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Abstract
Predicting outcomes is a critical ability of humans and animals. The dopamine reward prediction
error hypothesis, the driving force behind the recent progress in neural “value-based” decision
making, states that dopamine activity encodes the signals for learning in order to predict a reward,
that is, the difference between the actual and predicted reward, called the reward prediction error.
However, this hypothesis and its underlying assumptions limit the prediction and its error as
reactively triggered by momentary environmental events. Reviewing the assumptions and some of
the latest findings, we suggest that the internal state representation is learned to reflect the
environmental reward structure, and we propose a new hypothesis – the dopamine reward
structural learning hypothesis – in which dopamine activity encodes multiplex signals for learning
in order to represent reward structure in the internal state, leading to better reward prediction.
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1. Introduction
Outcome prediction, along with action selection based on the prediction, underlies motivated
and reward-oriented behavior or value-based decision making (Hikosaka et al. 2006;
Montague et al. 2006; Rangel et al. 2008; Schultz 1998). To maximize the gain of outcomes,
one should make value-based decisions, not only aiming for the immediate outcome but
rather making a balance of outcome predictions between the immediate and temporally
distant future. One should also be able to learn appropriate value-based decisions through
experience in order to behave adaptively to different circumstances. Finally, one should
generate decisions based on the information that is represented in the input (state
representation), and this final aspect is the focus of this article.
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The reinforcement learning (RL) framework, and temporal difference (TD) learning in
particular, can offer a quantitative solution for this balancing and learning. This
characteristic has made the theory influential in the recent expansion in our understanding of
the value-based decision making process and the underlying neural mechanisms (Montague
et al. 1996; Schultz et al. 1997). RL was originally developed in mathematical psychology
and operation research (Sutton and Barto 1990) and remains an active research area in
computer science and machine learning (Sutton and Barto 1998). The intrinsic strength of
RL theory is its clear formulation of the issues mentioned above, which can stand on its own
with its mathematically defined elements, even without a relationship to any physical
entities. However, it is not its intrinsic strength but its clear set of assumptions that made RL
influential in the field of neural value-based decision making. These assumptions made it
possible to map between the well-defined elements of RL and the underlying neural
substrates, thereby allowing us to understand the functions of neural activity and the roles of
neural circuits under this theory. A marked example is an ingenious hypothesis about
dopamine phasic activity as a learning signal for TD learning (called TD error), which is the
strongest example of mapping to date, and is thus a critical driving force behind the progress
in this field (Barto 1994; Houk et al. 1994; Montague et al. 1996; Schultz et al. 1997).

The latest findings from the vanguard of this field, however, have begun to suggest the need
for a critical revision of the theory, which is related to the underlying assumptions that map
RL to neural substrates and requires a reconsideration of state representation. After
providing a brief sketch of RL theory and its assumptions, we first clarify the reward
prediction and error of the hypothesis. Using experimental and computational findings on
dopamine activity as a primary example, we discuss that the prediction and associated action
selection can be significantly enhanced if the structure of rewards are encoded in the state
representation for those functions. We propose a new hypothesis in which dopamine activity
encodes multiplexed learning signals, representing reward structure and leading to improved
reward prediction.

2. Background: the reinforcement learning framework
To understand the intrinsic strength of RL, or TD learning, it is useful to first present its
mathematical ingredients (Sutton and Barto 1998) but in an intuitive manner and separately
from the assumptions used to map RL to neural substrates. In the TD framework, an abstract
entity is first considered that receives an input and then produces an output; this input-output
pair causes a transition to the next input, deterministically or probabilistically, and the entity
produces an output when given the next input, so that the process continues. Importantly, at
each transition, the entity receives a real number, or a numeric, which the entity prefers to be
larger. The entity’s primary interest is to balance, improve, and ideally maximize the gain of
the numeric over the transitions. These are the key concepts of the framework, which can be
defined as definite mathematical notions once their definitions, assumptions, and constraints
are refined, which we do not attempt here.

