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Abstract
Individual differences in face recognition are often contrasted with differences in object
recognition using a single object category. Likewise, individual differences in perceptual expertise
for a given object domain have typically been measured relative to only a single category baseline.
In Experiment 1, we present a new test of object recognition, the Vanderbilt Expertise Test (VET),
which is comparable in methods to the Cambridge Face Memory Task (CFMT) but uses eight
different object categories. Principal component analysis reveals that the underlying structure of
the VET can be largely explained by two independent factors, which demonstrate good reliability
and capture interesting sex differences inherent in the VET structure. In Experiment 2, we show
how the VET can be used to separate domain-specific from domain-general contributions to a
standard measure of perceptual expertise. While domain-specific contributions are found for car
matching for both men and women and for plane matching in men, women in this sample appear
to use more domain-general strategies to match planes. In Experiment 3, we use the VET to
demonstrate that holistic processing of faces predicts face recognition independently of general
object recognition ability, which has a sex-specific contribution to face recognition. Overall, the
results suggest that the VET is a reliable and valid measure of object recognition abilities and can
measure both domain-general skills and domain-specific expertise, which were both found to
depend on the sex of observers.
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Most efforts aimed at understanding how faces are perceived and recognized have relied on
comparing performance with faces to performance with other objects. Research in
psychology, neuropsychology, and cognitive neuroscience has seen much debate regarding
whether face processing is qualitatively special, with evidence coming from studies in which
faces are compared to a single category of non-face objects (Carey, 1992; Diamond &
Carey, 1986; Gauthier & Tarr, 1997; Gauthier et al., 1999; 2000; Kanwisher et al., 1997;
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Moscovitch et al., 1997; Tanaka & Farah, 1993; Young et al., 1987). Given that the specific
contrast category varies from study to study, a review of this literature can appear to support
strong claims about a given behavioral or neural response associated with faces, concluding
that faces elicit phenomenon X more than category A, and more than category B, and more
than category C, and so on, such that phenomenon X may be called face-selective. However,
there are logical problems with an approach that relies on a qualitative summary of multiple
single paired quantitative contrasts, in that potential differences between non-face object
categories are not revealed and their theoretical significance is thereby ignored (Gauthier &
Nelson, 2001).

For instance, consider the Thatcher Illusion for faces – the relative difficulty in perceiving
the local inversion of face parts when the whole face is inverted (Thompson, 1980). When
this effect for faces was compared to the same effect for a variety of non-face categories
(instead of contrasted to one category at a time), the magnitude of the illusion for faces was
not found to be exceptionally large compared to the distribution obtained for non-face
objects (Wong et al., 2010). Whenever the goal is to compare faces to non-face objects,
performance for multiple categories should be obtained.

Likewise, similar problems arise in studies that aim to quantify perceptual expertise in a
specific domain. For instance, car expertise has often been quantified using performance on
a matching task for pairs of cars relative to matching for another category (typically birds),
so that general visual performance and motivation may be factored out (Gauthier et al.,
2000; 2003; Harel et al., 2010; McGugin & Gauthier, 2010; McGugin et al., 2010; McKeeff
et al., 2010; Rossion & Curran, 2010; Rossion & Gauthier, 2002; Xu, 2005). However,
Williams, Willenbockel and Gauthier (2009) noted that this measure of perceptual expertise
can be difficult to interpret for individuals who do not claim to be bird experts but
nonetheless perform very well with birds. In that study, such participants appeared to be
outliers in the relationship between expertise for cars relative to birds and perceptual
sensitivity to spatial frequency content in car images. It is simply suboptimal to measure
expertise through the comparison of one category of interest to a single control category.
Instead it would be more compelling to deem someone a car expert (for instance) based not
only on above average performance wit h cars, but also on markedly better performance for
cars relative to several other non-car categories. While it is possible to be an expert in more
than one domain, evidence of domain-specific expertise for any one category is weakened
by equally good performance for multiple other categories. Presumably, a test with multiple
categories is better apt to distinguish between general object recognition ability and
expertise factors. There have been efforts in the study of patients with agnosia to compare
performance (typically on an old/new recognition test) for faces with that for a number of
other categories (e.g., Duchaine et al., 2003; 2006; 2007; Germine et al., 2011). However,
such studies use fairly small samples and individual differences among controls was not the
focus of the work.

In Experiment 1, we will describe a new test of object recognition, the Vanderbilt Expertise
Test (VET), which measures the ability to recognize examples from eight categories of
visually similar objects: leaves, owls, butterflies, wading birds, mushrooms, cars, planes and
motorcycles. The goal of Experiment 1 is to demonstrate the reliability of the VET in a large
sample of participants and to explore the structure of object recognition skills as measured
by the VET using principal component analysis. To preview one aspect of our results, we
find that increasing the number of tested categories had an interesting side-effect: to reveal
large sex differences in object recognition.

In Experiment 2, we demonstrate how the VET can be used to dissociate domain-general
and domain-specific contributions to a standard perceptual matching measure of expertise
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(Bukach et al., 2010; Gauthier et al., 1999; Harel et al., 2010; Rossion & Curran, 2010; Xu,
2005). Interestingly, these two contributions were similar for men and women in one domain
(cars) but quite different for another (planes).

In Experiment 3, we use the VET to assess the contribution of general object recognition
ability to face recognition and test the hypothesis that holistic processing of faces predicts
face recognition independently of general object recognition ability. Here again, we show
that taking sex into account combined with a variety of categories is critical, since object
recognition reveals a sex-specific contribution to face recognition.

Experiment 1
In Experiment 1, our goals are similar to those of Dennett et al. (2011), who published the
Cambridge Car Memory Task (CCMT) aiming to assess object recognition in a manner
matched to the well-established Cambridge Face Memory Task (CFMT; Duchaine &
Nakayama, 2006), which effectively measures face recognition using a 3-alternative forced
choice memory test. But here, we sought to create a test for eight different categories to
capture both domain-general object recognition skills as well as domain-specific expertise.
A test with a single category (Dennett et al., 2011) would not be able to dissociate these two
factors. Even a test with two categories (e.g., a comparison of cars to birds; Gauthier et al.,
2000) could not achieve this goal, because it cannot distinguish between someone with
expertise in both categories and someone who simply has very good general object
recognition skills. Like Dennett et al., we modeled our test after the CFMT (with some
differences that will be mentioned below), because this measure has become a standard test
of face recognition, has very good reliability (Bowles et al., 2009; Herzmann et al., 2008;
Wilmer et al., 2010), and has demonstrated validity in a number of different studies and for
several populations (e.g., Bowles et al., 2009; Germine et al., 2010; Richler et al., 2011b;
Woolley et al., 2008), including a large sample study that demonstrated both convergent and
discriminant validity (Wilmer et al., 2010).

