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Abstract

Background: Despite the importance of the renin-angiotensin (Ang) system in abdominal aortic aneurysm (AAA)
pathogenesis, strategies targeting this system to prevent clinical aneurysm progression remain controversial and unproven.
We compared the relative efficacy of two Ang II type 1 receptor blockers, telmisartan and irbesartan, in limiting
experimental AAAs in distinct mouse models of aneurysm disease.

Methodology/Principal Findings: AAAs were induced using either 1) Ang II subcutaneous infusion (1000 ng/kg/min) for 28
days in male ApoE2/2 mice, or 2) transient intra-aortic porcine pancreatic elastase infusion in male C57BL/6 mice. One week
prior to AAA creation, mice started to daily receive irbesartan (50 mg/kg), telmisartan (10 mg/kg), fluvastatin (40 mg/kg),
bosentan (100 mg/kg), doxycycline (100 mg/kg) or vehicle alone. Efficacy was determined via serial in vivo aortic diameter
measurements, histopathology and gene expression analysis at sacrifice. Aortic aneurysms developed in 67% of Ang II-
infused ApoE2/2 mice fed with standard chow and water alone (n = 15), and 40% died of rupture. Strikingly, no telmisartan-
treated mouse developed an AAA (n = 14). Both telmisartan and irbesartan limited aneurysm enlargement, medial
elastolysis, smooth muscle attenuation, macrophage infiltration, adventitial neocapillary formation, and the expression of
proteinases and proinflammatory mediators. Doxycycline, fluvastatin and bosentan did not influence aneurysm progression.
Telmisartan was also highly effective in intra-aortic porcine pancreatic elastase infusion-induced AAAs, a second AAA model
that did not require exogenous Ang II infusion.

Conclusion/Significance: Telmisartan suppresses experimental aneurysms in a model-independent manner and may prove
valuable in limiting clinical disease progression.
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Introduction

Abdominal aortic aneurysm (AAA) is an age-related, life-

threatening degenerative vascular condition. Pathologic hallmarks

include transmural aortic leukocyte infiltration, neocapillary

formation or angiogenesis, progressive medial elastolysis and

smooth muscle cell (SMC) depletion [1]. Although investigations

using both human and experimental aneurysmal tissues have

provided significant insights into AAA pathogenesis [1,2], to date

no pharmacologic strategy has proven effective in limiting

aneurysm progression or reducing risk of rupture [3,4].

Clinical and experimental evidence suggests that the renin-

angiotensin (Ang) system (RAS), a critical blood pressure

regulation mechanism, plays a significant role in AAA pathogen-

esis [5,6]. For example, the protein expression levels of angioten-

sinogen and Ang II type 1 receptor (AT1) are elevated in human

AAAs as compared to healthy and atherosclerotic aortae [7]. In

hyperlipidemic mice, exogenous Ang II accelerates aneurysm

progression [8,9], whereas global or endothelial cell-specific

deletion of AT1a attenuates AAA development [10,11]. Ang

converting enzyme (ACE) inhibitors consistently limit experimen-

tal AAA progression [12], but the efficacy of AT1 blockers (ARBs)

varies by animal models and ARB compounds tested [12–15]. The

efficacy of both ACE inhibitors and ARBs in limiting clinical AAA

progression remains uncertain [16–18]. In the search for effective

pharmacologic strategies to limit AAA progression, further

investigation into the role of RAS targeting is warranted.

In this study, two ARBs, telmisartan and irbesartan, were

compared to doxycycline, fluvastatin and the endothelin-1

receptor blocker bosentan for their ability to limit experimental

aneurysm progression. Telmisartan and irbesartan were chosen

because of their higher bioavailability and longer half-life in vivo

than other ARBs [19]. Doxycycline, a pan-matrix metalloprotei-

nase (MMP) inhibitor, has proven generally effective in limiting

experimental aneurysm progression, albeit in a model-dependant

manner [20–24], and has been trialed previously for early AAA

disease suppression [25,26]. Fluvastatin was chosen as a repre-

sentative HMG-CoA reductase inhibitor (statin) for comparison to

the ARBs and doxycycline [27–30]. Bosentan, an endothelin 1

receptor blocker, was included to isolate the relative influence of

blood-pressure modulation on Ang II-induced experimental

aneurysm progression. The goal of these experiments was to

address previously conflicting data on the inhibitory efficacy of

ARBs in experimental aneurysms, and to provide guidance on

candidate agent selection for a clinical trial of pharmacologic

suppression of early AAA disease.