The numeric prediction construct and its learning signal are at the heart of the formulation,
and they are called the value function and TD error, respectively. The value function defines
a solution for the balancing problem, while TD error provides a means for learning ability.
The value function solves the balancing problem by summing the numeric over the
transitions with the so-called discount factor and thereby discounting the future numeric
more strongly; the value of an input, ei, is given by V(ei) = ri + γri+1 +γ2ri+2 + …, where rj
refers to the numeric in transition at input ej and γ is the discount factor, where 0 ≤γ ≤ 1.
Even if the value function is defined as such, its actual value is unknown, and it is thus
learned in the framework as an approximate value. This learning takes advantage of the
function’s specific form; once it is performed well, V (ei) = ri + γ V (ei+1) should hold on

Nakahara and Hikosaka Page 2

Neurosci Res. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



average, and it is thus not well established if both ends of the equation differ. Therefore, it
uses the difference as a learning signal or TD error, δ (ei) = ri + γ V(ei+1)− V (ei), as the
name indicates (i.e., the temporal difference of values between two consecutive inputs). It
adjusts the value in the same direction as the error (either positively or negatively) and also
proportional to the magnitude of the error. Using TD error, the entity similarly solves
another important issue: learning about output selection or which output to choose with an
input. Although there are other types, the formulation sketched here is the most basic type
used to solve numeric prediction and output selection in parallel by learning. The majority of
studies adopt a linear form for the two functions, which we also follow. By way of an
example, the linear-form value function is a multiplication of a vector representation of a
given input with a weight vector, and it is improved during learning by changing the weight
vector in reference to the input vector.

A simple example of this formulation is that the entity can be regarded as an agent (human
or animal) in an environment. The input is a state of the environment and is thus called state;
the output is a way for the agent to influence the environment and is thus called action; and
the output selection is called action selection. The numeric is an affectively important
outcome of the agent, such as reward, and the value function corresponds to reward
prediction. Although this example is certainly useful, as it is a major origin of the
formulation and often used in the literature (as it is below), understanding the abstract notion
is crucial (Sutton and Barto 1998). In particular, this example is misleading if it is taken to
imply that the TD learning framework demands that the entity must be a “whole” agent, so
that the state of the environment must be the input to the entity. Instead, the abstract notion
defines only that a given entity should implement functions of TD learning, or the reward
prediction and action selection, given its inputs. Specifically, an entity can be a part of the
agent; when considering that TD learning is a part of brain function, it is more appropriate to
consider that the entity is a functional part of the brain, so that the input to the entity should
be based not only on the input from the environment, but also on the information generated
internally in the brain (Singh et al. 2005).

3. Versatility and limitations of the reward prediction error hypothesis
The hypothesis that dopamine (DA) phasic activity corresponds to TD error, called the
reward prediction error hypothesis, has facilitated transparent mapping between the
computational notions of TD and the underlying neural substrates (Barto 1994; Houk et al.
1994; Montague et al. 1996; Schultz et al. 1997). This transparent mapping has helped to
drive the field’s progress since the proposal of this hypothesis, and it has been observed as
the correspondence between “canonical” DA responses and the TD error of the hypothesis
(Schultz et al. 1997). DA exhibits phasic activity in response to the delivery of an
unexpected reward. Once the pair of a reward-predicting cue (CS) and reward (US) has been
presented with sufficient repetition (as in a Pavlovian conditioning task), DA displays phasic
activity to the CS but ceases to respond to the US; if the US is omitted, DA demonstrates a
suppressive response at the time of US omission. Furthermore, several other notable
characteristics of DA have made the hypothesis more plausible and attractive (Schultz
1998), only a few of which are now mentioned. DA is known to act as a modulator of
synaptic plasticity, thus being attractive as a learning signal (Reynolds and Wickens 2002).
A major proportion of DA neurons originating from the midbrain, especially the ventral
tegmental area (VTA) and substantia nigra pars compacta (SNc), have massive, diffuse
projections not only to the basal ganglia (e.g., striatum and nucleus accumbens) but also to
the overall cerebral cortex; such a projection pattern seems ideal to concordantly modulate
the functions of different areas in TD learning. Given the available experimental evidence
when the hypothesis was proposed, DA phasic activity was considered to be largely
homogeneous in the VTA and SNc, except for some minor variability in the responses
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(“noisy” responses). Thus, assigning an important, single role to DA made sense, and TD
error is quite attractive as a unifying theory, especially given the well-documented but still
sought-after roles of DA in motivated and addictive behaviors.