We chose eight categories of objects from visually homogeneous categories that included
cars, planes, motorcycles, butterflies, wading birds, owls, mushrooms and leaves. “Visually
homogenous” here is a fairly intuitive criterion that requires a common configuration of
parts (and would thus exclude subordinate categories such as “toys” or “jewelry”). We
selected some categories that have been used in studies of real-world experts (cars, planes,
butterflies, birds; Dennett et al., 2011; Gauthier et al., 2000; Bukach et al., 2010; McGugin
et al., submitted; Rhodes et al., 2004) or in lab-training studies (owls, wading birds; Tanaka
et al., 2005; cars, Scott et al., 2006). We acknowledge that the selection of these categories
was relatively arbitrary, aiming to include a variety of different categories and influenced by
convenience (categories for which we were able to find a sufficient number of exemplars).
This seemed appropriate given that our main goal was to demonstrate the advantage of
measuring individual differences in a broader context (see Wong et al., 2010 for a similar
approach to category selection). The selection of these categories is not meant as a
theoretical statement about the kinds and number of categories required to fully sample
object recognition abilities.

We chose to include both owls and wading birds to explore whether two subcategories that
are highly related might be more associated than any of the other categories in a sample of
undergraduates not selected for special interest in birds. Indeed, prior work has shown that
performance on these two categories (Tanaka et al., 2005) and other related sub-categories
(such as modern and antique cars; Bukach et al., 2010) can be dissociated through real-
world experience or lab training, but these studies did not include a range of other categories
as a comparison.
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We applied principal component analysis (PCA) to the mean performance with different
categories in the VET. PCA combines categories that are correlated with one another into
factors that are largely independent from other factors that represent different, uncorrelated
categories. A PCA of the VET can help reveal the latent factors that account for
performance in a learning-to-individuate task with different object categories. One
possibility is that most of the variance is accounted for by a single common factor of general
object-recognition ability (at least in a sample of participants who are not selected for
special interests for any of these categories). Another possibility is that these 8 categories
will cluster into meaningful factors, such as living vs. non-living groupings. We also
explored how any factors we extract from the VET relate to face recognition as measured by
the CFMT.

Participants
Two hundred and twenty-seven individuals participated for a small honorarium or course
credit: Caucasian (76 male, 82 female, mean age 23.3 ± 4.2), African American (11 male, 20
female, mean age 22.8 ± 3.3), Asian (10 male, 18 female, mean age 20.7 ± 3.6), and Other
(5 male, 1 female, mean age 19.3 ± 1.4). All participants had normal or corrected-to-normal
visual acuity. The experiment was approved by the Institutional Review Board at Vanderbilt
University, and all participants provided written informed consent.

Vanderbilt Expertise Test
Stimuli—Eight different subordinate object categories were included: leaves, owls,
butterflies, wading birds, mushrooms, cars, planes and motorcycles. For each category,
target images consisted of four exemplars from six unique species/models, while distractor
images showed 48 exemplars from novel species/models (Supplemental Table 1). Stimuli
were digitized, eight-bit greyscale images presented on a 20-inch Samsung LCD monitor
(refresh rate = 100 Hz) with a Macintosh Mini computer using Matlab and Psychophysics
Toolbox extension (Brainard, 1997; Pelli, 1997). All images subtended a 5.2° visual angle.

The 72 images for each category, as well as the target–distractor pairings for each trial, were
selected based on the results of a pilot experiment (N=32). We used item and trial analyses
to assess the reliability of specific trials and of individual exemplars within a category. We
considered averaged accuracy for each of the 6 items in each category, as well as the
correlation between mean item performance and mean overall performance for each
category. Twelve percent of target items were replaced for being too difficult or not
predictive of overall performance. They were replaced with images that were judged to be
more comparable to items that fared better. Next, we considered mean trial performance,
and asked how well performance on a given triplet-item predicted overall behavior. In
triplets with insufficient subject variability, low predictive power, and/or simply accuracy
that was too low, distractor objects were replaced to make the target more distinguishable
(6% trials), as it seemed to be the most obvious cause of these problems.

Procedure
The task was roughly modeled after the CFMT (Duchaine & Nakayama, 2006). While the
CFMT includes trials that have noise added to the images, pilot testing showed that
performance with object categories was unlikely to be high enough to require this
manipulation. In addition, CFMT trials (Duchaine &Nakayama, 2006) or CCMT trials
(Dennett et al., 2011) with and without noise tend to be highly correlated.

At the start of the experiment, participants rated themselves on their expertise with all tested
categories (leaves, owls, butterflies, wading birds, mushrooms, cars, planes and
motorcycles), and also with faces, considering “interest in, years exposure to, knowledge of,
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and familiarity with each category”, where 1 represented the lowest assumed skill level and
9 represented the highest.

Participants began with six practice trials where they studied three cartoon faces or three
owls, followed by three recognition memory trials of either an identical study image or an
image showing another viewpoint of a studied cartoon/owl. Categories were tested in
separate blocks. Before the start of an experimental category block, participants viewed a
study screen with one exemplar from each of 6 species/models. The target images were
arranged in two rows of three images with target names presented above or below each
image (Figure 1, Supplemental Table 1). We chose to include labels because experts often
know labels that novices do not have for individual exemplars, and even though this task
does not require labels, they may be useful to some participants (e.g., Lupyan, Rakison &
McClelland, 2007). We hoped that making labels available might provide novices with at
least some of the advantage that experts may experience for this reason. The VET could also
be used easily without the labels.

Participants studied these images for as long as they needed. For each of the first twelve
trials, one of the studied exemplars was presented with two distractors from another species/
model in a forced-choice paradigm (‘Same exemplar’ trials). The target image could occur
in any of the three positions, and participants indicated which image of the triplet was the
studied target: the left, middle and right positions were specified by 1, 2 and 3, respectively,
on the number pad. Participants were instructed to be as accurate as possible and triplets
were shown until participants made a response. On these trials, performance could depend
on any aspect of the image, backgrounds included, since the target image was identical to
the studied image. Feedback was provided on each Same exemplar trial, indicating the
correct image and image name. The study screen appeared for review at the end of the
twelve image-match trials.

After the first 12 trials, participants were warned that the subsequent target images would be
different exemplars of the studied species/models, and that they would be required to
generalize across viewpoint, size and backgrounds (‘Different exemplar ’ trials). For the
remaining 36 Different exemplar trials, no feedback was provided. Participants viewed
image triplets, indicating which exemplar corresponded to one of the target species/models
studied. For each category, there were three transfer images for each of the six targets;
transfer images represented unique exemplars of the same subordinate category; e.g., 3
different images of the Pipevine Swallowtail served as transfer images for the 1 studied
image of a Pipevine Swallowtail. All transfer images were shown twice, each time with
unique distractors.

Participants performed 12 identical and 36 transfer trials for each object category. The trial
structure – including block order (alphabetical: butterflies, cars, leaves, motorcycles,
mushrooms, owls, planes and wading birds1), trial order and distractor selection – was fixed
for all participants to provide more reliable across-category comparisons. The total
experiment for 8 categories consisted of 384 trials, lasting between 35-45 minutes depending
on individual speed.