Results

ARBs Suppress AAA Incidence and Reduce AAA-
associated Mortality

We monitored the suprarenal aorta in apolipoprotein E

deficient (ApoE2/2) male mice during continuous subcutaneous

Ang II (1000 ng/kg/min) infusion for 28 days with transabdom-

inal ultrasound at 40 MHz. In this model (Ang II/ApoE2/2), an

AAA was defined as a $50% increase in aortic diameter or the

onset of dissection. Sixty-seven percent (10/15) of Ang II-infused

ApoE2/2 mice fed standard chow and water developed AAAs

within 28 days (Fig. 1D). In contrast, only 7% (1/14) of Ang II-

infused ApoE2/2 mice treated with irbesartan (50 mg/kg/d in

chow) developed AAAs, and none (0/14) of mice treated with

telmisartan (10 mg/kg/d in chow) developed an AAA (Fig. 1D).

Treatment with both ARBs also significantly reduced AAA-

associated mortality compared to mice fed standard chow (Fig. 1E).

By comparison, neither fluvastatin (40 mg/kg/d in chow) nor

doxycycline (100 mg/kg/d in drinking water) treatment signifi-

cantly influenced AAA incidence or mortality (Figs. 1D & 1E).

Thus, telmisartan and irbesartan, but not doxycycline and

fluvastatin, are highly effective at reducing AAA incidence and

mortality in the Ang II/ApoE2/2 model.

ARBs Attenuate Aortic Aaneurysm Progression during
Chronic Ang II Infusion

Consistent with the impact on incidence and mortality,

treatment with telmisartan or irbesartan significantly suppressed

aortic expansion in ApoE2/2 mice from days 3–28 and 7–28,

respectively, following Ang II infusion as compared to mice

maintained on standard chow (Table 1). Although mean aortic

diameters on days 14, 21 and 28 in fluvastatin-treated, Ang II-

infused mice were smaller than those in mice maintained on

standard chow, these differences did not reach statistical signifi-

cance. Doxycycline treatment also did not influence expansion of

aortic diameter. Thus, in addition to reducing AAA incidence and

mortality, telmisartan and irbesartan effectively suppress early

aneurysm progression in the Ang II/ApoE2/2 model.

ARBs Reduce Medial Elastolysis, Smooth Muscle Cell
(SMC) Depletion and Transmural Aortic Inflammation

To determine the histopathological consequences of telmisartan

or irbesartan treatment during aneurysm progression, we

performed elastin and SMC a-actin staining on aortic sections

from Ang II-infused ApoE2/2 mice and graded them as

previously described [31]. Treatment with each ARB preserved

medial elastin fibers and SMCs (Figs. 2A, B, C, D, E, F, G, H, I, J,

K) compared to standard chow diet. In contrast, treatment with

fluvastatin or doxycycline had no apparent effect on elastic fiber

degradation or SMC depletion (Figs. 2 A, B, C, D, E, F, G, H, I, J,

K, 3A & 3B).

Tissue immunostaining was used to evaluate the presence and

magnitudes of monocyte/macrophage infiltration (MAC2 mAb)

and newly formed blood vessels (mural angiogenesis, CD31 mAb)

in AAAs. Treatment with either ARB reduced, to a remarkable

extent, both mural macrophage and neovessel density within

aneurysmal aortae compared to standard chow group (Figs. 2L,

M, N, 2R, S, T & 3C). Neither doxycycline nor fluvastatin

measurably influenced these two endpoints (Figs. 2L, 2O, 2P, 2R,

2U, V & 3C, D).

ARBs Inhibit Expression of Proinflammatory Mediators
and Proteinases

To further investigate the molecular mechanisms by which

ARBs modify aneurysm pathogenesis, mRNA expression levels of

72 relevant inflammatory mediators were examined by quantita-

tive real-time reverse transcription-polymerase chain reaction

(qRT-PCR) (Table S1). These mediators were selected based on

previous studies on gene expression in aneurysmal and occlusive

aortic diseases. This transcription profile covered genes responsible

for all facets of AAA pathology, including inflammation/immune

responses, immunity, cell migration, cell proliferation and

apoptosis, extracellular matrix metabolism, oxidative stress and

cell signaling. As compared to aortae harvested from ApoE2/2

mice without Ang II infusion, mRNA expression levels of 19 genes

were significantly increased in the aneurysmal aortae of the Ang

II-infused mice, including five chemokines/chemokine receptors,

three cytokines/cytokine receptors, four proteases, four anti-

oxidative stress-related molecules, two leukocyte adhesion mole-

cules and Runx3 (Fig. 4). The mRNA expression levels of 6 genes

ARB Treatment for Abdominal Aortic Aneurysms
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were significantly reduced, including tissue inhibitor of MMP2,

fibronectin 1, colony stimulating factor 1, lysyl oxidase, NF-kB,

and mitogen-activated protein kinase 8.

