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Abstract
Pre-neoplastic lesions (ACF, aberrant-crypt-foci; Hp, hyperplastic/dysplastic polyps) are believed
to be precursors of sporadic colorectal-tumors (Ad, adenomas; AdCA, adenocarcinomas). ACF/Hp
likely originate due to abnormal growth of colonic-crypts in response to aberrant queues in the
microenvironment of colonic-crypts. Thus identifying factors which regulate homeostatic vs
aberrant proliferation/apoptosis of colonocytes, especially stem/progenitor cells, may lead to
effective preventative/treatment strategies. Based on this philosophy, role of growth-factors/
peptide-hormones, potentially available in the circulation/microenvironment of colonic-crypts is
being examined extensively. Since the time gastrins were discovered as trophic (growth) factors
for gastrointestinal-cells, the effect of gastrins on the growth of normal/cancer cells has been
investigated, leading to many discoveries. Seminal discoveries made in the area of gastrins and
colon-cancer, as it relates to molecular pathways associated with formation of colonic tumors will
be reviewed, and possible impact on diagnostic/preventative/treatment strategies will be discussed.
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Introduction
Gastrin-gene was cloned (1,2) and sequence of full-length progastrin identified (1) in the
early 1980’s. Enzymatic steps involved in processing of pre-progastrin (product of gastrin-
mRNA) into processing-intermediates (non-amidated) and mature (amidated) gastrins (G17/
G34) were identified (3). Meal ingestion leads to release of gastrins from antral G cells,
which stimulate acid secretion into the lumen of the stomach. In the 1980’s, C-terminal-
amidation of gastrin-like peptides (G17/G34/CCK8) was defined as a critical step for
measuring maximum acid response from parietal cells; non-amidated progastrins were
believed to be biologically inactive (4). However, we now know that non-amidated
progastrins (PG) are expressed and secreted by many cancer cells including colon-cancer-
cells (5). Progastrins are biologically active and exert potent proliferative/anti-apoptotic
effects on normal colonic crypt cells and significantly increase tumorigenic/metastatic
potential of colonic-tumor cells in vitro and in vivo (6). Sustained hyperproliferation is a risk
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factor for colon-carcinogenesis (7). Elevated levels of circulating progastrins in animal-
models cause hyperproliferation of colonic-crypts, increase stem-cell-populations, and
increase the risk of colon carcinogenesis in response to DNA damaging agents (6,8–12) or
mutation of tumor-suppressor-genes (Apc/p53) (13,14). Sustained hyperplastic/dysplastic
growth of colonic-crypts within a focal area of colons, resulting in formation of ACF/Hp,
are the earliest lesions one can diagnose. Multiplicity and size of hyperplastic-polyps are
associated with the risk for developing adenomas/adenocarcinomas in patients with sporadic
CRCs (15,16). Genetic/epigenetic molecular pathways associated with Hp-Ads-AdCA
sequence of colon-cancer progression has been defined within 3–4 broad categories (Fig. 1),
based on presence of chromosomal-instability (CIN), microsatellite-instability (MSI) and
CpG-island-methylator-phenotype (CIMP) (17). Expression of gastrin-gene/progastrin,
while widespread in adenocarcinomas (18), may be detected in pre-neoplastic lesions
(19,20). Some of the molecular pathways associated with colon-carcinogenesis reportedly
increase gastrin-gene expression (21,22), which may explain increasing expression of
progastrin during hyperplasia-adenoma-carcinoma stages. Thus, totality of literature to-date,
implicates a role of endocrine/paracrine/autocrine progastrins during different stages of
colon-carcinogenesis. Endocrine/paracrine progastrins may play a role during formation of
hyperplastic-growths in a subset of patients positive for sustained levels of circulating
gastrins/progastrins (as in hypergastrinemia). The growth of colonic tumors maybe addicted
to autocrine-progastrins in a small subset of patients (23), but for majority of the patients
autocrine-progastrins may mainly impact progression of the disease. Thus targeting
endocrine/autocrine progastrins may help in preventing formation of hyperplastic-growths
and/or reducing resistance to chemotherapeutic agents. Targeting receptor/signaling-
pathways of progastrins may also provide some benefit. Literature in the past two decades
that supports the concepts introduced in here are presented diagrammatically in Fig. 1, and
described below.