Two assumptions of the hypothesis enabled transparent mapping for clarity (Schultz et al.
1997). The first is a state assumption. The hypothesis practically uses the agent-environment
example, described in the previous section, as the basis for its construction. Accordingly, the
state is taken to be the equivalent of a momentary external event or the event’s sensory input
to the agent (Fig. 1A); in the CS-US case described above, the CS itself is a state. The
second is a time assumption. In the original, mathematical setting, although there are
transitions between the inputs, they are, in principle, not related to the physical passage of
time (Nakahara and Kaveri 2010); however, in the real world, there are often intervals
between external events. For example, after the brief presentation of a CS, a time delay may
occur before the next clear external event or US. In the hypothesis, time is divided into small
constant time bins (e.g., 200-ms bins) and each bin corresponds to each state. For bins with
clear external events, the states correspond to the events. For bins with no external events,
state representations are filled in, which are assumed to be generated by the most recent past
event as a time trace (called stimulus-time compound representation) (Sutton and Barto
1990). For example, it is the time assumption that allows the TD error of the hypothesis to
indicate a suppressive response to an unexpected reward omission (as the TD error of the bin
changes with no reward occurrence), similarly to the canonical DA response in that case.

Together with these assumptions, the overall setting of the TD learning framework,
reviewed in the previous section, determines the two crucial characteristics of reward
prediction and its error postulated by the hypothesis (Fig. 1A). First, the prediction and error
are produced reactively to external events. In essence, external events are the states of the
TD in the hypothesis. Therefore, the reward prediction of the hypothesis depends directly on
the most recent external event, or indirectly via a time trace triggered by the event (before
the next external event happens). As both reward prediction and action selection are
computed as soon as the state arrives (e.g., multiplication between the state and weight
vectors in the linear form), their outputs are produced reactively to the momentary external
event (or the momentary time trace of the event). The TD error of the hypothesis is also
produced reactively to such states because it is computed by using the actual outcome and
the values of the “current” and “next” states only after observing the “next” state.

Second, the predictive nature of reward prediction and error (and also action selection) is
limited in a specific way under the hypothesis. Generally, in TD learning, while reward
prediction and action selection acquire a predictive nature via learning with TD error, TD
error sets a limit on the prospective information that reward prediction and action selection
can access during learning, and the predictive nature of TD error comes from being
generated as the temporal difference of reward predictions or value function that is defined
to sum outcomes over transitions. As the hypothesis assumes external events to be states of
the TD, the state representation limits the information available as only that contained in the
momentary external event (or momentary time trace). Consequently, the reward prediction
of the hypothesis could be learned and generated to an extent that is based on the
information provided by the momentary external event, accordingly inducing a specific TD
error.

Thus, the essential elements of the hypothesis include the fact that the states are external
events, and the corresponding reward prediction and error. These are frequently regarded in
the field as a default value-based decision-making process. Under the hypothesis, DA
activity is the specific reward prediction error, i.e., the signal for learning the reward
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prediction of the default process. Moreover, in the literature, further neural functions are
often investigated or discussed as additional components to the default process.