Cambridge Face Memory Test (CFMT)
At the start of the CFMT, participants studied frontal views of six target faces for a total of
20 s. Then, they completed an 18-trial introductory learning phase, after which they were
presented with 30 forced-choice test displays. Each display contained one target face and

1Results for the separate categories are presented in an order that will be relevant for subsequent factor analyses, rather than the order
in which the category blocks were shown in the experiment.
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two distractor faces. Participants were told to select the face that matched one of the original
six target faces. The matching faces varied from their original presentation in terms of
lighting condition, pose, or both. Next, participants were again presented with the six target
faces to study, followed by 24 test displays presented in Gaussian noise. For a complete
description of the CFMT, see Duchaine & Nakayama (2006).

Results
Accuracy and self-report

First, individual data were inspected for outliers. Four participants were excluded because
more than 40% of the trials in at least 3 out of 8 object categories showed reaction times
below 200ms, suggesting invalid response patterns for these participants. Subsequent
analyses represent data from the remaining 223 participants.

We then examined performance for each category. For all categories, average performance
was significantly above chance (.333) (Table 1; Supplemental Table 2). As expected,
accuracy rates were higher during Same exemplar trials (i.e., the image tested was identical
to the image studied) relative to Different exemplar trials (i.e., the image tested represented a
different exemplar of the studied make/model/species).

The boxplots in Figure 2 provide a quick visual comparison across all VET categories and
faces from the CFMT, showing the central tendency, dispersion and skewness of individual
accuracy scores for each category. (See Supplemental Figure 1 for equivalent boxplots
separated by sex.) Non-parametric Kruskal-Wallis H test revealed a significant difference
between categories (H(9)=368.83, p<0.0001). Nemenyi post-hoc tests comparing pairwise
mean ranks found that the performance on CFMT no-noise trials was significantly greater
than performance for all other categories (all ps<.001).

Indicated by the position of the box within the whiskers (taking into consideration the
tagged extreme values) and representing the degree and direction of asymmetry, most
category distributions are skewed towards high accuracy (Table 1), reflecting a ceiling effect
for certain categories (e.g., faces without noise) and not others (e.g., wading birds). Relative
to the other face conditions, the CFMT trials with noise appear most comparable to the non-
face trials. The CFMT trials with and without noise are correlated (r=.72, p<.001), consistent
with earlier work showing a correlation of r=.74 for the CFMT (Duchaine & Nakayama,
2006) and r=.61 for the CCMT (Dennett et al., 2011). The box length, or the interquartile
range (IQR), indicates the sample variability, revealing the largest spread for faces (IQR=25
noise and .23 no noise) and cars (IQR=.23), with all other categories less than .20.

Similarly, self-report scores of expertise plotted to the right reveal the highest self-reported
abilities for faces and cars (Supplemental Table 3). A Kruskal-Wallis H test revealed a
significant difference in self-reported expertise between categories (H(9)=546.56, p<0.0001),
and Nemenyi post-hoc tests showed higher self-ratings for faces relative to other categories.
Self-report for all categories showed a positive skew, except faces (-.758).

Sex and Age effects
Interestingly, age was significantly correlated with performance for cars and planes, but no
other categories (Table 2). Moreover, we also found significant relationships between
performance and sex for most categories (except wading birds and mushrooms; Table 2).
These effects will be explored in more depth later, but first we wanted to remove their
influence to explore relationships between accuracy and self-reported expertise. Thus, we
considered pairwise correlations across accuracy rates for all categories, and correlations
between accuracy and self-report, while partialing out the contributions of age and sex.
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Within and between category correlations for accuracy
First, we consider the partial correlations in performance among all 9 categories, including
faces (Figure 3a). Most correlations are positive and significant, suggesting an expected
common factor in the memory task. Faces and cars are the least related to other categories,
and interestingly, the face-car correlation is also below average. Faces and cars are also the
two categories for which participants report the most expertise (Supplemental Table 3),
suggesting that category-specific experience is likely to make performance on a category
diverge from that for other categories. When sex and age were not partialed out, car
performance was still only significantly correlated with that for faces, planes and
motorcycles, suggesting that age and sex alone cannot account for this effect (see
Supplemental Table 4 for zero-order correlations). Furthermore, considering partial
correlations between self-reported expertise and performance (age and sex partialed out;
Supplemental Figure 2a), here again, cars and faces stand out: people who perform well with
cars/faces report greater knowledge of cars/faces (r=322 and r=.167, respectively). (See
Supplemental Figure 3 for heatmaps split by sex.)

Reliability
We measured reliability as an estimate of the internal consistency of test items within a
category using Cronbach's alpha (Table 3). Reliability across all participants was acceptable
for all categories (α > .7) except mushrooms (α = .635). Reliability was especially high for
cars (α = .845). Most categories (with the exception of wading birds and mushrooms)
showed similar internal consistency for males and females. Importantly, the poor test
reliability for these categories did not influence the principal components' extraction2. Thus,
while wading birds and mushrooms are questionable tests for males and females,
respectively, they do not alter the reported findings.

Principal component analysis
Performance for all trials and all conditions of the VET were subjected to a factor analysis.
Principal component analysis (PCA) was applied to the mean accuracy data for each task
and each subject in an effort to summarize patterns of correlations among observed category
accuracy rates. The colinearity of the eight different object categories in the recognition
memory tasks was explored through PCA with varimax rotation. The PCA matrix conducted
on the accuracy data reduced a set of eight categories into two principal components (factor
loadings reported in Table 4), providing an operational definition for underlying object
recognition skills.

Note that the CFMT was not subjected to the PCA because the goal was to extract the
structure of the object recognition captured by the VET by itself. However, when included
into the analysis, we find a factor loading nearly exclusively on faces. Critically, the results
for object categories are qualitatively the same regardless of whether we choose to extract
two factors (without the CFMT) or three factors (with the CFMT).

The first factor of the PCA without CFMT explained 47.8% of the variance in all tasks and
loaded on performance for all natural categories (leaves, owls, butterflies, wading birds and
mushrooms). The second factor explained an additional 13.9% of the variance. This factor
was primarily associated with cars, but also planes and motorcycles. Although performance
for planes and motorcycles loaded moderately on both factors, the loadings on Factor 1 did

2We repeated the PCA dropping wading birds and mushrooms from the analysis. Two factors were extracted, one corresponding to
leaves, owls, and butterflies (accounting for ˜49% of the total variance) and the other corresponding to cars, planes, and motorcycles
(accounting for ˜18% of the total variance). Critically, the sex effect observed for Factor 1 and Factor 2 when all categories are
considered is preserved when we restrict the dataset to the categories with highest reliability.
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not reach the minimum .5 value, upon which tasks were classified as represented by a given
factor. All other extracted components explained less than 8% of the variance. The Kaiser-
Meyer-Olkin measure of sampling adequacy was high (.86) and indicated a good fit of the
two-factor model with the real data.