Treatment with either ARB significantly suppressed the Ang II-

induced expression of MMP8, MMP12, cathepsin B, cathepsin S,

chemokine CCL2, chemokine receptors (CCR2, CCR5 and

CXCR4), aL integrin, b2 integrin, TNF-a, TGF-b1, heme

oxygenase 1, RAC2, CYBB and Runx3. Fluvastatin significantly

downregulated expression of a smaller set of Ang II-induced genes,

including cathepsin B, b2 integrin, RAC2 and Runx3, while

doxycycline suppressed only MMP8. Interestingly, no drug

treatment restored mRNA expression levels of genes significantly

downregulated in Ang II-infused mice. Thus, ARBs suppressed

expression of a far larger set of proinflammatory genes than either

fluvastatin or doxycycline.

Role of Blood Pressure Reduction in AAA Suppression
Steady state plasma levels of telmisartan, irbesartan, fluvastatin

and doxycycline are detailed in Fig. 5A. Drug levels were more

consistent in ARBs vs fluvastatin or doxycycline-treated mice,

although standard dosing methodology was employed across all

groups. To determine the effect of individual drugs on Ang II-

induced hypertension (a potential contributor to the formation and

Figure 1. Influence of drug treatment on AAA incidence and mortality. A–C: Ultrasound images representing an intact aorta (A), an
aneurysmal aorta without dissection (B) and an aneurysmal aorta with medial dissection (C). D, E: AAA incidence (D) and mortality (E) in Ang II-
infused mice treated with telmisartan, irbesartan, fluvastatin or doxycycline. Kaplan-Meier analysis, *P,0.05 and **P,0.01 compared to control
group, n = 14–15 mice in each group.
doi:10.1371/journal.pone.0049642.g001

Table 1. Effect of telmisartan, irbesartan, fluvastatin and doxycycline on aortic diameters of Ang II-infused ApoE2/2 mice.

Treatment Measurement Day

27 0 3 7 14 21 28

Control 1.1460.10 (15) 1.2060.04 (15) 1.3260.19 (15) 1.5360.30 (12) 1.6860.52 (12) 1.6960.55 (10) 1.9460.44 (10)

Telmisartan 1.1360.10 (14) 1.1360.06 (14) 1.0860.07* (14) 1.1060.07** (14) 1.1260.05* (14) 1.1160.10* (14) 1.1460.05* (14)

Irbesartan 1.1560.07 (14) 1.2160.08 (14) 1.2060.08 (14) 1.2260.04** (14) 1.2460.23** (14) 1.2060.09** (13) 1.2260.11** (13)

Fluvastatin 1.1660.07 (14) 1.1960.05 (14) 1.2560.11 (12) 1.3760.22 (11) 1.3060.40 (10) 1.4060.38 (10) 1.5260.51 (10)

Doxycycline 1.1360.07 (15) 1.1760.10 (15) 1.2060.10 (15) 1.3960.28 (14) 1.6460.44 (12) 1.9560.52 (10) 2.0560.55 (10)

Noninvasive transabdominal ultrasonography was used to measure suprarenal aortic diameters in individual mice prior to drug treatment (day -7), on the Ang II infusion
day (day 0), and 3, 7, 14, 21 and 28 days after Ang II infusion. Data are given as mean 6 standard derivation of the aortic diameters for all groups, with all dimensions
listed in units of mm. Number of mice in each group is shown in the parenthesis. Two-way ANOVA analysis followed by Newman-Keuls post-test, *P,0.05 and **P,0.01
compared to the control group at same measurement day.
doi:10.1371/journal.pone.0049642.t001
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progression of AAAs), systolic blood pressure (SBP) was measured

prior to Ang II infusion and at multiple time points thereafter. As

shown in Fig. 5B, SBP was comparable between all four groups

immediately prior to initiation of Ang II infusion. Subsequently,

SBP was significantly lower in mice treated with telmisartan or

irbesartan on days 14 and 28 of Ang II infusion. Neither

fluvastatin nor doxycycline treatment influenced blood pressure.

To determine whether blood pressure modulation account for

some/all of the potent suppressive effect of ARB therapy on AAA

development, we performed separate experiments in which Ang

II/ApoE2/2mice were fed either with the chow supplemented

with bosentan, a competitive endothelin-1 receptor antagonist and

potent antihypertensive drug with no known influence on AT1a,

or with standard chow as its own control. While bosentan was

effective in blunting the Ang II-induced increase in SBP (Fig. 5C),

it had no effect on AAA incidence or progression as compared to

its own control group (Figs. 6A & 6C). Though mortality was

slightly reduced in bosentan-treated Ang II/ApoE2/2 mice, this

difference did not reach statistical significance compared to

standard chow-fed control group (Fig. 6B). These experiments

suggest that the AAA suppression by ARB therapy is not

attributable in a significant way to blood pressure reduction alone.