Therefore, the proposition that DA activity encodes the error of the default process needs to
be critically examined. As the default process is defined by the choice of the states as
external events, a representational question is central to this examination. The reward
prediction error hypothesis practically abandons this question, as it equates momentary
external events (or their time traces) with “internal state representation”, which serves as
input for generating reward prediction and action selection (Fig. 1A).

4. Reward structure useful for prediction: does dopamine activity reflect
reward structure?

Do DA neurons really encode the specific reward prediction error (the specific TD error) of
the reward prediction error hypothesis? In fact, we found that DA activity can encode the
reward prediction error better than the specific error of the hypothesis (Nakahara et al.
2004). Critically, this prediction error encoded by DA activity is the error that could be
generated only when the structure of rewards was acquired in internal state representation.

The study aimed to address whether DA activity, a putative reward prediction error signal,
could access information beyond that of momentary external events (or their time traces). In
the study, an instructed saccade task was used in which correct saccades to instructed cues
were accompanied with different outcomes (in short, reward or no reward). A pseudo-
random procedure was used to determine a sequence of task trials; the rewarded and non-
rewarded cues were randomly permuted within each sub-block of trials so that the pre-
determined, average probability of the rewarded and non-rewarded cues was maintained
within a pre-fixed number of trials, or a block of trials. This procedure induced a reward
probability that was embedded in the past sequence of outcomes over trials. This history-
dependent reward probability changed over trials, and it was a more precise measure for the
prediction of coming cues (or outcomes) in the next trial than the average reward
probability. The reward prediction and TD error by the reward prediction error hypothesis
would correspond to those produced using the average reward probability. On the contrary,
we found that the phasic response of DA to the instruction cue matched the TD error using
the history-dependent reward probability, which could be modeled by adding the
representation of the sequential reward structure as internal states to the TD learning
framework. The DA response emerged only after extensive experience with the task.
Additionally, the findings were somewhat concordant with the findings of other studies
(Bayer and Glimcher 2005; Bromberg-Martin et al. 2010b; Enomoto et al. 2011; Satoh et al.
2003). Overall, they demonstrated that DA activity can encode a better TD error, as if an
appropriate state representation is acquired beyond the external events and then used for
reward prediction.

Indeed, similarly to the case described above, reward prediction and/or action selection can
be improved in many situations by a better state representation than those used in the value-
based decisions of the reward prediction error hypothesis. The above case is only an
example of the situations in which one should adjust the reward prediction considering the
sequence of past outcomes, rather than just to try and learn the reward expectation given the
momentary external cue; for example, in foraging, one should adjust the expectation as one
acquires fruit from the same tree (Hayden et al. 2011). More generally, we can consider a
classification of such situations based on what types of information may be useful to be
included in the state representation (Table 1). First, configurational information within a
momentary event is potentially beneficial, compared to cases in which the event is encoded
plainly without representing the configuration. Different coordinate-specific representations
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may lead to different learning speeds (Hikosaka et al. 1999; Nakahara et al. 2001). Such
within-the-moment information could also exist in other factors. Encoding the relationship
among rewards in the state is potentially useful (Acuna and Schrater 2010; Gershman and
Niv 2010; Green et al. 2010). The action could also be represented at different levels, e.g.,
effector-independent versus effector-specific, and this would result in different learning
speeds or differently converging selection (Bapi et al. 2006; Gershman et al. 2009; Nakahara
et al. 2001; Palminteri et al. 2009). Second, useful information could also exist in the
temporal sequence of these factors. As described above, DA activity or TD error could
benefit from encoding information from past outcomes into the state (Nakahara et al. 2004).
Similarly, encoding the information of a sequence or any combination of external events,
actions, and outcomes, in some ways or even partially, can be beneficial for improving
reward predictions (Kolling et al. 2012). Action selection can similarly benefit; an action
may be selected more accurately by taking into account a series of events before or even
after the momentary external event (Hikosaka et al. 1999; Nakahara et al. 2001), e.g.,
sequence-dependent action or motor control, possibly using different coordinate-specific
representations.