Processing-intermediates of gastrin (progastrins) are autocrine/endocrine
growth-factors for colon-cancer/intestinal-cells

Structure-activity studies in late 1980’s suggested that C-terminal amidation was not critical
for displacing binding of 3H-G17 to colon-cancer cells (24). This report led to investigation
of possible growth effects of non-amidated-gastrins (G-Gly, glycine-extended gastrins; PG,
full-length progastrins1-80). G-Gly was soon established as a mitogenic growth factor for
many normal and cancer cells (5,6,25–27). Simultaneously, several laboratories reported
that gastrin-gene is variably expressed by colon-cancer-cells/adenocarcinomas (5,6,28), and
that colon-cancers mainly secrete unprocessed/partially-processed progastrins (3,5,6,29,30).
Significant levels of progastrins were reported in patients positive for CRCs (31–33), which
were attenuated on surgical-removal of the tumors or by inhibiting tumor-growth (31,33),
confirming CRC tumors as source of circulating progastrins. Availability of specific anti-
PG-antibodies has now confirmed expression of progastrins in colonic adenomas/
adenocarcinomas, including Hp-polyps (19,20).

The discovery that gastrin-gene products are not processed by colon-cancers led
investigators to generate recombinant-full-length-progastrin (rhPG) (34,35) or transgenic
(Tg) mice. Tg-mice either constitutively overexpressed G-Gly/hPG (MTI/G-Gly/hGAS)
(36,37), or overexpressed hPG in the intestines, in response to fatty-acid-binding-proteins
(Fabp-PG mice) (8–10); mice overexpressing amidated-gastrins in response to insulin (INS-
GAS mice) were also generated (36). With the help of rhPG and Tg-mice, it became evident
that G-Gly/PG were potent proliferative/anti-apoptotic factors for immortalized cell lines, in
vitro (27,34,35,38), and for colonic-crypts in vivo, resulting in hyperproliferation of colonic-
crypts (10,36,37). The C-terminal flanking peptide of PG (CTFP) has also been recently
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reported to be biologically active (3); its role in colon-carcinogenesis remains to be
examined.

Some colon-cancers may be addicted to autocrine progastrins
In the mid-1990’s it was discovered that down-regulation of gastrin-gene expression in
colon-cancer cell lines resulted in attenuating growth/tumorigenic potential of >60% cell
lines (23,39). However, a complete loss in tumorigenic-potential was measured in <10% of
the cell-lines, suggesting that growth of a small percentage of colonic-tumors may be
addicted to autocrine-progastrins. Since then an autocrine role of gastrin-gene-products has
been confirmed by several laboratories (40,41). Antibodies derived against PG attenuate
growth of gastrin dependent colon-cancer-cells, while anti-G-Gly-antibodies are less
effective (42).

Circulating progastrins may be a risk factor for CRC
Elevation of endogenous gastrins/progastrins in rodent models, including transgenic-mice
(described above) caused an increase in colon-carcinogenesis in response to the carcinogen,
AOM (8–12,43–44). However experimental hypergastrinemia or elevation of G-Gly/PG in
Tg-mice, in the absence of carcinogens, did not result in colon-carcinogenesis (45),
suggesting that progastrins/gastrins are not carcinogenic. The total number/multiplicity of
ACF were significantly higher in hGAS/Fabp-PG Tg-mice (overexpressing PG) compared
to that in INS-GAS/wild-type mice (expressing amidated-gastrins), which correlated with
size and number of colonic adenomas/adenocarcinomas developed in these mice, in
response to AOM (8,9). Thus circulating G-Gly/PG can potentially function as co-
carcinogens and increase the risk of crypt-fission/colon-carcinogenesis, while amidated-
gastrins, alone, may be ineffective. Animal studies strongly suggest that hypergastrinemia in
itself may not initiate colon-carcinogenesis, but elevation of non-amidated-gastrins in the
presence of DNA damaging agents enhance colon-carcinogenesis (Fig. 1). Processed forms
of gastrins are generally present in the circulation. However in patients with
hypergastrinemia, due to many different etiologies (including, Zollinger-Ellison (ZE)
syndrome), elevated levels of circulating progastrin are detected (5,6,46,47), which can
potentially increase the risk of tumor development in response to DNA damaging agents.

Importantly, proliferative/anti-apoptotic/co-carcinogenic effects of PG were significantly
enhanced in proximal colons of Tg-mice; distal colons were much less responsive (8–10). In
a recent study, however, proximal growths were not observed in AOM treated Tg mice (11).
While elevated levels of PG may increase the risk of proximal colon-carcinogenesis, insulin-
like growth-factors (IGFs) increase the risk of mid-gut to distal colon-carcinogenesis in
transgenic-mice overexpressing IGF-II (48). Differences in the incidence of proximal vs
distal CRCs have been reported in relation to age, gender, hereditary cancer syndromes (49).
Silencing of mismatched repair (MMR) genes are significantly higher in proximal vs distal
sporadic CRCs (50). Gene expression profiles of right vs left colons are significantly
different during embryonic/post-natal development (51), which may explain differences in
susceptibility for developing proximal vs distal colon-cancers, in response to activation of
specific growth factors/molecular pathways.