Telmisartan Suppresses Experimental AAA Formation in a
Model-independent Manner

Finally, to determine whether ARB effectiveness was limited to

Ang II-induced aneurysms, we tested the efficacy of telmisartan in

a second murine AAA model, in which aortic aneurysmal

degeneration is initiated via intra-aortic infusion of porcine

pancreatic elastase (PPE) in normolipidemic C57BL/6J mice,

without exposure to exogenous Ang II. This experimental

construct also provided an additional control for the blood

pressure-modulating influences of ARB therapy, since PPE does

not induce hypertension of the magnitude or duration associated

with Ang II infusion. Telmisartan alone was tested as the

representative ARB in these experiments due to the larger overall

aneurysm inhibitory effect demonstrated in the Ang II/ApoE2/2

model (Fig. 1). Treatment with telmisartan (10 mg/kg/d) almost

completely obliterated aneurysmal aortic degeneration at 3, 7 and

14 days after PPE infusion (Fig. 6D). Within 2 weeks after PPE

infusion, all mice fed with standard chow developed AAAs,

whereas none of the mice fed with telmisartan-supplemented chow

developed an AAA. Infusion of PPE increased SBP in a time-

dependent manner (Fig. 5D). Although telmisartan treatment

lowered SBP at 7 and 14 days, a significant difference was noted

only at day 7. These results indicate that the potent inhibitory

effect of ARB treatment in experimental AAA disease is model-

independent and not solely the consequence of direct inhibition of

Ang II/AT1a receptor interaction in hyperlipidemic mice.

Figure 2. Influence of drug treatment on aortic histology. After sacrifice, aortae were fixed, sectioned and underwent elastin staining and
immunostaining for SMCs (SMC a-actin), macrophages (MAC2) and blood vessels (CD31). A–K: Residual medial elastin (A–E) and mural SMCs (F–K) in
telmisartan (B, H), irbesartan (C, I), fluvastatin (D, J), doxycycline-treated (E, K) or control mice (A, F). L–V: macrophages (L–P) and endothelial cells
(neovessels) (R–V) in telmisartan- (M, S), irbesartan- (N, T), fluvastatin- (O, U) or doxycycline- (P, V) treated mice or untreated control mice (L, R).
Representative images, 4–5 mice in each group. Magnification: x200 in A–E, x100 in F–V.
doi:10.1371/journal.pone.0049642.g002
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Discussion

These results demonstrated that both telmisartan and irbesartan

are highly effective in reducing the incidence, progression and

mortality of AAAs in the Ang II/ApoE2/2 model. Histologically,

treatment with ARBs significantly reduced medial elastolysis and

SMC loss. When multiple potential inhibitory agents were

compared, ARBs demonstrated substantially more inhibitory

activity than fluvastatin or doxycycline. As a control for ARB-

induced blood pressure modulation, bosentan therapy alone did

not influence aneurysmal aortic degeneration. Finally, telmisartan

suppressed aneurysm formation in a second AAA model without

exogenous Ang II administration, underscoring the potential

translational relevance of this inhibition strategy.

These results validate and extend prior reports of AT1a

inhibition in experimental and clinical AAA disease. An alterna-

tive ARB, losartan, inhibited AAA formation in the Ang II/

ApoE2/2 model as evaluated by size and structural determination

at sacrifice [13], and both ARBs telmisartan and valsartan limited

PPE-induced aneurysm progression in rats [14,15]. The patho-

physiology and phenotype of AAAs are distinct from thoracic

aneurysms, as associated with the Marfan syndrome, where

extensive work by Dietz and others has established mechanisms

likely responsible for ARB-mediated disease suppression [32]. This

study supplements prior reports by evaluating ARB influences on

aneurysm incidence, progression, and AAA-related mortality, all

endpoints essential to potential translational considerations.

Additionally, telmisartan was proved to be effective in distinct

but complementary murine AAA models. Taken together with

prior results, these data strengthen the accumulating evidence

supporting ARB-based treatment regimens for human AAA

disease management.

Clinical evidence supporting ARB efficacy in this application is

less consistent. In a review of concurrent medication administered

to AAA patients during serial ultrasound surveillance, ARB usage

was associated with reduced AAA enlargement [16]. However, a

prior population-based, retrospective case-control study conducted

in the Provence of Ontario failed to identify a protective effect for

ARB usage in reducing hospitalization for aortic rupture, although

the number of AAA patients taking ARBs was small (less than 1%

of population under review) [18]. Due to their retrospective

nature, neither of these studies was able to control for relevant

confounding variables that might independently influence AAA

progression such as cigarette smoking or family history. To date,

no prospective, randomized controlled trial has been conducted to

evaluate the efficacy of ARB therapy.