5. Dopamine activity for learning the reward structure
We thus suggest that learning the reward structure is indispensable for learning the reward
prediction and propose a new hypothesis, termed the dopamine reward structural learning
hypothesis (Fig. 1B), in which DA activity encodes multiplexed learning signals. These
signals include those for learning the structure of a reward in internal state representation
(“representation learning”; gray dashed arrow in Fig. 1B), together with signals for learning
to predict the reward (“prediction learning”; black dashed arrow in Fig. 1B), as signals of an
improved reward prediction error supported by representation learning.

Several findings support the view that a variety of DA activities is helpful for learning the
reward structure. First, DA activity modulates the cortical re-representation of external
events, or re-mapping of auditory cues (Bao et al. 2001), and, more broadly, is considered to
play a major role in reward-driven perceptual learning (Seitz and Dinse 2007; Zacks et al.
2011). Second, a subset of DA activity can respond in an excitatory manner to aversive
stimuli (CS and/or US) in a similar way to appetitive stimuli, which is opposite to the
presumably inhibitory response posited by the reward prediction error hypothesis. This
observation was noted in behaving awake monkeys (Joshua et al. 2009; Matsumoto and
Hikosaka 2009) and in rodents (Brischoux et al. 2009; Cohen et al. 2012). Although further
delineation is required (Frank and Surmeier 2009; Glimcher 2011), such DA activity may
encode the saliency signal (Bromberg-Martin et al. 2010b; Matsumoto and Hikosaka 2009),
which is important for knowing what information is crucial, even though it does not code for
the “direction” of importance (i.e., being positive or negative for appetitive and aversive
stimuli, respectively, as the TD error does). Third, a subset of DA activity can also encode
signals that alert or initiate a sequence of external events that are evoked by an initiating
external event or aligned with a self-initiated motor act (Bromberg-Martin et al. 2010b;
Costa 2011; Redgrave and Gurney 2006). A group of DA activities is hypothesized to
contain a novelty signal or signals for exploration (Daw et al. 2005; Kakade and Dayan
2002). Indeed, DA activity is also shown to encode “uncertainty” signals (Fiorillo et al.
2003) or “information-seeking” signals (Bromberg-Martin and Hikosaka 2009). These
signals can be important for forming a representation that reflects a useful portion of
external events. Fourth, a subset of DA activity has been shown to add information on the
action choice or task structure to the reward prediction error (Morris et al. 2006; Roesch et
al. 2007), suggesting that an interplay between representation learning and prediction
learning is reflected in DA activity. Fifth, even DA tonic activity was found to be modulated
by information on this relationship within a block of trials and even between blocks
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(Bromberg-Martin et al. 2010a), further supporting the reflection of temporal structure
information in DA activity. Thus, these findings indicate that DA activity is not quite as
homogeneous as originally thought or implicitly presumed in the reward prediction error
hypothesis, but it is rather heterogeneous. Notably, all of these DA activities described
above can assist representation learning in principle.

Representation learning yields better prediction learning than that described in the reward
prediction error hypothesis. Once representation learning enriches the internal state
representation with information on the reward structure, reward prediction and action
selection can be significantly improved, even if they are generated reactively. The reward
prediction error is also naturally improved, as it uses better reward predictions (Nakahara et
al. 2004). Additionally, the error of the reward structural learning hypothesis can acquire a
proactive nature because it can reflect changes in internal states, or temporal evolution of
internal states, which can be distinct from the external events (Nakahara et al. 2001). This
feature also applies to reward prediction and action selection. Even with the same external
event, differences in the internal state could allow those functions to produce different
outputs (Doya 1999; Nakahara et al. 2001). During time delays with no explicit external
events, the internal state could allow those functions to be evoked before the actual
occurrence of an external event, leading to anticipatory reward prediction and action.