Mechanisms mediating proliferative/anti-apoptotic effects of progastrins on
intestinal/colon-cancer cells

Having discovered biological effects of progastrins by the turn of 21st century, the past
decade has been devoted to delineating receptor/signaling mechanisms mediating growth
effects of progastrins.
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Target genes of Gastrins/Progastrins
Using the method of differential display it was discovered that cytochrome-oxygenaseVb
(CoxVb) sub-unit of holoenzyme COX, was specifically up-regulated by autocrine/
endocrine progastrins (52). Cox is the terminal enzyme complex of electron-transfer-chain,
involved in ATP generation (53). Mammalian Cox is composed of three major catalytic
subunits (CoxI-III), encoded by mitochondrial genome. In addition ten smaller regulatory
subunits are encoded by nuclear genome to form the complex Cox-enzyme (53). CoxVb is
up-regulated during hypoxia, relevant to tumorigenesis. Thus significant differences in
expression of specific subunits of Cox-enzyme, as reported in cancer vs benign/normal cells
(discussed in 52), in response to estrogens/growth-factors, such as PG, may help the cells to
meet high energy requirements of rapidly proliferating cells.

It was also discovered that CoxVb binds cytochrome c (52). Down-regulation of gastrin-
gene in colon-cancer cells reduced CoxVb levels, resulting in an influx of cytochrome c into
the cytosol from mitochondria and activation of pro-apoptotic enzymes, caspases 9 and 3
(52). Treatment of Chinese-hamster-ovary-cancer cells with cAMP elevating-agents,
reduced Cox activity and released cytochrome c into the cytosol (54), mimicking the results
with PG. Thus anti-apoptotic effects of endocrine/autocrine PG peptides (37,52), may be
mediated by elevation of CoxVb/ATP associated with loss of cytochrome c release in the
presence of pro-apoptotic agents, such as AOM. Activation of p65NFκB also mediates anti-
apoptotic effects, resulting in hyperproliferation/colon-carcinogenesis of colonic-crypts, as
described below. Many other target genes are up-regulated in response to signaling-
pathways activated by gastrins/progastrins, including c-Myc, ornithine-decarboxylase,
cyclin D1, cyclooxygenase-2 (Cox-2), VEGF, Heparin-binding-EGF, as described
previously (3,55–58).

Intracellular signaling pathways
Pathways mediating proliferative/anti-apoptotic effects of PG/G-Gly, were examined by
treating cells/mouse-models in vitro/in vivo, with the peptides, or by examining colonic-
crypts from wild-type (WT) vs Tg (overexpresing PG) mice. Based on these investigations,
we now know that crosstalk between several signaling-pathways mediates proliferative/anti-
apoptotic effects of PG/G-Gly as diagrammatically presented in Fig. 1. Early on, role of Src-
kinases was investigated. Of the nine Src-family-members, colonic-epithelial-cells/colon-
cancers only express pp60c-Src and pp62c-Yes (discussed in 59). Down-regulation of
pp60c-Src resulted in loss of malignant-potential of colon-cancer cells. Since Src-proteins
are not over-expressed or mutated in colon-cancers, it was concluded that Src-proteins are
probably activated by endogenous mitogen(s). To investigate this possibility, intestinal-
epithelial-cells were stimulated with gastrin/progastrins; the peptides significantly activated
c-Src, but not c-Yes, in the order of PG>G-Gly>G17, similar to their growth potencies (59).
Thus the addition of C and N-terminal amino-acids to G17, increased the biological potency
of PG-peptides Micro-injection with anti-c-Src-Abs, confirmed a role of c-Src in mediating
growth effects of PG/G17 in intestinal-cells (59). Importantly, inhibitory effects of micro-
injecting anti-Src-antibodies, was only observed in response to PG, but not in response to
IGFs or fetal-calf-serum (59). Since down-regulation of gastrin-gene in gastrin-dependent
colon-cancer-cells, attenuated c-Src-kinase activity, it is speculated that autocrine
progastrins may activate Src kinases in colorectal-cancers, imparting a growth potential to
the cells. Since these early findings, cross-talk between several signaling-pathways/
transcription-factors (c-Src/PI3K/Akt/JAKs/STAT3/ERKs/MAPK/NFκB/Wnt/β-catenin/
Notch) have been identified, which may be involved in mediating proliferative/anti-
apoptotic effects of endocrine/autocrine progastrins (3,27,60,61). Some of the more critical
pathways are discussed in more detail below.

Singh et al. Page 4

Curr Colorectal Cancer Rep. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Patients with CRC-tumors, positive for high levels of activated p65NFκB, were reported to
have high levels of circulating PG/IL-8; treatment with cyclooxygenase-2 inhibitors
significantly decreased gastrin-gene expression/NFκB-activation and reduced serum levels
of IL-8/PG (33). These findings suggested an important role of NFκB in mediating PG
effects. NFκB activation was confirmed to be critically required for mediating growth
effects of PG in vitro and in vivo, downstream of p38MAPK/ERKs/IKKα/β activation
(62,63); activation of PI3K/Akt may also play an important role (62).