This study provides additional mechanistic insights into ARB-

mediated AAA suppression. Mural monocytes/macrophages are

prevalent in human AAA tissue, and may mediate aneurysmal

degeneration via expression of matrix-degrading proteinases,

inflammatory cytokines, chemokines, and leukotrienes throughout

the course of the disease [9,22,33–40]. Alternative macrophage

Figure 3. Quantitative aortic histology. Medial elastin fragmentation and SMC loss were assessed on a 1–4 scale. A, B: Destruction scores for
medial elastin (A) and SMCs (B). C, D: Mural macrophages (C) and CD31+ neovessels (D) per aortic cross section (ACS). Data in A–D reported were
mean6standard deviation, 4–5 mice per group. Nonparametric Mann-Whitney test, *P,0.05 and **P,0.01 compared to control group.
doi:10.1371/journal.pone.0049642.g003
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populations such as those express TGF-b1 or heme oxygenase 1

may inhibit constitutive aortic cell loss and proteolysis, or

contribute to positive aortic remodeling [36,41,42]. Mechanisms

responsible for reduced aortic macrophage density in ARB-treated

mice may include impaired monocyte mobilization from spleen

and/or bone marrow, impaired aortic localization and transmural

migration, and/or reduced macrophage survival in situ [43–46].

Mural angiogenesis is another well-recognized pathologic

component of AAAs, recapitulated in murine AAA models, and

correlates with disease progression in experimental models and

human disease [47–51]. Previous work employing loss- and gain-

of-function experimental strategies has highlighted the significance

of angiogenesis in AAA pathogenesis [49–55]. Angiogenesis may

also facilitate compensatory aortic remodeling in the diseased

aorta [50,56]. The proangiogenic cytokine VEGF-A is produced

by inflammatory monocytes/macrophages [47,57,58], thus ARB

treatment may inhibit angiogenesis through limitations on

macrophage accumulation. Alternatively, AT1 receptor inhibition

may exert direct antiangiogenic influences as reported for other

pathologic conditions [59–61]. Irrespective of the specific mech-

anisms responsible for this inhibitory effect, reduced mural

neovessel formation limits further recruitment of circulating

monocytes, amplifying the suppressive effect on aneurysm

progression.

Analysis of ARB-induced changes in proinflammatory gene

expression provides additional insights into potential antianeur-

ysmal effects. Dramatic reduction in CCL2, CCR2, CCR5,

CXCR4, aL and b2 integrins were noted, all genes highly

expressed in the aneurysmal aortae. Monoclonal antibody

inhibition or genetic deficiency of CCL2, its receptor CCR2, or

CD18 has previously been shown to ameliorate experimental

AAAs [35,37,62]. Recently, we demonstrated that synthetic

peptide inhibition of CCL5 (a major CCR5 ligand) or genetic

deficiency of ICAM-1 also suppresses PPE infusion-induced AAAs

in mice (unpublished data). Similarly, aortic monocyte/macro-

phage attenuation by ARBs may reduce CCL2 production either

directly or via interaction with aortic SMCs [63–65].

Gene expression levels of MMP8, MMP12, cathepsin B,

cathepsin S, TNF-a and OPN, all highly differentially expressed

in aneurysmal aortae, were significantly downregulated in ARB-

treated mice. These enzymes and mediators all contribute to AAA

formation by aortic extracellular matrix degradation, proangio-

genic or proinflammatory signaling [33,36,39,66]. Differential

expression may reflect reduced mural monocyte/macrophage

infiltration and/or phenotypic switch towards alternatively acti-

vated antiinflammatory macrophages [67,68]. Although tissue

inhibitor of MMP2, lysyl oxidase and fibronectin 1, enzymes and

structural proteins thought to inhibit proteinase activity or stabilize

the extracellular matrix [69–74], were downregulated in aneurys-

mal lesions, reciprocal upregulation was not apparent in ARB-

treated mice despite the suppressive effects on aneurysm incidence

and progression. Taken together, the expression data provides

Figure 4. Influence of drug treatment on inflammatory gene expression. Aortic mRNA expression levels (fold expression) as a function of
Ang II infusion (left column) and drug treatment status. Nonparametric Mann-Whiteny test, *P,0.05 and **P,0.01.
doi:10.1371/journal.pone.0049642.g004

ARB Treatment for Abdominal Aortic Aneurysms

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e49642



further support to the hypothesis that ARBs suppress experimental

aneurysm formation by limiting activity of proinflammatory

macrophages. By down-regulating expression of aortic CCL2,

CCR2, CCR5, CXCR4 and aL and b2 integrin expression, ARBs

significantly limit the adhesion and transendothelial aortic

migration of circulating monocytes, differentiation into a proin-

flammatory phenotype, and the production of inflammatory

cytokines and proteinases.

