and the formate-binding site from
Arg-285 are indicated. The sequences were highly con-
served between barley and potato in contrast to the se-
quences at the N terminus, which displayed very low
sequence homology.

Southern Hybridization Analysis

The copy number of Fdh in barley was assessed by South-
ern hybridization analysis (Fig. 5). One fragment was ob-
served in the BamHI- and HindIII-digested DNA. Three
fragments were detected in the EcoRI lane but the largest
(10 kb) may represent an incomplete digestion product,
since the sum of the molecular masses of the other two
fragments (5.5 and 4.2 kb) is approximately 10 kb. Since
there were no restriction enzyme sites for BamHI, EcoRI,
and HindIII in the cloned Fdh cDNA, we conclude that the
Fdh gene is a single copy in the barley genome and that an
EcoRI site is probably present within an intron.

Northern Hybridization Analysis

To investigate the expression of Fdh, northern hybridiza-
tion analysis was performed (Fig. 6). In the control (Fe-
sufficient) plants, no Fdh mRNA was detected in either the
leaves or the roots (Fig. 6, compare 1Fe leaf and 1Fe root).
In contrast, Fdh was strongly expressed in the roots of

Fe-deficient plants but not in the leaves (Fig. 6, compare
2Fe leaf and 2Fe root).

The induction of Fdh expression required 1 d of Fe defi-
ciency, with the amount of Fdh mRNA increasing gradually
day by day (Fig. 7). After 14 d, Fdh expression reached a
maximum and remained constant for 28 d. When Fe was
resupplied in the form of Fe-EDTA to the culture solution
of Fe-deficient plants, Fdh mRNA quickly diminished and
was barely detectable on d 7 after the addition of Fe.

In bacteria and unicellular algae, formate is produced in
large quantities under anaerobic conditions (Kreuzberg,
1984; Ferry, 1990). We therefore examined the expression of
barley Fdh under anaerobic conditions. As in prokaryotes,
Fdh expression increased in barley under anaerobic condi-
tions (Fig. 8); the increase in Fdh mRNA began at 12 h
compared with 1 d for Fe deficiency. The amount of Fdh
mRNA present after 48 h of anaerobiosis was approxi-
mately equivalent to 10 to 14 d of Fe deficiency (quantifi-
cation by the image analyzer is not shown).

DISCUSSION

Based on peptide sequencing of protein spot W, FDH
was among the proteins induced by Fe deficiency in barley
roots. FDH activity and mRNA were detected in Fe-
deficient barley roots but were undetectable in Fe-deficient
barley leaves (Figs. 2 and 6). In Pseudomonas sp. FDH,

Figure 4. Comparison of amino acid sequences from barley FDH with FDH from other organisms. The partial amino acid
sequences from the W protein are underlined. The probable NAD1-binding site is boxed, and the formate-binding site is
shaded (Lamzin et al., 1992). The homology between barley FDH and other FDHs was 82.7% (S. tuberosum; Colas des
Francs-Small et al., 1993), 53.0% (N. crassa; Chow and RajBhandary, 1993), 50.9% (Pseudomonas sp.; Tishkov et al., 1991),
50.0% (H. polymorpha; sequence A06214 was submitted to EMBL data bank by C.P. Hollenberg and Z. Janowicz in 1989),
and 49.6% (C. methylica; Allen and Holbrook, 1995).
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Arg-288 has been proposed to be a formate-binding site
(Lamzin et al., 1994; Popov and Lamzin, 1994), and the
His-341–Gln-317 pair is necessary for the binding of for-
mate (Tishkov et al., 1996). These amino acids are con-
served in all plant FDHs, including that of barley (Fig. 4).
Yeast (Hansenula polymorpha and Candida methylica) FDH
and Neurospora crassa FDH have two inserted regions that
are absent in barley, potato, and Pseudomonas sp. (Fig. 3,
residues 134–135 and 331–335).

Colas des Francs-Small et al. (1993) reported that FDH in
potato tubers was located in the mitochondria. The
N-terminal sequence of barley FDH shows little homology
to potato FDH, but its hydropathy plot is similar to that of
transit peptides for mitochondria targeting. Therefore,
FDH activity detected in barley roots might be derived
from mitochondria.