β-catenin is also activated in response to endocrine/autocrine PG (64,65). Recent findings
suggest that β-catenin activation maybe downstream of NFκB, in-vitro and in-vivo, via
direct inhibition of GSK3β Tyr216 phosphorylation (resulting in reduced activation of
GSK3β) (66). PG-mediated activation of β-catenin results in increased expression of
Jagged-1 (Notch ligand) (65), and several stem-cell-markers (discussed below), amplifying
the role of PG in tumorigenesis (Fig. 1).

Inflammation (due to IBD/obesity) (67,68) and infectious agents such as citrobacter-
rodentium (CR), increase the risk for developing colonic-tumors (69). Significant synergistic
effects of PG and CR infection were measured on hyperproliferation of colonic-crypts in
mice, in relation to up-regulation of ERKs/NFκB/β-catenin (70). Thus growth-factors such
as PG may synergize with infectious/inflammatory agents and further increase the risk of
colon-carcinogenesis (Fig. 1).

Amidated/non-amidated-gastrins apparently bind ferric ions, which may be required for
measuring proliferative effects of progastrins, but not amidated-gastrins (71).

Receptor mechanisms mediating biological effects of PG/G-Gly
Biochemical/pharmacological/physiological evidence strongly suggested that novel receptor
mechanisms, distinct from CCK1R/CCK2R, mediate growth effects of non-amidated-
gastrins (5,6,61,72).

Cell lines, which do not express detectable levels of CCK2R, were responsive to
proliferative/anti-apoptotic effects of progastrins (6,35,38,52,72–74). Unlike anti-apoptotic
effects of PG/G-Gly(26,38,62,63), pro-apoptotic effects of amidated-gastrins, mediated by
wtCCK2R (75,76) have been reported. While proliferative effects of gastrins/progastrins on
colonic-crypts/colon-cancer cells have been reported (as described above), detectable levels
of wtCCK2R have not been measured on these cells (6,77). Elevated amidated-gastrins in
INS-GAS mice had significantly different effects compared to elevated progastrins in hGAS
mice (8,9,75), strongly suggesting that CCK2R do not mediate progastrin effects.

While, amidated-gastrins and cholecystokinin (CCK) bind CCK2R with high affinity, G-
Gly/PG do not (25,62,72). Therefore, in the quest for finding the novel receptor(s) for non-
amidated-gastrins, several biochemical methods were used. CCK2R-independent binding of
progastrin with unknown glycosaminoglycan proteins on colonic-crypt/intestinal-epithelial-
cells was reported (78). Using cross-linking methods, a 36KDa protein with high-affinity for
PG>G-Gly>G17 was identified (79). Using advanced proteomics, it was discovered that
AnnexinA2 represents the novel 36KDa, non-conventional ‘receptor protein’ for
progastrins/gastrins (74). Binding of progastrin with annexinA2 was confirmed by co-
immunoprecipitation and solution binding assays (74). Mesenchymal cells around colonic-
crypts may express CCK2R. Therefore isolated colonic-crypts, free of mesenchymal cells,
were used to confirm binding of PG to ANXA2 on colonic crypt cells of mice
overexpressing progastrin (63). A recent report suggests that CCK2R may be required for
measuring growth effects of PG on colonic-crypts of Tg-mice (11). Reports also suggest that
progastrins may up-regulate expression of CCK2R (13), as previously reported for gastrins
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(80). Since no laboratory has demonstrated binding/co-localization of progastrin with
CCK2R, in vitro or in vivo, it is possible that CCK2R, expressed by mesenchymal cells, may
indirectly mediate growth effects of PG/ANXA2.

AnnexinA2 is a multi-functional protein, which binds acidic phospholipids and actin and is
involved with intracellular trafficking and kinase activation (81). ANXA2 has a C-terminal
core domain and an N-terminal function domain, which binds several ligands with high
affinity, including PG (81). Unlike CCK2R-antibodies, ANXA2-antibodies blocked growth
effects of PG (62). ANXA2 expression was required for measuring growth effects of
autocrine-PG (74). Since AnnexinA2-Antibodies attenuated growth effects of PG, it
suggested that PG perhaps binds cell-surface-associated AnnexinA2 (CS-ANXA2). Presence
of CS-ANXA2 has been reported on many cancer cells (discussed in 81–83). Functional
significance of CS-ANXA2 in proliferation and metastasis of cancer-cells is becoming
increasingly evident (discussed in 83). CS-ANXA2 was recently confirmed on intestinal/
colon-cancer/HEK-293 cells, all responsive to growth effects of PG (83–85). Importantly,
PG in association with ANXA2 was rapidly internalized via clathrin-mediated-endocytosis
(CME) (83,84), and it was discovered that internalization of ANXA2/PG complexes was
required for measuring PG mediated activation of signaling-kinases (83). TM601, a
synthetic peptide which binds CS-ANXA2 on endothelial and tumor cells, is also
internalized and promotes neo-angiogenesis (86). PG induces hyperproliferation of proximal
colonic-crypts, positive for internalized ANXA2/PG complexes; non-responsive distal-
crypts were negative for internalized ANXA2/PG (63), suggesting distal-crypt cells may
lack CS-ANXA2, thus resulting in the differential effects of PG on proximal vs distal
colons.