Several limitations to our gene expression analysis exist. First,

mRNA expression levels of TGF-b1 and heme oxygenase 1 were

not consistent with prior reports of compensatory upregulation in

response to aneurysm formation [36,41,42], although their specific

roles in AAA pathogenesis remain controversial. Second, expres-

sion of MMP-9, which plays a critical role in aneurysmal

pathogenesis [22], was apparently not influenced by ARB

treatment, although earlier expression in the time-course of

experimental AAA formation, when MMP-9 activity may be

more essential, was not assessed. Third, mRNA expression levels

of Runx3, RAC2 and CYBB were also influence by ARB

treatment. Although they are likely involved in AAA pathogenesis

through their roles in the generation of reactive oxygen and

nitrogen species, angiogenesis and myeloid cell functions [75–77],

their specific contributions could not be identified in this

experimental construct. Fourth, aortae were harvested for RNA

extraction following 28 days of Ang II infusion, representing late

stage disease, with mixed populations of infiltrative and constitu-

tive cells. Thus, this experimental design precluded analysis of cell-

or time-dependent gene expression. Finally, Ang II binds to either

AT1 or AT2 receptor on target cells, resulting in opposite

biological consequences. Whether exogenous Ang II downregu-

Figure 5. Effect of drug treatment on systolic blood pressure. A: Dot plot graphs show plasma drug levels in individual Ang II-infused ApoE2/

2 mice receiving each drug treatment. Horizontal line in each graph indicates mean drug concentration from 10–14 mice in each group. B: Effect of
telmisartan, irbesartan, doxycycline and fluvastatin on systolic blood pressure in ApoE2/2 mice 14 and 28 days after Ang II infusion. C: Effect of
bosentan on systolic blood pressure in ApoE2/2 mice 7, 14, 21 and 28 days after Ang II infusion. D: Effect of telmisartan on systolic blood pressure in
C57BL/6J mice 7 and 14 days after PPE infusion. Data in B–D are given as mean 6 standard derivation for each group. Data in B and C were obtained
from separate experiments, each with its own control group. In all experiments, two-way ANOVA followed by Newman-Keuls post-test, *P,0.05 or
**P,0.01 compared to control group at same time points. n = 10–15 (A–C) or 7–9 (D) mice in each group.
doi:10.1371/journal.pone.0049642.g005
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lates AT1 mRNA levels and/or leads to compensatory upregula-

tion of AT2 mRNA levels was not evaluable within this study

design. AT2 signaling may be essential for deriving the maximal

therapeutic benefits of ARB-treated murine Marfan syndrome

models [78]. Further studies will be required to document the

suppressive role of AT2 expression and signaling in AAA models.

Prior experiments suggested that endothelial AT1a receptor

expression and activity, but not hematopoietic or vascular smooth

muscle cell expression, is required for Ang II-induced AAA

formation in ApoE2/2 mice [10,11]. However, differentiation of

monocyte lineage progenitors from hematopoietic stems cells is

regulated by AT1a-mediated TNF-a secretion by bone marrow

stromal cells [79]. Monocyte AT1a activation is critically

important for egress of splenic monocytes into the bloodstream

in certain pathological conditions including myocardial infarction

[43]. Thus, more studies are needed to define the comprehensive

consequences of Ang II/AT1a signaling in experimental and

clinical AAA disease.

The potential influence of ARB-induced blood pressure

reduction on aneurysm suppression was investigated using two

complementary approaches. First, telmisartan efficacy was con-

firmed in the PPE infusion model to negate the effect of Ang II-

induced hypertension on aneurysm progression. Second, blood

pressure reduction with bosentan alone had no influence on AAA

initiation and progression in the AngII/ApoE2/2 model. Recent

data suggests that bosentan may augment aneurysm incidence in

Ang II-infused ApoE2/2 mice [80], although our data did not

support this conclusion. Therefore, AAA suppression in these

constructs did not appear to be blood pressure-dependent,

although we did not test doses below the therapeutic threshold

for blood pressure modulation. Telmisartan also has well-

documented PPAR-c agonist activity [19,81], and activation of

PPAR-c has proven effective in limiting experimental aneurysm

progression [31,82,83]. Determining the relative contribution of

the PPAR-c agonist vs Ang II/AT1 antagonist effects of

telmisartan in limiting experimental aneurysm progression, while

of significant scientific interest, is beyond the scope of this

investigation. Further planned studies will compare the indepen-

dent influences of PPAR-c and AT1 signaling on AAA progression

in these models.