FDH mRNA was detectable after 1 d of Fe deficiency,
reaching the maximal level after 2 weeks. A few days after

the addition of Fe into the Fe-deficient solution, Fdh ex-
pression decreased and on d 7 was undetectable. Although
this inductive response pattern to Fe deficiency is very
similar to that of Ids3, the response to the Fe resupply is
slower (Nakanishi et al., 1993). Ids3 is one of the clones we
have isolated in barley roots by the differential hybridiza-
tion method, and it supposedly encodes a putative mugi-
neic acid synthase. We observed that the transcript of Ids3
gene is increased by Fe deficiency and we have confirmed
in this experiment that Ids3 is actually translated and the
Ids3 protein is accumulated in Fe-deficient barley roots
(Fig. 1; Table I).

Figure 7. Expression of Fdh during Fe deficiency in barley roots.
Each lane was loaded with 10 mg of RNA. Total RNA was isolated
after 0, 1, 3, 5, 7, 10, and 14 d of Fe deficiency and 1, 3, 5, and 7 d
after Fe resupply.

Figure 5. Southern hybridization analysis of Fdh. Genomic DNA
from barley was digested with BamHI, EcoRI, and HindIII and then
blotted onto a nylon membrane and hybridized with a 32P-labeled
SacI fragment of Fdh.

Figure 6. Northern hybridization analysis of Fdh. RNA was extracted
from Fe-deficient (2) or Fe-sufficient (1) roots or leaves. Each lane
was loaded with 10 mg of RNA. Total RNA was extracted after 14 d
of Fe deficiency.
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In addition to Fe-deficient conditions, the barley Fdh was
also expressed under anaerobic conditions (Fig. 8). More-
over, this inductive response to anaerobic stress began 12 h
after treatment and was more rapid than the response to Fe
deficiency. Formate is reported to be produced in large
quantities in bacteria (Ferry, 1990) and unicellular algae
(Kreuzberg, 1984) under anaerobic conditions. Colas des
Francs-Small et al. (1993) suggested that a major, unchar-
acterized metabolic pathway exists in the mitochondria of
nonphotosynthetic tissues, which produces large quantities
of formate. Therefore, induction of FDH by anaerobic stress
in barley roots (Figs. 7 and 8) is conceivable in light of the
above-mentioned results in bacteria and algae.

The more rapid response of Fdh transcript to anaerobic
stress than that to Fe deficiency indicates that the expres-
sion of Fdh is primarily induced by anaerobic stress. The
expression of Fdh in Fe-deficient barley roots suggests that
Fe deficiency caused changes similar to the ones caused by
anoxia through changes in heme biosynthesis. For exam-
ple, Fe regulates the biosynthesis of d-aminolevulinic acid
(by d-aminolevulinic acid synthase; Pushnik and Miller,
1989) and protoporphyrinogen IX (by co-proporphyrino-
gen III oxidase). These are the common precursors of pro-
toporphyrin IX, from which chlorophyll a in the chloro-
plasts and heme in the mitochondria are synthesized.
Moreover, Fe regulates the biosynthesis of divinyl proto-
chlorophyllide (by Mg-protoporphyrin IX monomethyl-
ester cyclase), which is the precursor of chlorophyll in the
chloroplasts (von Wettstein et al., 1995).

Fe is also incorporated into protoporphyrin IX to become
heme in the mitochondria. Therefore, Fe deficiency not
only lowers the amount of chlorophyll in the chloroplasts
of shoots but also the amount of heme in the mitochondria
of both shoots and roots (Marschner, 1995). Since large
amounts of heme are needed for energy production by the
respiratory chain, the inhibition of energy production by
decreasing respiration in mitochondria could be caused by
Fe deficiency. In addition, we previously reported that Fe
deficiency in rice roots caused morphological malforma-
tion of mitochondria and a decrease in the energy charge
from 0.748 to 0.520 (Mori et al., 1991). Therefore,
anaerobiosis-like changes may be produced in mitochon-
dria of Fe-deficient barley roots.

Anaerobic stress causes acute damage to the plant by
reducing available energy, which may result in its turning
to formate metabolism to produce NADH by FDH. On the
other hand, Fe deficiency may cause anoxia by the deple-
tion of Fe from heme and, secondarily, by the depletion of

heme protein as the result of inhibition of heme biosynthe-
sis. If the metabolism of formate in plant roots is similar to
that of bacteria, as was suggested by Colas des Francs-
Small et al. (1993), the formate pathway would be induced
either by the decrease of heme (Fe deficiency) or by re-
duced electron transport in the respiratory chain of mito-
chondria (anaerobiosis). In conclusion, FDH induction
might be caused by the anoxia induced by Fe deficiency in
spite of the presence of oxygen.
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