Since ANXA2 molecules lack transmembrane domain(s), mechanisms mediating
externalization/internalization of ANXA2/PG remain speculative. ANXA2 may be anchored
to the surface of cell membranes by ANXA2-receptors (R) (87), which is essential for
metastasis of prostate cancer cells (discussed in 83). Exosomes, secreted by cancer cells,
contain Annexins, and may represent the source of CS-ANXA2 and soluble ANXA2
measured in the conditioned medium and serum of cancer cells/patients (discussed in 83).
Exosomal ANXA2 was recently reported to be internalized by raft-mediated pathways in
cancer cells and traffic to endosomes (88), providing strong evidence that extracellular-
ANXA2 can be internalized in cells by many different pathways. We now know that PG
binding of CS-ANXA2 also internalizes CS-ANXA2 via CME (83).

CME of many peptide/receptor complexes is required for activation of downstream
signaling pathways, including MAPK/NFκB (discussed in 83). Effective signal transduction
depends on internalization, as opposed to short term signaling from cell surface (discussed
in 83). Targeting activated receptors to clathrin-dependent-endocytosis, rather than non-
clathrin-endocytosis, was reported to be necessary for sustained signaling and growth
response (discussed in 83). Since sustained activation of NFκB, in response to PG, was
required for measuring growth effects of PG on pancreatic-cancer-cells (62), it appears
likely that CME of PG may mediate the sustained activation of NFκB (Fig. 1).

Effect of progastrins on normal/cancer stem-cell-populations
Several cancer/normal stem-cell-markers, including CD44/CD133/Lgr5 are target genes of
β-catenin/Tcf/Lef transcriptional-factors (89,90). Since β-catenin is activated in response to
progastrins, a possible elevation of stem-cell-markers was examined in colon-cancer cells
and colonic-crypts of mice in response to autocrine/endocrine progastrins (41,84,85).
Putative stem-cell-markers, CD44, DCLK1, Lgr5, CD133 were up-regulated by endocrine
progastrins, in vitro and in vivo (11,13,41,84,85). An important role of CS-ANXA2 in PG-
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mediated elevation of stem-cell-markers was confirmed in vitro and in vivo (84). PG/G-Gly
was co-expressed with CD133/CD44/Lgr5 in colonic-tumors from patients, suggesting
stem-cell populations may express PG-peptides (41). Down-regulation of gastrin-gene
expression in DLD1 cells significantly reduced activation of Akt/STAT3 and expression of
CD133, resulting in loss of tumorigenic potential of the cells in vivo (41). As described
below, overexpression of gastrin-gene/PG in HEK-293 cells (HEKmGAS-cells) resulted in
significantly increasing % stem-cell populations co-expressing DCLK1/CD44/CS-ANXA2,
in association with increased expression of MMPs, compared to that in control HEK-C cells,
which may have contributed to imparting tumorigenic/metastatic potential to HEKmGAS
cells in vivo and in the formation of amorphous-spheroids in vitro (85). Almost all
CD44(+)HEKmGAS cells, growing either as 2D-cultures/3D-spheroids or xenografts co-
expressed CS-ANXA2, and a large % co-expressed DCLK1 (85). It is thus possible that
CD44/CS-ANXA2 in PG expressing stem-cells (positive for DCLK1) facilitates growth/
metastasis of transformed cells. Thus, down-regulation of either PG/ANXA2/DCLK1/CD44
may attenuate proliferative/tumorigenic/metastatic potential of transformed/cancer cells.