Reflecting the existing ambiguity regarding the efficacy of these

agents in the literature [20,27,29,84–91], we found that both

fluvastatin and doxycycline demonstrated little or no effect on

aneurysm formation or progression in Ang II-infused ApoE2/2

mice. The clinical relevance of these findings in the case of

fluvastatin was supported by a recent meta-analysis demonstrated

no significant effect of statins on clinical AAA progression,

although a significant reduction in all-cause mortality was noted

[25,26]. In the case of doxycycline, while no definitive clinical trial

data have been published to date [25,26], multiple prior reports

have demonstrated its effectiveness in limiting PPE-induced

experimental AAAs in both mice and rats [21–23]. In the Ang

Figure 6. Antihypertension-independent effect of telmisartan on AAAs. A–C: Effect of bosentan on AAA incidence (A), mortality (B) and
suprarenal aortic diameters (C) in Ang II-infused ApoE2/2 mice. D: Effect of telmisartan on infrarenal aortic diameters in C57BL/6J mice after PPE
infusion. Data in B and D are given as mean 6 standard derivation for each group. Two-way ANOVA followed by Newman-Keuls post-test, *P,0.05 or
**P,0.01 compared to the control group at corresponding time points. n = 10–15 (A–C) or 7–9 (D) mice in each group.
doi:10.1371/journal.pone.0049642.g006
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II/ApoE2/2 model, however, published results have varied

significantly [20,24,92]. One of these studies reported a 50%

reduction in AAA incidence in Ang II-infused, doxycycline-treated

ApoE2/2 mice fed with high fat chow [24], suggesting that dietary

fat intake may influence the therapeutic effect of doxycycline in

this model. Since the doxycycline dose employed in our study is at

the high end of prior published regimens shown to suppress AAAs

in the PPE model [21], it is thus unlikely that failure could be

ascribed to an insufficient dose. Thus, these results add to the

uncertainty surrounding the therapeutic efficacy of statins and

doxycycline in AAA disease.

In conclusion, our study proved that telmisartan and irbesartan,

but not doxycycline, fluvastatin or bosentan, are highly efficacious

in suppressing the formation and progression of AAAs in a model-

and blood pressure-independent manner. RAS inhibition with

ARBs may represent an attractive pharmaceutical strategy for

suppression of early AAA disease. If proven effective, ARB therapy

may prolong the time to surgical repair for many patients, and in

the most elderly, potentially provide the opportunity to forgo

surgery altogether [3]. On the basis of these experiments and

additional observational clinical data, a randomized, double-blind,

placebo-controlled, multiple center clinical trial has been orga-

nized to test the efficacy of telmisartan in limiting the progression

of early abdominal aortic aneurysm disease. As one of several

centers participating in this international trial, we are treating

AAA patients with aneurysm diameters between 35–49 mm by

daily administration of 40 mg telmisartan vs placebo for up to 2

years (www.clinicaltrials.gov). If proven effective clinically, this

strategy promises to substantially improve patient well-being and

quality of life for thousands of ‘‘worried well’’ patients world-wide

at risk for progressive aneurysm enlargement and sudden death

due to aortic rupture.

Materials and Methods

Aneurysm Creation and its Intervention
Male ApoE2/2/C57BL/6J mice or wild type C57BL/6J mice

at 10–12 wk of age were obtained from the Jackson Laboratory,

Bar Harbor, Maine, and housed at the Stanford Animal Facility,

Stanford, CA. Animal care and experimental procedures were

conducted in compliance with Stanford Laboratory Animal Care

Guidelines. The Administrative Panel on Laboratory Animal Care

at Stanford University approved all procedures involving mice.

Two mechanistically distinct, but complementary mouse AAA

models were used in this study: subcutaneous Ang II infusion in

ApoE2/2 mice (Ang II/ApoE2/2 model) and intra-aortic PPE

infusion in C57BL/6J mice (PPE model). In most experiments,

ApoE2/2 mice were fed chow supplemented with irbesartan

(50 mg/kg), telmisartan (10 mg/kg) or bosentan (100 mg/kg), or

were daily given drinking water supplemented with fluvastatin

(40 mg/kg) or doxycycline (100 mg/kg). As controls, separate

groups of ApoE2/2 mice for individual experiments were given

the standard chow and drinking water without drug supplemen-

tation. One week later, to induce AAAs, all mice were

subcutaneously implanted with osmotic minipumps (Alzet model

2004, Durect Corporation, Cupertino, CA) for continuous

infusion of Ang II at 1000 ng/kg/min, and treated continuously

with their respective drugs for 28 days [9]. In additional

experiments, C57BL/6J mice were fed telmisartan-supplemented

chow (10 mg/kg) or the standard chow. One week thereafter,

AAAs were created by transient intra-aortic infusion of PPE as

described previously [93], and these mice were continuously fed

with the chow with or without telmisartan supplementation for

additional 2 wk. In all experiments, doses for two ARBs and

bosentan were selected based on published mouse studies in which

each drug lowered blood pressure and/or suppressed cardiovas-

cular pathology [94–96].