Sex Effects
We tested the influence of sex on individual factor loadings using a 2×2 Mixed ANOVA
with the within-subjects variable Factor (2 levels: Factor 1, nature factor and Factor 2,
vehicle factor) and the between-subjects variable Sex (2 levels: Male and Female). Neither
main effect was significant, but there was a significant interaction between Factor and Sex
(F1, 221 = 23.76, MSE = 0.907, p<.001, η2 = .10). Post-hoc analyses reveal significant
differences between all relevant points: Factor 1, Males versus Factor 1, Females (p=.002);
Factor 2, Males versus Factor 2, Females (p<.001); Factor 1, Males versus Factor 2, Males
(p<.001); Factor 1, Females versus Factor 2, Females (p=001) (Figure 4). In other words,
females performed better on Factor 1 than Factor 2 and better than males on Factor 1, and
vice versa for males.

Table 5 shows the mean performance for the category components of each factor separately
for males and females, along with the t-statistic comparing performance across sexes. These
results complement the 2×2 ANOVA, suggesting a female advantage in performance for
categories loading highest on Factor 1, and a male performance advantage for categories
loading highest on Factor 2.

One possibility is that this interaction between Sex and Factor can be accounted for by
differences in self-reported expertise between sexes. Indeed, when we calculate aggregate
self-ratings for each factor, self-reported expertise shows a similar interaction with sex
(F1, 221 = 18.23, MSE = 0.91, p <.001, η2 =.05). Because Factor 2 self-report correlated with
Factor 2 loadings (r=.208, p=001) (although self-report and loadings corresponding to
Factor 1 were not correlated), it was critical to examine effects of factor loadings
independent of individual differences in perceived expertise. We computed residuals for
Factor 1 and Factor 2 for each subject by regressing Self-report Factor 1 out of Factor 1 and
Self-report Factor 2 out of Factor 2. We ran a 2×2 ANOVA on Factor 1 and Factor 2
residuals with Sex (Male, Female) as a between-subjects variable and Factors (residualized
Factor 1, residualized Factor 2) as a within-subjects variable. The interaction effect observed
with non-residualized factor loadings persists even when we account for the influence of
self-report scores (F1, 221 = 20.16, MSE = 16.81, p < .001, η2 = .08).

The results of Experiment 1 demonstrate that the VET has good reliability and captures
interesting sex differences suggested by Dennett et al. (2011), who found that men showed
an advantage for the recognition of cars on the CCMT. Here, we replicate this finding
showing a male advantage for cars and also trends towards a male advantage for planes and
motorcycles (i.e., Factor 1). Dennett et al. reported that sex had an effect on car performance
over and above what could be attributed to interest or expertise. We also replicate this
finding, but importantly, we can reject one account proposed by these authors for this result:
they proposed a domain-general advantage for men in mental rotation since the CCMT, like
the VET, requires matching across different views. This account, or any other account that
relies on a domain-general advantage for one sex, fails to explain the significant advantage
we observed for women with leaves, owls and butterflies. Our ability to refute this account
demonstrates an important advantage of using a test with several categories. When a study
compares faces to only a single category of objects, differences between faces and objects
are typically interpreted as being due to face-specific factors vs. object-general mechanisms.
With several object categories, it is possible to tease apart domain-general and domain-
specific explanations. Therefore, while we found, like Dennett, that self-reported expertise
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does not appear to account for the sex differences, we prefer to interpret this result as
indicating that self-reports of expertise/interest may be inadequate predictors of perceptual
expertise. It is also possible that people with a lot of semantic knowledge about cars may not
necessarily be very good at visual recognition of cars, and other individuals may have paid
attention to cars and refined their perceptual skills without learning much about cars in other
ways (but see Barton et al., 2009 for evidence that a verbal knowledge test about cars that
does not rely on images correlates with visual recognition of cars). In addition, people may
not have access to much evidence about others' performance with various categories,
limiting their ability to estimate their own performance relative to the average population
(Barton et al., 2009). In sum, our results confirm the importance of quantifying perceptual
expertise in perceptual tasks that can be performed by novices and experts alike.

Experiment 2
Because the VET is a new test, we investigated how this measure of individual variability in
object recognition relates to performance on a sequential matching test that has been used
extensively to predict both behavioral (Gauthier et al., 2003; Curby et al., 2009; McGugin &
Gauthier, 2010) and neural (Gauthier et al., 2000; 2003; Rossion et al., 2004; Xu, 2005;
McGugin et al., submitted) effects of expertise. Given the sex effects observed in
Experiment 1, we also ask whether the relationship between the two tasks depends on this
factor. It is important to note that we are not interested here in the absolute role of sex in the
relationship between these tasks, but rather with the fact that many domains of expertise are
likely to be of more interest to some groups than others, often correlated with sex.

Participants
Seventy-six participants (42 female; mean age 23.34 years) completed a perceptual expertise
test immediately following the VET. The VET data for a subset of these participants (n=26)
was included in Experiment 1, and they also participated in an fMRI experiment on the basis
of self-report for either high or low experience with cars (McGugin et al., submitted). The
rest of the sample answered an ad posted on an online research system to recruit paid
volunteers.

Materials and Procedure
The procedure for the matching task was identical to that reported previously (e.g., Gauthier
et al., 2000; 2003; 2005; McGugin & Gauthier, 2010). It included matching trials with cars,
planes and passerine birds. Because we were interested in comparing the same categories
across different tasks, and since the VET did not include passerine birds but only owls and
wading birds, we focus here on the car and plane conditions. Participants made same-
different judgments on car and plane images (at the level of make and model, regardless of
year). The test included 4 blocks of 28 sequential matching trials each for cars and planes,
using greyscale images per category. Cars were all relatively recent car models (1997–2003)
and planes were modern commercial or military plane models constructed during or after
WWII. All images used in this perceptual matching task were different from those employed
in the VET. On each trial, the first stimulus appeared for 1000ms, followed by a 500ms
mask. A second stimulus then appeared until a same/different response was made or 5000ms
elapsed.

Prior to this matching task, participants completed the VET as described in Experiment 1.

Results
Before we relate individual differences in matching tasks to the VET as a function of sex,
we first considered sex differences in self-reports of expertise and performance in both tasks
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in each category (Supplementary Table 5). Men in this sample rated themselves on average
higher than women for cars (t=2.16, p=03), motorcycles (t=3.27, p=001) and planes (t=2.68,
p=01). Performance only differed by sex for the matching task for planes (t=3.09, p=003),
and the VETcar (t=2.07, p=.042) and VETplane (t=3.40, p=.001), in all cases better for men.

We then consider how performance on the matching task for planes and cars correlated with
performance on the VET for each category, for men and women separately (Table 6). In the
matching task, performance for cars and planes was significantly correlated for both men
and women, with no difference between these correlations. But the table reveals salient sex
differences. First, matching performance for cars or planes was significantly correlated with
VET performance for many more categories for men than for women (11 vs. 3 significant
correlations), and VETplane and VETmotorcycle performance were significantly more
correlated with matching performance for cars and planes for men than for women.

For car matching and for both men and women, the strongest correlation with a VET
category was with VETcar, and this correlation was significantly stronger than those with all
other VET categories. But for plane matching, while the highest correlation was with
VETplane in men, there was no significant correlation with VETplane in women (the plane
matching correlation with VETplane for men was significantly stronger than the correlation
with leaves, owls and mushrooms, while for women it was stronger than no other category).
At least for men, these correlations suggest that if there is a domain-specific relationship for
cars or planes across the two tasks, it is also accompanied by domain-general effects. Thus,
to assess the domain-specific and domain-general effects for each category and each sex, we
turned to multiple regression.