Representation learning is multi-faceted: it works to synthesize useful information from
different sources in order to support and improve reward prediction. Sequential information,
or information on task structure, can, in principle, be utilized in two ways (Hikosaka et al.
2006; Nakahara et al. 2004; Ribas-Fernandes et al. 2011): retrospectively and prospectively
with respect to a momentary external event. In the retrospective scheme, the internal state
should compactly represent information on preceding event sequences in addition to the
event information via learning. In the prospective scheme, it should include the information
on future event sequences that have not yet occurred. This can be performed either as the
direct learning of future events in the representation (Dayan 1993) or as an active process
(recursive blue arrow with internal state in Fig. 1B). One mechanism for the prospective
scheme using the active process would be to use a recall that starts after the event, evoking
future likely events (also actions or outcomes) and imposing their information into the
representation. Other neural functions that are debated in reference to the original setting of
the reward prediction error hypothesis are mostly related to this type of recall because those
functions are defined to invoke additional processes after the event, beyond the default
value-based decision-making process. For example, active recall after the event has also
been applied to extract configurational information as a complementary process to the
default process (Courville et al. 2006; Daw et al. 2006; Gershman and Niv 2010; Green et al.
2010; Rao 2010; Redish et al. 2007) (see below). Another mechanism for the prospective
scheme would be anticipatory recall before the event to encode future likely events (along
with actions or outcomes) in the representation. This mechanism would make information
on future events available before any event starts, therefore rendering value-based decisions
very flexible.

While DA activity would exert effects on representation learning primarily through DA
modulation of synaptic plasticity (gray dashed arrow in Fig. 1B), it may, additionally,
directly affect the internal state representation with its effect on membrane excitability (for
which the gray dashed arrow in Fig. 1B could additionally be considered to represent direct
modulation). For example, DA activity may change or gate that which is maintained as the
internal state, e.g., in working memory or sustained neural activity (Gruber et al. 2006;
Montague et al. 2004; Todd et al. 2009). In concert with the prospective mechanism and the
anticipatory recall discussed above, the immediate effect of DA activity on the internal
states may provide an additional mechanism to adaptively select the internal states.
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Presumably, the DA-mediated synaptic learning mechanism is better equipped to extract
useful information by superimposing reward-related events over a long time, while the DA-
mediated immediate mechanism is equipped to adjust to changes in the environment over a
short time. In a broader perspective, the immediate mechanism is also a part of
representation learning, i.e., setting an improved state for reward prediction and action
selection.

Our dopamine reward structural learning hypothesis provides important insight into a
dichotomy of decision making: the so-called model-free and model-based RL mechanisms
(Acuna and Schrater 2010; Balleine et al. 2008; Daw et al. 2011; Daw et al. 2005; Dayan
and Niv 2008; Doya 2007; Funamizu et al. 2012; Gläscher et al. 2010; Suzuki et al. 2012;
Wunderlich et al. 2012). In these studies, both mechanisms use the external events as the
state in the same way that is assumed for the reward prediction error hypothesis. However,
they differ in what they are designed to learn and how they are designed to makes decisions.
The model-free RL is the default process described earlier. It learns values that are directly
associated with states (which are mediated by DA activity) and then makes decisions by
comparing the values. On the other hand, the model-based RL directly learns the transitions
across states and the ways in which the reward is given in the transition, and it makes
decisions by simulating future changes in the environment and comparing the simulated
values. Thus, the model-free RL is more economical in computational labor, but it is less
flexible (or ‘habitual’), whereas the model-based RL requires heavier computations, but it is
more flexible. By contrast, our hypothesis suggests that internal states, acquired by
representation learning, would provide a better default process, and this default process can
work as an improved model-free RL mechanism. Compared with the ‘original’ model-free
RL, the new model-free RL may be more optimal, compactly representing useful
information beyond the immediate past event and yielding to better reward predictions, for
example. It may also be more flexible, possibly combined with the prospective mechanism
or anticipatory recall. On the other hand, it involves heavier learning, which is learning the
internal state. Compared with the ‘original’ model-based RL, the new model-free RL can
work faster and more preemptively in decision making and may be potentially more
economical. However, it may not achieve the same ultimate degree of optimality and
flexibility as the original model-based RL could because the original model-based RL
involves more exhaustive learning and “recall after the event” computations for making
decisions. Thus, the new model-free RL may account for some behaviors or functions that
have been ascribed to the original model-based RL. More importantly, our reward structural
learning indicates a potentially more ideal mechanism for value-based decision making,
balancing among economy, optimality and flexibility.