It is becoming increasingly evident that targeting cancer-stem-cells (CSCs)/tumor-initiating-
cells (TICs) may prevent relapse of the cancer disease. Selectively targeting CSCs/TICs is
being investigated, but this field is as yet in its infancy. It is believed that small populations
of neoplastic cells in a tumor are capable of self-renewal and re-population, and thus
developing strategies for targeting CSCs is clinically significant. It is believed that CSCs
share many features with adult tissue stem-cells, including self-renewal and differentiation
(91); however unlike normal stem-cells, CSCs lose the ability to produce multi-lineage
differentiated cells. Investigations so far suggest that progastrin mediated signaling
pathways up-regulate expression of stem-cell-markers within normal colonic-crypts and
transformed epithelial cells (11,41,84,85), giving further credence to the concept that CSCs
arise from adult tissue stem-cells (91). Thus preventing an increase in the expression of
stem-cell-markers/stem-cell-populations in adult tissues may represent an ideal method of
preventing progression of cancer disease.

Gastrin-gene expression is increased by molecular pathways associated
with colon carcinogenesis

Gastrin-gene expression is up-regulated at the transcriptional level in response to growth-
factors, such as EGF, TRH, and VIP in transformed endocrine (pituitary/insulinoma) cell
lines (92,93). It is likely that gastrin-gene is de-repressed in transformed endocrine cells and
transcription-factors involved in up-regulating gastrin expression in normal antral-G cells
are also functional in transformed endocrine cells. In gastrointestinal mucosal cells,
expression of peptide-hormones (such as gastrin) is normally silenced in the epithelial cells;
peptide-hormones are expressed only in neuroendocrine cells. Mechanism(s) that allow de-
repression of gastrin-gene during colon-carcinogenesis in transformed colonic-epithelial-
cells remain unknown. But once the gastrin-gene has been de-repressed, several growth-
factors and signaling-pathways have been shown to increase gastrin-gene expression
resulting in the expression and secretion of progastrins in colonic-tumors. Two signaling
pathways, constitutively up-regulated during colon-carcinogenesis, as a result of either
activating (Kras, β-catenin) or loss of function (Apc) mutations, can potentially up-regulate
gastrin-gene expression (13,14), providing the molecular basis for the observed increase in
gastrin-gene expression during colon-carcinogenesis.

Constitutive over-expression of gastrin-gene/PG in embryonic cells, HEK-293, resulted in
transforming the cells and imparting tumorigenic/metastatic potential to the cells (85),
suggesting that over-expression of gastrin-gene, itself, can function as an oncogene in
specific cell lineages (such as stem-cells/endocrine-cells) which may explain the formation
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of gastric carcinoid tumors in patients with ZE syndrome. It remains to be determined if
formation of a subset of gastrin-dependent colonic-tumors, is perhaps due to constitutive
over-expression of gastrin-gene in these tumors.

Prevention of autocrine/endocrine/co-carcinogenic effects of progastrins,
using dietary agents

There is a large body of evidence demonstrating that many natural dietary products have
significant chemopreventive effects, which lends itself to a safe approach for developing
preventative and/or therapeutic strategies (94). Plant phenolics (curcumin) significantly
reduces Apc-associated intestinal-carcinogenesis in Min/+ mice while flavonoids (quercetin)
are ineffective (95). Curcumin (diferuloylmethane; 1,7-bis-(4-hydroxy-3-
methoxyphenyl)-1,6-heptadiene-3,5-dione) is the major pigment in turmeric powder and has
anti-inflammatory/anti-oxidant properties (94,96). Curcumin inhibits chemically induced
carcinogenesis during initiation and/or post-initiation phases (97). Chemopreventative
activity of curcumin was also demonstrated during promotion/progression phases of colon-
carcinogenesis (98). Activation of NFκB is a crucial event both in inflammation and cancer
(99). Inhibition of NFκB plays an important role in curcumin induced apoptosis (94).
Inhibitory effects of curcumin are mediated through IκB/NFκB pathway in intestinal-cells
and colon-cancer cells (100,101). Curcumin inhibits cell migration of human colon-cancer-
cells through inhibition of NFκB/p65, COX-2 and MMP-2 expression. Constitutive
activation of NFκB has been observed in colorectal-cancer-cells but not in normal-
colorectal-epithelial cells (102). In summary, curcumin suppresses NFκB activation and
down-regulates expression of NFκB regulated gene products involved in survival (Bcl2,
Bcl-xL, XIAP and cIAP-1), proliferation (COX2, cyclin D1 and c-myc), angiogenesis
(VEGF and IL-8), invasion (MMP-9) and metastasis (ICAM-1, VCAM-1 and ELAM-1)
(102). Since NFκB activation is critically required for mediating PG effects (62,63), it was
not surprising that curcumin significantly inhibited growth effects of autocrine-PG in
IEC-18 (100), and HCT-116 (103).