We conducted multiple regression analyses with performance on car matching or on plane
matching as the dependent variable, entering all predictors simultaneously, including z-
transformed measures of VET performance for the same category as matching (i.e., VETcar
for the regression on car matching), and VET performance for all other categories combined
(i.e. all non-car categories for the regression on car matching). Note that we did not split
VET categories by factor here, because without planes or cars the two factors would be too
unbalanced in the number of categories: we therefore chose to use an aggregate of all other
categories as an estimate of domain general ability. Because Experiment 1 revealed an
interaction between Sex and VET Factor loadings, we also included sex (dummy coded) and
the interaction between sex and each predictor. We also did not include age, since
preliminary analyses showed that matching performance was not correlated with age for
either cars or planes, for either sex.

When predicting Car Matching, VETcar performance was a significant predictor,
independent of all other predictors, which were not significant (Table 7). Not only was Sex
not significant, but the same relationship was found when multiple regressions were
conducted separately for males and females (Table 8).

This stands in contrast with the results of the Regression on Plane Matching. When
predicting Plane Matching, VETplane performance was not a significant predictor, but there
were significant effects of Sex and of VETall_except_Plane. In addition, the interaction
between Sex and VETplane was near significant (p=.055) and because we were a priori
interested in sex differences, we followed-up on this analysis with the multiple regressions
for each sex separately (Table 8). For men, the results predicting Plane matching were very
similar to those predicting Car matching. VETplane was the strongest predictor, and
although its contribution independent of VETall_except_plane was not quite significant
(again, p=.055), both predictors together (VETplane and VETall_except_plane) accounted
for 40% of the variance in Plane Matching. Thus, the pattern is qualitatively the same as for
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cars, with evidence that Plane matching depends on domain-specific variance. For women
however, the pattern of results is very different. First, VET performance (Plane and
All_except _plane) together account for only 11% of the Variance in Plane matching, and in
this case the domain-general VETall_except_plane is the strongest predictor, with little
evidence of a domain-specific contribution. Note that these differences between men and
women for Plane matching and not Car matching do not appear to be due to a restriction of
range specifically for women with planes. While plane d′ is poorer for women than men
(Supplemental Table 5), range is actually larger for women than men. For VETplane the
range is less for women than for men (.60 vs .71, note that the sample sizes are different) but
the range is very similar for women with VETplane and VETcar (.62 vs .60). Instead, we
provide an admittedly speculative, but perhaps more interesting, interpretation of this
difference below. Before doing so we note that Experiment 2 provides convergent validity
for the VET, at least for a sex-congruent category of expertise (cars or planes in males), by
relating it to a sequential measure of expertise that has proven useful in several prior studies.

Coming back to the interpretation of the entire pattern of results, including the sex
difference, we believe the results provide evidence for the ability of the VET to separate
domain-specific and domain-general contributions to perceptual expertise. In studies of
perceptual expertise with real world-experts, perceptual expertise is generally defined as
performance on a perceptual task (e.g., Gauthier et al., 2000, Xu, 2005, Harel et al, 2010).
Because in such cases we do not measure experience per se, we do not know to what extent
performance is due to experience with this domain vs. other factors. Cars is a category for
which both men and women are likely to have significant exposure, even though it is clearly
possible for someone with an interest in cars to seek more exposure. The results of our
analyses suggest that both men and women who perform particularly well with cars do so
because of domain-specific variance, which can reasonably be attributed to experience. A
car expert is likely to have more car-responsive neurons in their visual system (Gauthier et
al., 2000; McGugin et al., submitted), which may be associated with domain-specific but
task-general advantages for cars. Likewise, because the results for plane matching are
almost identical to those for car matching in men, we can surmise that men who perform
well with planes do so because of domain-specific practice. In contrast, it is possible that the
women who do best with planes might be better at applying domain-general strategies,
which is why a VET aggregate score for several categories was a better predictor of plane
matching performance than the score for planes alone. Because the matching task and the
VET are somewhat different, this domain-general strategic contribution accounts for only
11% of the variance in Plane Matching.

Admittedly this is a post hoc explanation, but the results at least reveal the benefit of using
several categories as a measure of perceptual expertise. Regressing out performance for all
categories apart from the category of interest is an improvement over only measuring
performance in the domain of interest or comparing it to a single control category.
Importantly, as shown for cars, this approach appears to work well to capture domain-
specific variance in a behavioral task, regardless of whether this task correlated with
performance for several other categories (as it did for men) or not (as it did not for women).
Furthermore, the results for plane matching converge with Experiment 1 to demonstrate that
sex needs to be taken into account when interpreting individual differences across object
categories.

The main advantage of the VET over the standard matching task used as a measure of
expertise is the number of control categories. Future work could compare the VET and
perceptual matching tasks for the same number of categories on how well they predict a
target criterion, such as FFA activity for various objects. Until then, it should not be
assumed that the memory-related learning component of the VET presents an advantage
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over a more perceptual matching task. However, our interpretation of the sex differences
builds on the assumption that measuring individual differences across a variety of tasks may
be another way to better isolate domain-specific effects from domain-general, task-specific
strategies.

Experiment 3
In Experiment 3, we had a subset of the participants from Experiment 1 (non-overlapping
with those in Experiment 2) also perform a sequential matching composite task with faces to
measure holistic face processing Holistic processing is operationalized in this task as a
failure to selectively attend to one half (e.g., top) of a face when the face halves are aligned
relative to misaligned (e.g., Richler et al., 2008; 2011b). Theoretically, given the central role
that holistic processing has played in the literature on face recognition, one would expect
that people who process faces holistically experience an advantage in recognizing faces.
Recent work (Konar et al., 2010; Richler et al., 2011b; Wang et al., in press3) has failed to
support this relationship between holistic processing and face recognition skill when holistic
processing is measured with one version of the composite task called the partial design, in
which the parts of face composites that are to be ignored are always different, leading to
complicating confounds from response bias (Cheung et al., 2008; Richler et al., 2011a;
2011c). Richler, Cheung & Gauthier (2011b) also tested a different version of the composite
task, called the complete design, which provides a measure of holistic processing that is
robust to response biases (Cheung et al., 2008; Richler et al., 2011a) and found that it
correlated with performance on the CFMT. The correlation was of moderate strength,
however (r = .4), and given that performance on the CFMT shows significant relationships
with all VET categories in Experiment 1, it is possible that holistic processing of faces is
mainly accounted for by domain-general object-recognition variance. Thus, one goal of
Experiment 3 is to test whether holistic face processing (measured with the complete design
of the composite task) predicts face recognition ability independent of object recognition
ability (captured by the VET). In other words, does holistic processing of faces account for
face-specific recognition abilities?

