"% NIH Public Access
@@‘ Author Manuscript

2 HEpst

NATIG,

O

1X3]-){Jewiarems 1Xa1-)ewla1ems

1X31-)lew1a1ems

Published in final edited form as:
Xenotransplantation. 2012 November ; 19(6): 342-354. doi:10.1111/xen.12007.

Comparison of hematologic, biochemical, and coagulation
parameters in al,3-galactosyltransferase gene-knockout pigs,
wild-type pigs, and 4 primate species

Burcin Ekser, MD1:2, John Bianchi, PhD3, Suyapa Ball, MSc3, Hayato lwase, MD, PhD1,
Anneke Walters, PhD3, Mohamed Ezzelarab, MD1, Massimiliano Veroux, MD, PhD?2, Bruno
Gridelli, MD14, Robert Wagner, VMD®, David Ayares, PhD3, and David K.C. Cooper, MD,
PhD, FRCS?

1Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh,
PA, USA

2Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and
Organ Transplant Unit, University Hospital of Catania, Catania, Italy

SRevivicor Inc., Blacksburg, VA, USA

“Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT),
Palermo, ltaly

SDepartment of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

Background—The increasing availability of genetically-engineered pigs is steadily improving
the results of pig organ and cell transplantation in nonhuman primates (NHPs). Current techniques
offer knock-out of pig genes and/or knock-in of human genes. Knowledge of normal values of
hematologic, biochemical, coagulation, and other parameters in healthy genetically-engineered
pigs and NHPs is important, particularly following pig organ transplantation in NHPs.
Furthermore, information on parameters in various NHP species may prove important in selecting
the optimal NHP model for specific studies.

Methods—We have collected hematologic, biochemical, and coagulation data on 71 a.1,3-
galactosyltransferase gene-knockout (GTKO) pigs, 18 GTKO pigs additionally transgenic for
human CD46 (GTKO.hCD46), 4 GTKO.hCD46 pigs additionally transgenic for human CD55
(GTKO.hCD46.hCD55), and 2 GTKO.hCD46 pigs additionally transgenic for human
thrombomodulin (GTKO.hCD46.hTBM).

Results—We report these data and compare them with similar data from wild-type pigs, and the
3 major NHP species commonly used in biomedical research (baboons, cynomolgus, and rhesus
monkeys) and humans, largely from previously published reports.

Conclusions—Genetic modification of the pig (e.g., deletion of the Gal antigen and/or the
addition of a human transgene) (i) does not result in abnormalities in hematologic, biochemical, or
coagulation parameters that might impact animal welfare, (ii) seems not to alter metabolic
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function of vital organs, though this needs to be confirmed after their xenotransplantation, and (iii)
possibly (though by no means certainly) modifies the hematologic, biochemical, and coagulation
parameters closer to human values. The present study may provide a good reference for those
working with genetically-engineered pigs in xenotransplantation research and eventually in
clinical xenotransplantation.
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INTRODUCTION

Pigs have provided a valuable and popular large animal model for biomedical research,
especially during the last 3 to 4 decades (1), and are the source-animal of choice for
xenotransplantation (2). Pigs offer many similarities to humans in terms of anatomy,
physiology, biochemistry, pathology, and pharmacology (2,3) and therefore provide a large
animal model to bridge the gap between rodents and humans. Knowledge of normal
hematologic and biochemical values in any species used in biomedical research is important.
Normal hematologic, biochemical, and physiologic values in several breeds of wild-type
(WT, genetically-unmodifed) pigs, e.g., Yorkshire, Yucatan, Landrace, have been reported
by several groups (1, 3-5).

With increasing numbers of genetically-engineered pigs becoming available (Table 1),
research experience obtained from small animal models (e.g., gene-knockout and/or knock-
in technology) can be translated to large animal models. Whereas the ultimate goal is
clinical application of cells, tissues, and organs from genetically-engineered pigs for human
therapeutic applications (6), it will be critical from a regulatory and safety perspective to
have data available on hematologic, biochemical, and physiologic parameters in the source
animals.

Measurement of these parameters essentially serves two aims, namely assessment of (i) the
health status of the animals themselves, which includes the effect of the genetic modification
(i.e., gene knockout or knock-in) on the respective parameter, and (ii) any molecular and/or
physiologic incompatibilities following a xenogeneic transplant. While the first aim relates
to safety, the second relates to the efficacy of a xenotransplantation “product”.