Inhibitory effects of curcumin were compared on intestinal-epithelial-cells, stably
overexpressing either PG or IGF-II (100). IGF-II-expressing-clones were resistant to
apoptotic effects of curcumin, while PG-expressing-clones demonstrated apoptotic death
(100). Overexpression of Hsp70 (104), BCL-XL and ku70 (105) reduces inhibitory effects
of curcumin. Curcumin was less effective against growth of HCT-116 cells expressing
autocrine-PG versus HCT-116 cells down-regulated for PG-expression (100). However,
IEC-18 cells, overexpressing IGF-II, were re-sensitized to pro-apoptotic effects of curcumin
in cells inhibited for p38MAPK activation (100), suggesting that additional inhibitory
strategies can be used to augment the non-toxic inhibitory effects of dietary agents.

Curcumin inhibits ligand-induced activation of EGF (106). Treatment with curcumin
+oxaliplatin significantly inhibits growth of colon-cancer-cells, associated with decreased
expression and activation of EGFR/HER-2/HER-3 (107). Since PG/gastrin-peptides up-
regulate EGFR (6), it is possible that partial growth effects of PG are indirectly mediated via
up-regulation of EGFR. Potent inhibitory effects of curcumin on PG-stimulated growth may
therefore be additionally mediated via inhibition of EGFR-mediated pathways. Curcumin
can potentially regulate physical properties of cell-membranes (108), which may account for
the loss of ligand-activated EGFR signaling (106) and inhibition of PG-binding/
internalization to CS-ANXA2 (unpublished data from our lab); however, curcumin did not
inhibit binding of IGFs to IGF-I-R. Thus curcumin may inhibit interaction of PG/CS-
ANXA2, which may additionally contribute to curcumin-mediated attenuation of elevated
pp38MAPK, in response to PG, but not IGF-II (100).
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Diagnostic/therapeutic implications of a role of autocrine/endocrine
progastrins on colon-carcinogenesis

Since a majority of colonic-tumors express autocrine-gastrins, down-regulating gastrin-gene
expression with either nanoparticles, loaded with siRNA against gastrin-gene, or by
inducing anti-sense gastrin-mRNA expression with the help of viral-vectors ( for gene-
therapy) can be used in patients positive for gastrin-dependent (addicted) colon-cancers. A
patent describing gene therapy for targeting autocrine gastrins was issued (39), but has not
progressed to clinical trials. Since patients positive for CRC secrete progastrins into the
circulation, and high levels of amidated-gastrins may also be growth-promoting factors, a
vaccine (G17DT) was developed for targeting gastrins. G17DT-conjugate contained nine
amino-acids from N-terminal end of G-17, conjugated to diphtheria-toxoid. In animal
models G17DT reduced growth and metastatic spread of several GI tumors (reviewed in 6).
However, even though G17DT vaccinations were relatively safe and generated high titers of
G17-antibodies, the vaccine did not augment the effects of chemotherapy in patients with
advanced GI-cancers, in phase-II trials (109). A vaccine to target full length progastrins was
recently developed (42), and was 100% effective in attenuating growth-promoting-effects of
autocrine/paracrine progastrins in animal models (110); however the vaccine/antibody
approach for targeting endocrine/autocrine progastrins has not reached clinical-trials as yet.
Radio-labeled peptide-ligands for membrane-receptors are being developed for diagnostic/
therapeutic purposes. Since CS-ANXA2 binds PG- peptides with high-affinity, labeled-PG-
peptide (FAM-PG26) was used to determine if it homes to primary/metastatic tumors, in
vivo, in mouse-models. Accumulation of FAM-PG26 was localized to focal areas of
primary/metastatic tumors, which reflects overexpression of CS-ANXA2 at these sites,
confirmed by ANXA2 staining (85). Thus labeled/conjugated molecules with high-affinity
for CS-ANXA2 may be useful for diagnosing/treating CRC and other epithelial cancers,
positive for elevated levels of CS-ANXA2. Serum/tumor levels of progastrin can also be
used as prognostic markers, as recently reported (20).

Rationally designed personalized strategies are required for treating cancer. Results
described above heighten the need to examine inhibitory efficacy of dietary-agents, in the
presence of physiologically/pathologically relevant endocrine/autocrine growth-factors.
Patients positive for high levels of autocrine-growth-factors, are likely to be less responsive
to inhibitory effects of curcumin; tumors positive for expression of autocrine growth-factors
may require combinatorial treatments for reducing upstream signaling pathways, including
MAPK/NFκB/β-catenin/Notch, for reasons described above. Recent studies also suggest
that curcumin can potentially inhibit growth of cancer-stem-cell-populations (111,112). In
preliminary studies, we measured inhibitory effects of curcumin on cancer-stem-cell-
populations, expressing DCLK1 and CD44 (103), strongly supporting this possibility.