We entered all predictors simultaneously in the multiple regression to assess their
independent contributions, and examined the contribution to face recognition of both VET
factors, and their interaction with sex. Thus, a second goal of Experiment 3 was to examine
whether face recognition and object recognition are independent, as was either suggested or
assumed by previous work where only one non-face object category was used (e.g., Wilhelm
et al., 2010; Wilmer et al., 2010; Zhu et al., 2010). In other words, is some portion of face
recognition ability accounted for by more general object recognition abilities, and more
importantly does this relationship depend on sex?

Methods
Participants

One hundred and nine Caucasian individuals (61 female; mean age 22.05 years) received a
small honorarium for participation. All participants had normal or corrected-to-normal
visual acuity. The experiment was approved by the Institutional Review Board at Vanderbilt
University, and all participants provided written informed consent. Participants completed
three tasks in the following order: composite task, Cambridge Face Memory Test (CFMT),
Vanderbilt Expertise Test (VET) (the latter two as part of Experiment 1).

3While the authors of this study argued a correlation was found with performance on a face task when a baseline with objects was
subtracted, the individual correlations with the partial composite design measure of holistic processing revealed no correlation with
face recognition but a small but negative correlation with the object task.
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Composite Task
Stimuli in the composite task were images of twenty female faces from the Max Planck
Institute Database (Troje & Bulthoff, 1996) converted to gray-scale and cut in half to
produce 20 face top halves and 20 face bottom halves, each 256 × 128 pixels in size. Face
halves were randomly combined to create composite faces. A white line, 3 pixels thick,
separated face halves resulting in faces that were 256 × 259 pixels. The white line was added
to make it unambiguous where the top half ends and the bottom half begins, which, if
anything, should facilitate selective attention to one half. Misaligned faces were created by
moving the top half of the face to the right by 35 pixels, and the bottom half of the face to
the left by 35 pixels, such that the edge of one face half fell in the center of the other face
half.

On each of 160 trials, a fixation cross was presented (200ms), follow e d by the study face
(200ms). The test face was then presented following a 500ms ISI for 200ms. Participants
were instructed to judge whether the top half of the test face was the same as or different
from the top half of the study face while ignoring the irrelevant bottom half. Participants had
a maximum of 2500ms to respond. Timeouts were rare (<1% of trials), and excluded from
our analyses. The study face was always aligned. The test face could be either aligned or
misaligned.

A trial sequence that contained 20 trials for each combination of congruency (congruent/
incongruent), alignment (aligned/misaligned) and correct response (same/different) was
randomly generated, and the same trial sequence was used for all participants. The
experimental block was preceded by a 16-trial practice block.

Results
Data from one participant were discarded according to the criterion in Experiment 1
(reaction times in the VET below 200ms on more than 40% of the trials in at least 3 out of 8
object categories). Avoiding ceiling effects is particularly important in individual differences
analyses, and this particular sample had more participants at ceiling than a previous study
(Richler et al., 2011b). In the composite task this can be especially problematic as the
measure of holistic processing is a difference of differences: if participants are at ceiling in
any of the cells of the design, the magnitude of the difference of differences is artificially
limited. Therefore, we discarded data from 42 participants who had average accuracy on the
composite task greater than 90%, resulting in a total of 66 participants (34 female; mean age
22.03 years) in the analyses4. In the CFMT, we avoided ceiling effects without further
rejecting participants by considering performance on noise trials only which are more
difficult than the no-noise trials. Importantly performance on the noise trials is highly
correlated with performance on the no-noise trials (r66 = .768, p<.001), and the results are
qualitatively the same when we use all CFMT trials vs. noise trials only. Average overall
accuracy on the CFMT was 77.53% (SD = 12.57), and average performance on the CFMT
noise trials was 62.25% (SD = 18.59). Average overall accuracy on the VET was 60.97%
(SD = 6.62).

A 2 × 2 repeated-measures ANOVA on d′ in the composite task with factors congruency
(congruent, incongruent) and alignment (aligned, misaligned) revealed a main effect of
alignment (F1, 65 = 7.23, MSE = 2.37, p <.01, η2 = .03), a main effect of congruency (F1, 65
= 64.01, MSE = 2.09, p <.001, η2 =.19) and a significant congruency × alignment

4Confirming our intuition that ceiling effects in the composite task can be problematic because holistic face processing is
operationally defined as a difference of differences, the critical correlation between the CFMT (noise trials) and holistic face
processing is not significant when these participants are included in the analyses (r108 = .126, p = .197).
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interaction (F1, 65 = 32.20, MSE = 2.11, p <.001, η2 =.10). At the group-level, participants in
our sample showed evidence of holistic processing: performance was better on congruent vs.
incongruent trials, and this difference was reduced when face halves were misaligned.

Zero-Order Correlations
For each participant, holistic face processing (HP) is indexed by the magnitude of the
congruency × alignment interaction in d′ [(aligned congruent – aligned incongruent) –
(misaligned congruent – misaligned incongruent)] in the composite task. Average
performance on the CFMT noise trials provides a measure of face recognition, and Factor 1
and Factor 2 loadings from the VET provide measures of object recognition.

The zero-order correlations between all our variables of interest are shown in Table 9.

Multiple Regression
We conducted a multiple regression analysis (Table 10) with performance on the CFMT
(noise trials) as the dependent variable, entering all predictors simultaneously, including z-
transformed measures of holistic face processing object recognition (VET Factor 1 and VET
Factor 2), and age. Because Experiment 1 revealed an interaction between Sex and VET
Factor loadings, we also included sex and the interaction between sex and each predictor.
Holistic face processing, age, and VET Factor 2 × Sex were found to be significant
predictors of face recognition. There was a trend for VET Factor 1 × Sex to also be a
significant predictor.

Partial Correlations
Partial correlations between each significant predictor and performance on the CFMT noise
trials are shown in Figure 5. In summary, the results of Experiment 3 replicate Richler et al.,
(2011b) in finding that holistic face processing predicts face recognition performance, and
demonstrates that this relationship survives even after age, sex, and most importantly
performance on the VET have been factored out. This validates the central importance of
holistic processing in face recognition, in contrast to earlier claims (Konar et al., 2010). Age
was also a significant predictor of face recognition abilities, consistent with the finding that
face recognition abilities improve until 30 years of age (Germine et al., 2010).

Interestingly, we found that general object recognition ability was correlated with face
recognition performance but only when sex-congruent categories are used. One possibility is
that sex-congruent categories best correlate with face recognition because of an underlying
potential that is domain-general but which becomes expressed in domain-specific skills
through experience (see General Discussion).

General Discussion
We offer a new test of object recognition, the VET, which provides reliable measures of
object recognition similar to the CFMT for 8 different object categories. Our results
demonstrate important advantages of using several object categories. The VET allows one to
quantify perceptual expertise with specific object categories while the remaining categories
can be used to assess more general object recognition skills. And while with only a single
category one group could appear superior at object recognition (for instance men in Dennett
et al., 2011), with many categories different domain-specific advantages can emerge for
each group, leading to a very different interpretation.