6. Future directions
The dopamine reward structural learning hypothesis raises a number of questions that need
to be addressed. For example, what are the computational processes that underlie the
learning of reward structures in internal state representations, or representation learning? As
noted above, several experimental studies indicate that different forms of reward structures
may be learned in internal representation during different tasks. A pressing computational
question seeks to find the relationship between unified representation learning and DA
activity, or the form or aspect of representation learning to which DA activity contributes.
Studies of reward-driven perceptual learning address interactions between representation
learning and prediction learning, and their progress will provide insights (Nomoto et al.
2010; Reed et al. 2011; Seitz and Dinse 2007). Progress related to learning the reward
structure in representation has been ongoing in other fields apart from neuroscience, such as
machine learning, by using predictive states, extracting or approximating features that
represent states, or using other types of time traces (Daw et al. 2006; Gershman et al. 2012;
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Ludvig et al. 2008; Nakahara and Kaveri 2010; Parr et al. 2007; Sutton et al. 2009; Sutton et
al. 2011). Interestingly, they suggest different ways to improve state representation, and
future research can benefit from their use (Wan et al. 2011).

Which neurophysiological and behavioral experiments can allow us to further examine
representation learning of reward structure? A useful experiment is to systematically probe
the specific information that is useful for value-based decisions, hidden within a moment or
over moments, that can be reflected in DA responses, and whether such DA responses
change through the experience of trials, concordantly with behavioral choices. For example,
few studies have systematically addressed the use of extracting and learning temporal
structure information for value-based decision making. To dissect the roles of DA activity or
activity in other related areas in learning, it is desirable to be able to inactivate DA neurons
or the activity of other neurons in a reversible manner.

Which neural circuits underlie the concurrent processes of representation and prediction
learning? Insights may be gained by considering their relationships for computations and
circuits together. First, the areas that generate internal representation should be located
upstream from those that generate reward prediction and action selection (Fig. 1B). A clear
possibility is a combination of cortical and basal ganglia areas that receive heavy DA
innervation; for example, the prefrontal cortical areas may act primarily for learning the
reward structure in internal states (McDannald et al. 2011; McDannald et al. 2012;
Rushworth et al. 2012), whereas the striatum may act primarily for learning the reward
prediction (and action selection). Second, representation learning would require more
detailed learning signals than prediction learning, so that areas receiving heterogeneous DA
signals, such as salient signals, are more likely to be involved in representation learning.
Areas that receive projections from DA neurons in the dorsolateral SNc, in which DA
neurons that encode salient signals tend to be located, include the dorsolateral prefrontal
cortex, dorsal striatum, and nucleus accumbens (core) (Bromberg-Martin et al. 2010b;
Lammel et al. 2008; Matsumoto and Hikosaka 2009). Areas that have neural activity that is
akin to salient signals may also be a part of the circuit for representation learning, such as
the basolateral amygdala and anterior cingulate cortex (Hayden et al. 2010; Roesch et al.
2010). In summary, synthesizing the original success of the reward prediction error
hypothesis and the discrepancies found in recent experimental evidence, the reward
structural learning hypothesis can help to guide future research for understanding neural
value-based decision making.
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Highlights

Learning the reward structure is indispensable for learning the reward prediction.