Measurements of Plasma Drug Concentrations
Plasma samples were obtained from the ApoE2/2 mice at

sacrifice following 28 days of continuous Ang II infusion. Drug

levels in plasma were measured using high pressure liquid

chromatography and presented as ng/ml.

Measurements of Blood Pressure
Systolic blood pressure was measured in conscious, pre-warmed

(36uC) and restrained mice using a noninvasive tail-cuff method on

a BP-2000 system (Visitech Systems, Inc., Napa Place Apex, NC).

Measurements were performed prior to Ang II infusion (day 0) as

well as 14 and 28 days thereafter. At each measurement day, a

total of 15 measurements for each mouse were conducted with a

5 second interval.

Monitoring of AAA Formation Using Transabdominal
Ultrasonography

Aortic diameter measurements and dissection-flap recognition

were obtained via ultrasound imaging at 40 MHz using the Vevo

770 ultrasound system (Visualsonics, Toronto) in a blind manner

for each medication group. All ultrasound measurements of aortic

diameters were performed by a single investigator and had an

inter-measurement variation of less than 2%. Imaging was

performed prior to Ang II infusion and on days 3, 7, 14, 21 and

28 thereafter. An AAA was defined as a $50% increase in aortic

diameter or the presence of aortic dissection. Mice were daily

monitored for mortality analysis. Dead mice were subjected to

necropsy within 12 h to confirm presence or absence of aortic

rupture.

Histological Analysis
Mice were sacrificed following 28 days of Ang II infusion or on

day 14 following PPE infusion. Aortae were harvested, fixed with

4% PFA in phosphate-buffered saline (PBS), embedded in

paraffin, and sectioned (4 m m in thickness). Elastic-Masson

staining was used to stain medial elastin. Immunohistochemistry

was used to identify SMCs, macrophages and blood vessels. In

brief, the PBS-rehydrated sections were incubated with a rabbit

anti-mouse SMC a-actin polyclonal antibody (Laboratory Vision,

Fremont, CA), a rat anti-mouse MAC2 mAb (M3/38, Cedarlane

Laboratories, Burlington, Ontario, Canada), a rabbit anti-mouse

CD31 polyclonal antibody (Laboratory Vision, Fremont, CA), or a

species and isotype-matched negative control antibody. Following

extensive washing with PBS, the sections were sequentially

incubated with an appropriate biotinylated secondary antibody

and streptavidin-peroxidase. The binding of a primary antibody to

its specific antigen was visualized using the DAB kit (Dako

Corporation, Carpinteria, CA) and imaged on a light microscope

equipped with a Nikon digital sight DS-5M camera using the NIS

Elements software (Ver. 3, Nikon Instruments Inc, Melville, NY).

Macrophages and blood vessels within the aortic wall were

quantitated as MAC2+ cells and CD31+ vessels per aortic cross

section (ACS), respectively. Destruction of medial elastin and

smooth muscles was graded as 1 (mild) to 4 (severe) [31]. All

histological assessments were performed by a single experienced

experimental pathologist who was blinded to treatment assign-

ments or groups.
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Quantitative Real-time Reverse-transcription Polymerase
Chain Reaction (qRT-PCR)

Total aortic RNA was extracted using the Qiazol lysis reagent

and RNeasy Lipid Tissue Mini kit (Qiagen Inc, Valencia, CA).

After removal of genomic DNA by DNase 1 treatment, cDNA was

synthesized from 1 mg total RNA using the Applied Biosystems

high reverse cDNA transcription kit, and amplified on the ABI

PRISM 7900HT Sequence Detection System using a 384-well

Applied Biosystems Taqman low density array card (Foster City,

CA). The total volume of PCR reaction was 100 ml, each

containing cDNA synthesized from 50 ng total RNA and 50 ml

Taqman universal PCR master mix. PCR was run by activating

DNA polymerase at 50uC for 2 minutes and denaturing cDNA at

95uC for 10 minutes followed by 40 cycles of 2-step amplification

(denaturation at 95uC for 15 seconds and annealing/extension at

60uC for 1 minutes). A house keeping gene, GAPDH, was used as

an internal control for all qRT-PCR reactions. All data were

analyzed using SDS 2.2.3 software (Applied Biosystems), and gene

expression levels in all Ang II-infused groups were expressed as

fold changes as compared to no Ang II-infused group in which

each gene expression level was set at 1.0.

Statistical Analysis
For all continuous variables, data were presented as mean and

standard derivation (SD) unless indicated, and nonparametric

Mann-Whitney test or two-way analysis of variance (ANOVA)

followed by Newman-Keuls post-test was used to test for

significance. The differences in the trends for AAA incidence

and mortality between the groups were tested by Kaplan-Meier

analysis. P,0.05 was considered to be statistically significant.
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