Thus in order to capitalize on our growing understanding of mechanisms by which
autocrine/endocrine progastrins increase the risk of colon-carcinogenesis, and increase the
tumorigenic/metastatic potential of colonic-tumors, several strategies can be developed to
either, 1) target gastrin-gene-expression by cancer-cells, 2) target PG-peptides using
antigen-specific vaccinations, 3) develop tools to inhibit binding of progastrins with CS-
ANXA2, 4) develop toxic-ligands for binding CS-ANXA2 to specifically target colonic-
tumors, 5) develop combinatorial treatment strategies with dietary-agents and/or inhibitors
of critical signaling molecules.

Conclusions
Based on the investigations within the past 2 decades, several important, paradigm shifting
concepts have taken root in the field of gastrins and colon-cancer: 1) non-amidated-gastrins
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are biologically active and exert proliferative/anti-apoptotic/hyperproliferative effects on
colonic-epithelia-cells; 2) colonic-growths increasingly express gastrin-gene as the disease
progresses through hyperplasia-adenoma-carcinoma sequence; 3) colonic-tumors mainly
express full-length progastrins and to a lesser extract G-Gly, with a small percentage
expressing amidated-gastrins; 4) a subset of colonic-tumors may be addicted to autocrine-
progastrins; 5) elevated levels of non-amidated, but not amidated, gastrins may increase the
risk of proximal colon-carcinogenesis via specific molecular pathways, in patients positive
for other risk factors. Additional concepts, more recently introduced include: 1) endocytosis
of progastrins, bound to CS-ANXA2, maybe required for measuring biological effects of
PG-peptides; 2) several oncogenic pathways mediate growth/co-carcinogenic effects of
progastrins; 3) colon-cancers expressing high levels of progastrins/CS-ANXA2 may be at a
higher risk for developing metastatic growths; 3) constitutive over-expression of progastrins
may transform stem-cells; 4) transformed stem-cells, as in colonic-tumors, may co-express
CS-ANXA2/PG with DCLK1/CD133/CD44; 5) progastrins may augment the risk of colon-
carcinogenesis in patients who are also positive for other risk factors such as obesity and
inflammatory diseases.
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Abbreviations

ACF Aberrant-crypt-foci

Ad adenomas

AdCA adenocarcinomas

CS-ANXA2 Cell-Surface-AnnexinA2

CD44 cluster-of-differentiation-44

CD133 cluster-of-differentiation-133

CIMP CpG-Island-Methylator-Phenotype

CIN chromosomal-instability

CRC colorectal-cancer

CoxVb cytochrome c oxidase subunit Vb

DCLK1 Doublecortin-Ca+2/Calmodulin-Kinase-like-protein

ERKs extracellular-signal-regulated kinases

Hp-polyps hyperplastic-polyps

JAK1/2 Janus-Kinase

Lgr5 leucine-rich-repeat-containing-G-protein-coupled-receptor-5

MSI microsatellite-instability

NFκB nuclear-factor-kappa-B

p38MAPK p38-mitogen-activated-protein-kinase

PG/G-Gly Progastrin/Glycine-extended-gastrin

PI3K Phosphoinositide-3-Kinase
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cSrc-kinase Rous Sarcoma viral gene encoded kinase

STAT3 Signal-transducer-and-activator-of-transcription-3
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Figure 1. Hypothetical Model of Molecular Pathways Associated with Development of Sporadic
Hyperprolifative/Dysplastic/Adenomatous growths in the Colons: Role of Endocrine/Autocrine
Progastrins
athways 1–3 represent genetic/epigenetic mechanisms believed to be associated with the
development of sporadic colonic growths/tumors in humans and rodent models of
investigation (reviewed in 17). At least three sub-types of sporadic Adenomas have been
described, based on phenotype and associated genotype (in terms of MSI/CIMP/CIN
(aneuploidy)) (reviewed in 17). Many of these genetic/epigenetic changes, associated with
pathways 1–3, can potentially increase the expression of autocrine progastrins (PG) in the
colonic growths and serum of patients with CRCs, as described in the text. In addition a 4th

pathway, termed growth factor/cytokine pathway, can significantly increase the risk for
developing sporadic colonic growths, in response to DNA damaging agents and/or the
indicated genetic/epigenetic changes, leading perhaps to more aggressive growths in a
shorter time-frame. Risk factors, believed to be associated with the 4th pathway are
indicated and may include: 1) elevated levels of endocrine/paracrine progastrins, as in
Hypergastrenemic patients; 2) elevated cytokines/growth factors associated with
inflammation/obesity/specific infections, as discussed in the text. The 4th pathway,
associated with a sustained increase in the associated risk factors, likely results in sustained
elevation of the indicated intracellular-kinases/transcription-factors, resulting in
hyperproliferation of the affected colonic-crypts and possible transformation of the colonic-
stem-cells, significantly increasing the risk for developing dysplastic/neoplastic growths.
Abbreviations of key words used in here are described in the text. The role of specific
molecules/pathways presented in here, were derived from a large number of reports in
literature, referred to in the text.
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