Learning the reward structure in the internal state yield better reward prediction.

We propose a new hypothesis: the dopamine reward structural learning hypothesis.

DA activity encodes multiplexed learning signals for the structure and prediction.
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Figure 1.
(A) Reward prediction learning according to the reward prediction error hypothesis.
Dopamine (DA) activity encodes the reward prediction error, which is the difference
between the actual reward (red arrow) and the predicted reward that is expected based on
momentary external event information (black arrow), and then contributes to learning in
reward prediction and action selection (indicated by the dashed line intersecting the external
state inputs to the two functions). Under the reward prediction error hypothesis, DA activity
is considered to encode a specific reward prediction error signal δ (ei) = ri + γ V
(ei+1)−V(ei) wherein the input ej is equivalent to external events (or their time traces), say
Ei, and then ei = Ei in the hypothesis. (B) Schematic of a new hypothesis, the reward
structural learning hypothesis. With input reflecting the structure of the rewards (blue arrow
toward DA), DA activity encodes multiplexed learning signals: signals for learning to
represent the reward structure in the internal state (gray dashed arrow) and improved reward
prediction error signals, i.e., signals for learning better reward prediction and action
selection (black dashed arrow). Here, “internal state” in the figure refers to the neural,
internal representation acquired by the reward structural learning, which is then used as
input to generate reward prediction and action selection. Under the reward structural
learning hypothesis, DA activity may encode two types of signals. One type of signal is a
reward prediction error signal (mostly in the black dashed arrow but possibly also in the
gray dashed arrow). The input ej for δ (ei) = ri + γ V (ei+1)−V (ei) is not necessarily Ei if,
say, si (i.e., ei = si); si is learned to better reflect reward structure, e.g., taking account of past
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and future events, actions and outcomes. The other type of signal facilitates the learning of si
(in the gray dashed arrow). For example, a variety of DA signals discussed in the text, e.g.,
“salient”, “alerting”, “initiating”, “uncertainty”, “information-seeking”, and “history-
dependent” signals, could underlie this type of learning signal.
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Table 1

Structure of rewards, useful to be encoded in state representation

Class: Configurational Acquiring information latent within a moment into state representation.

Factors Examples

External event — association of a pattern or
subset of an external event with the outcome or
appropriate action.

• A specific visual pattern configuration may be a key for reward prediction (e.g., in board
games). Encoding the configuration in the state can drastically change the learning and
execution of prediction and action selection.

Reward — relationships of reward delivery, or
their absence, with actions or events.

• Reward delivery to one choice may imply reward absence to the other (e.g., among
numbers in a roulette game) or could be independent of the other (among people). Encoding
the dependence or independence in the state may drastically change learning and execution.

Action — appropriate levels to choose an
action, more specific or general.

• Action to indicate choosing an option on the “left” can be expressed in different specific
ways (e.g., by hand, eye, or chin), but also in a general form as being “left.” The appropriate
level encoding the action in the state changes the TD learning of action selection.

Class: Sequential Acquiring information over moments into state representation.

Factors
Retrospective — adding information of a
sequence of past events, rewards, and/or actions
in a compact form, and typically recent past
ones, to the information of a momentary
external event.

• Foraging among fruit trees. One should not keep increasing the expectation of rewards on
a tree as one collects fruit from the tree, but rather decrease the expectation because
obtaining more fruit from the tree means less remaining fruits. TD learning with momentary
external events (e.g., looking at the tree) as the states cannot immediately take account of
such a reward structure, as its reward prediction is learned to be an average (discounted)
value of fruit with the state.

Prospective — adding information of likely
future events, outcomes, or actions to the
information of a momentary external event.

• Moving to where a puck would go. In ice hockey, we should not just go to where a puck
currently is, but rather move, considering where a puck is likely to be. By contrast, TD
learning with momentary external events as states can learn reward prediction and action
selection only reactively with respect to the events.
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