Our results clearly question common wisdom whereby any effect that is similar for faces
and another non-face object category is presumed to capture domain-general variance that
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would apply to any other object category. For one thing as shown in Experiment 2, within
the realm of non-face objects it is possible to dissociate domain-specific from domain-
general influences. In addition, In Experiment 1 the VET captured two factors associated
with opposite sex advantages. Perhaps more critically, not only were men better than women
on average on Factor 2, but in Experiment 3 Factor 2 was more strongly related to face
recognition ability for men than women. While not significant, the same trend was observed
for Factor 1 and women. This result has important implications, suggesting that using a
single object category could be even more problematic when a sample contains individuals
from both sexes, because while object categories that are not sex-congruent (below, we
address how this is interpreted) may not correlate with face recognition, those that are sex-
congruent can reveal this relationship. Any analysis that fails to take this interaction into
account may overstate the independence of face and object recognition abilities.

It is not clear what drives the observed sex effects for Factors 1 and 2. In a meta-analysis of
patients with category-specific semantic disorders, Gainotti (2005) found that men are
usually more impaired with plants whereas women are more impaired with animals. Based
on the fact that this distinction was not associated with different foci of lesion, whereas the
distinction between deficits for living vs. non-living categories does map on to relative
ventral vs. dorsal lesions, this author argued that the sex effect for plants vs. animals was
due to familiarity. One study that used semantic fluency as opposed to naming tasks, which
can suffer from ceiling effects, found that age and sex interacted to predict performance
(Moreno-Martinez et al., 2008). Younger adults showed no significant sex differences but
elderly females had better fluency for flowers, vegetables and kitchen utensils and elderly
males showed better fluency for musical instruments. These results suggest familiarity
effects in line with gender roles. However, other authors have proposed a more evolutionary
account for most of these effects (Barbarotto et al., 2002; Laiacona et al., 2006).
Importantly, although there is a literature on sex by category interactions in naming and
fluency tasks, our results extend this interaction to visual recognition skills.

Interestingly, like Dennett et al. (2011), we find that self-reported expertise or familiarity
does not account for these effects, but our interpretation of this result differs. That is, the fact
that women show an advantage for living categories while men show an advantage for cars
appears to suggest that stereotypical interests may play a role in these effects. Dennett et al.
ruled out this explanation in favor of a general male advantage in mental rotation, but this
can be excluded here by the use of other categories for which women show an advantage5.
We suggest that these self-reported measures of expertise or interest may often provide
relatively poor predictors of perceptual performance, as measured by the VET or a matching
task (see also Barton et al., 2009). It is clear from Experiment 1 that people are often poor
judges of how they rank relative to the general population on recognition ability in specific
domains. There is a parallel for this discrepancy in the literature on sex-by-category
interactions in the naming performance of normal subjects for living and non-living things.
Females are slower than males to name nonliving things and males slower to name living
things (McKenna and Parry, 1994), but this has not been found to be accounted for by either
conceptual or visual familiarity ratings (Laws, 1999).

One interpretation of such findings is that we need to look outside of experience to
understand these sex differences, for instance to evolutionary influences, but another
account is that what self-ratings of familiarity fail to capture is the quality of one's
perceptual experience with object categories. Several studies indicate that it is not exposure
to a category, but the kind of experience with it, that determines perceptual expertise

5In addition, there are other reasons to doubt that men are better at recognizing cars due to an advantage for mental rotation, given the
dissociation of the systems involved in mental rotation and object recognition (e.g., Gauthier et al., 2003; Hayward et al., 2006).
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(Tanaka, Curan & Sheinberg 2005; Wong, Palmeri, Gauthier, 2009; McGugin, Tanaka,
Lebrecht, Tarr & Gauthier, 2011). We propose that performance for sex-congruent
categories best correlates with face recognition because of an underlying potential that is
domain-general but which becomes expressed in domain-specific skills through experience.
Assuming that both men and women experience considerable pressure to develop face
recognition skills and experience constant opportunities to practice this skill, face
recognition performance is likely to express each individual's potential at object recognition.
Likewise, men could have more motivation and opportunity to individuate cars, and the
same may be true for women and natural categories.

It cannot be assumed that the only influences on object recognition are associated with sex.
Separate factors may influence interest and experience with other categories, such as age,
culture, occupation etc. It may also not be prudent to extrapolate predictions to other
categories such as other living things or other vehicles, since there were non-trivial
differences within the categories for each factor, such as between cars and planes or leaves
and mushrooms. At the minimum, it is clear that no single category can stand for a general
construct of “object recognition”; it is always possible that a new object category not tested
in the VET (e.g., shoes, vegetables, trains…) would not fit well within the two factors we
have uncovered here. In other words, when it comes to individual differences at least, the
comparison of face recognition to object recognition may not be valid unless a sufficient
number of categories are tested such that a true domain-general latent factor can be
extracted. The very use of the term “non-face recognition” in the literature illustrates a bias
to assume homogeneity among non-face categories; it may be no more useful than the
construct of “non-mushroom recognition”. Thus, any conclusion that face recognition is
independent from object recognition based on a single control domain is fundamentally
limited (e.g., Wilhelm et al., 2010; Wilmer et al., 2010; Zhu et al., 2010).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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• New test of object recognition with 8 categories: Vanderbilt Expertise Test
(VET).

• Principal components analysis reveals two independent factors underlying VET.

• These factors are reliable and capture interesting sex differences.

• The VET can measure both domain-general skills and domain-specific
expertise.
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Figure 1.
VET trial structure. One representative category block is shown (Motorcycles). Participants
studied 6 exemplars with labels, then performed a forced-choice matching task on triplets
containing either the identical image that was studied (Same exemplar trials) or a different
view or year from the same make and model (Different exemplar trials). Six examples are
shown for the Same and Different exemplar trial types.
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Figure 2.
Parallel boxplots depicting the distribution of accuracy scores (left) or self-report scores
(right) for all categories in descending order of mean accuracy (left to right: CFMT-no
noise, owls, planes, CFMT-noise, cars, butterflies, wading birds, mushrooms, leaves and
motorcycles) in all participants (N=223). The top and bottom of the box represent the upper
and lower quartiles (75th and 25th percentiles, respectively), and the central brand signifies
the median (50th percentile). Points outside the whiskers indicate extreme values that are
over one and a half times beyond the interquartile range.
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Figure 3.
Heatmap depicting partial correlations for Accuracy rates across categories (faces (F), leaves
(L), owls (O), butterflies (B), wading birds (W), mushrooms (Mu), cars (C), planes (P) and
motorcycles (Mo)), while partialing out the influence of age and sex variables. All
correlations are significant (p<0.05) except those indicated with an apostrophe (‘). The
values in the downward diagonal of maroon squares represent the average group accuracy
for a particular category.
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Figure 4.
Interaction effect between Factor (Factor 1, nature factor and Factor 2, vehicle factor) and
Sex (Male and Female). Error bars represent the standard error of the mean.
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Figure 5.
Partial correlations and 95% confidence intervals between face recognition (accuracy on
CFMT noise trials) and holistic face processing (congruency × alignment interaction in d′),
age, and object recognition (VET Factor 1, VET Factor 2). In the bottom two plots, triangles
and dashed lines show datapoints and the trendline for female participants, and diamonds
and solid lines show datapoints and the trendline for male participants.
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Table 2
Correlations with category accuracy. Zero-order Pearson's correlations are shown for
correlations with Age For correlations with Sex, Spearman's correlation was used and
male and female were coded as 1 and -1, respectively. 95% confidence intervals are shown
in brackets

Pearson's Correlation, r, with Age Spearman's Correlation, r, with Sex

CFMT .109* (−.022, .236) −0.108 (−.236, .023)

Leaves .014 (−.117, .145) −0.141* (−.267, −.01)

Owls −.010 (−.141, .121) −0.139* (−.265, −.008)

Butterflies .069 (−.062, .198) −0.227* (−.347, −.099)

Wadingbirds .093 (−.038, .221) −0.06 (−.189, .071)

Mushrooms .087 (−.044, .215) −0.073 (−.202, .058)

Cars .223* (.095, .344) 0.173* (.043, .297)

Planes .214** (.086, .335) 0.109 (−.022, .236)

Motorcycles .091 (−.04, .219) 0.113 (−.018, .24)

Note.

*
p < .0 < .05
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Table 3
Cronbach's Alpha coefficients as an estimate of internal reliability shown separately for
all participants (N=223), males (N=102) and females (N=121)

All Males Females

Leaves .702 .703 .701

Owls .740 .731 .751

Butterflies .778 .786 .764

Wading birds .701 .635 .742

Mushrooms .635 .704 .545

Cars .845 .866 .812

Planes .791 .807 .771

Motorcycles .734 .740 .723
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Table 4
Principal component analysis of mean accuracy data, from which factor loadings are
extracted for all tasks

Factor 1 Factor 2

Leaves .793 .011

Owls .741 .086

Butterflies .735 .224

Wading birds .727 .134

Mushrooms .645 .152

Cars −.142 .880

Planes .494 .600

Motorcycles .431 .550
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Table 5
Performance for category components of Factor 1 and Factor 2 for males and females

Males Accuracy u (sem) Females Accuracy u (sem) t-value (p-value)

Factor 1

Leaves .57 (.011) .60 (.01) 2.22 (.03)

Owls .68 (.012) .71 (.01) −1.93 (.05)

Butterflies .58 (.013) .64 (.01) −3.75 (.001)

Wadingbirds .60 (.011) .62 (.01) −1.19 (n.s.)

Mushrooms .60 (.012) .61 (.008) −1.29 (n.s.)

Factor 2

Cars .67 (.016) .62 (.013) 2.55 (.01)

Planes .69 (.014) .66 (.011) 1.82 (n.s.)

Motorcycles .60 (.012) .57 (.011) 1.85 (n.s.)
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Table 6
Between-task correlations (matching task d′ and VET accuracy) for Male (N = 34) and
Female (N = 42) participants in Experiment 2

Males Females

Car d′ Plane d′ Car d′ Plane d′

Car d′

Plane d′ .555* (<.001) .389* (.011)

Bird d′ 0.009 (.959) 0.181 (.305) 0.294 (.059) 0.413* (.007)

Leaves 0.313 (.072) .375* (.029) 0.041 (.796) 0.064 (.688)

Owls 0.31 (.074) .371* (.031) 0.231 (141) .460* (.002)

Butterflies 0.326 (.060) .465* (.006) 0.133 (.400) 0.239 (.127)

Wading Birds .483* (.004) .508* (.002) 0.122 (.441) .424* (.005)

Mushrooms 0.137 (.440) 0.265 (.130) -0.089 (.573) 0.125 (.432)

Cars .825* (<.001) .579* (<.001) .714* (<.001) 0.258 (.099)

Planes .617* (<.001) .645* (<.001) 0.125 (.431) 0.18 (.253)

Motorcycles .546* (<.001) .572* (<.001) 0.037 (.816) 0.081 (.609)

Note.

*
p < .05; shaded cells are significantly different between male and female participants at p < .05.
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Table 7
Results of Multiple Regression Analysis

Model and predictor B SE t p

Car d′ (R2 adjusted = 59.2%)

 Intercept 1.41789 0.05 31.10 <.001

 Sex −0.00844 0.05 −0.19 .854

 VET Car 0.481537 0.05 8.90 <.001

 VET (all except cars) −0.04006 0.05 −0.75 .457

 Sex × VET Car −0.00050 0.05 −0.01 .993

 Sex × VET (all except cars) −0.02389 −0.05 −0.45 .657

Plane d' (R2 adjusted = 35.3%)

 Intercept 1.38599 0.05 27.00 <.001

 Sex −0.10919 0.05 −2.13 .037

 VET Plane 0.081331 0.08 1.08 .285

 VET (all except planes) 0.176116 0.07 2.47 .016

 Sex × VET plane −0.14737 0.08 −1.95 .055

 Sex × VET (all except cars) 0.057999 0.07 0.81 .419
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Table 8
Results of Separate Multiple Regression Analyses for Male and Female Participants

Model and predictor B SE t p

Car d', Males

(R2 adjusted = 66.1%)

 Intercept 1.42632 0.07 21.80 <.001

 VET Car 0.48204 0.08 6.26 <.001

 VET (all except cars) −0.01617 0.08 −0.21 .835

Car d', Females

(R2 adjusted = 49.5%)

 Intercept 1.40945 0.06 22.50 <.001

 VET Car 0.481039 0.08 6.39 <.001

 VET (all except cars) −0.06395 0.07 −0.87 .391

Plane d', Males

(R2 adjusted = 40.3%)

 Intercept 1.49518 0.08 19.00 <.001

 VET Plane 0.2287 0.11 1.99 .055

 VET (all except planes) 0.118117 0.10 1.15 .259

Plane d', Females

(R2 adjusted = 10.9%)

 Intercept 1.27679 0.07 19.10 <.001

 VET Plane −0.06604 0.10 −0.67 .509

 VET (all except planes) 0.234115 0.10 2.35 .024
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Table 9
Zero-order correlations between measures. 95% confidence intervals are shown in
brackets

HP VET-F1 VET-F2 Age

CFMT .256* (.015, .468) .150 (−.095, .378) .091 (−.154, .325) .287* (.049, .494)

HP −.075 (−.311, .170) −.173 (−.398, .072) −.019 (−.259, .224)

VET-F1 −.063 (−.300, .181) <.000 (−.242, .242)

VET-F2 .151 (−.094, .379)

Note.

*
p < .05
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Table 10
Results of Multiple Regression Analysis

Model and predictor B SE t p

CFMT (R2 adjusted = 17.9%)

 Intercept 59.0070 2.38 24.8 <.001

 Holistic Face Processing 5.76156 2.17 2.65 .010

 VET Factor 1 2.55556 2.22 1.15 .255

 VET Factor 2 3.90197 2.48 1.57 .121

 Age 5.17035 2.34 2.21 .031

 Sex 1.55148 2.38 0.65 .518

 Holistic Face Processing × Sex −.892232 2.17 −0.41 .683

 VET Factor 1 × Sex 3.74840 2.22 1.69 .097

 VET Factor 2 × Sex −5.61263 2.48 2.26 .028

 Age × Sex 0.943705 2.34 0.40 .683
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