The genetic modification of pigs has been essential to progress in overcoming the barriers to
xenotransplantation (7-10). Early experience in the 1990s using pigs transgenic for human
decay-accelerating factor (hCD55) showed significantly extended survival of pig kidneys in
NHPs (7). Expression of human complement-regulatory transgenes (e.g., CD46, CD55,
CD59) is now common in pigs (7,8), as is knockout of the a.1,3-galactosyltransferase gene
(Table 1) (9). Islets obtained from pigs transgenic for human CD46 when transplanted into
diabetic monkeys have demonstrated >1 year normalization of blood glucose and cure of
diabetes (11). Casu et al. (12,13) and Graham et al. (14) have reported differences in glucose
metabolism between pigs and NHPs; pigs differ from NHPs and humans by having a much
lower C-peptide level, and a less rapid response to a glucose challenge and to arginine
stimulation.

Extended survival was also achieved with the transplantation of organs from GTKO pigs
(15,16). Recently, heart xenograft survival has been extended to 8 months using GTKO pigs
expressing human CD46 (GTKO.hCD46) (17).
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In our recent experience in liver xenotransplantation (18), we observed that pig alanine
transaminase (ALT), but not aspartate transaminase (AST), in GTKO pigs is significantly
lower than in WT pigs, but similar to human and baboon levels (19). We hypothesized that
there would be other differences in hematologic, biochemical, and coagulation parameters
between WT and GTKO pigs. To our knowledge, there is, hitherto, no published report of
normal laboratory values of GTKO pigs in the literature.

In the present study, we report normal hematologic, biochemical, and coagulation values in
healthy pigs with various genetic modifications. We compared these values with those of
WT pigs and 4 primate species - (i) baboons (Papio species), (ii) cynomolgus monkeys
(Macaca fascicularis), (iii) rhesus monkeys (Macaca mulatta), and (iv) humans, to identify
possible differences and similarities.

MATERIALS AND METHODS

Animals

Genetically-engineered and WT pigs—Genetically-engineered pigs (on a Landrace
large white WT background) were obtained from Revivicor Inc. (Blacksburg, VA, USA).
There were a total of 71 GTKO pigs (49 females, 22 males), 18 GTKO pigs transgenic for
human CD46 (GTKO.hCD46) (14 females, 4 males), 4 GTKO.hCD46 pigs additionally
transgenic for human CD55 (GTKO.hCD46.hCD55) (2 females, 2 males), and 2
GTKO.hCD46 pigs transgenic for human thrombomodulin (GTKO.hCD46.hTBM) (2
males). The number of pigs with a GTKO or GTKO.hCD46 background was 95 and 24,
respectively. Their mean ages and weights are shown in Table 2.

Wild-type (Landrace large white) pigs (n=19; 9 females, 10 males) were obtained from
Country View Farm, Schellsburg, PA, USA. Their mean ages and weights are shown in
Table 3.

Baboons—All baboons used in our own studies (n=45; 13 females and 32 males) were
obtained from the University of Oklahoma Health Sciences Center (Oklahoma City, OK,
USA). Their mean age was 2.7+0.5 (range 1.8-3.6) years and mean weight was 8.5+2.0
(range 5.6-15.9) kg, respectively.

All animal care was in accordance with the Principles of Laboratory Animal Care
formulated by the National Society for Medical Research and the Guide for the Care and
Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources and
published by the National Institutes of Health (NIH publication No. 86-23, revised 1985).
Protocols were approved by the University of Pittsburgh Institutional Animal Care and Use
Committee.

Blood collection and tests

Blood was collected when the animals were surgically and immunologically naive. Animals
were sedated by an intramuscular injection of 5-10mg/kg of ketamine hydrochloride (Fort
Dodge, 1A USA). Blood samples were collected by venepuncture for hematologic (EDTA
tube), biochemical (plain tube), and coagulation (sodium citrate tube) analysis using
standard methods either in the Central Laboratory of Presbyterian Hospital of the University
of Pittsburgh Medical Center, Pittsburgh, PA, USA or of Virginia-Maryland Regional
College of Veterinary Medicine, Blacksburg, VA, USA.

Equipment used at the University of Pittsburgh and Virginia-Maryland Regional College

were, respectively, Beckman LH750 (Fullerton, CA) and Siemens ADVIA 2120
(Tarrytown, NYY) for hematologic values, Diagnostic Stago STAR Evolution (Parsippany,
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NJ) for coagulation parameters, and Beckman DXC 800 (Fullerton, CA) and Olympus
America AU400 (Melville, NY) for biochemical parameters.

Literature search and collection of data

A literature search was carried out to identify significant reports on normal values of various
parameters in healthy WT pigs, baboons, cynomolgus monkeys, and rhesus monkeys.
Published reports detailed normal values in different species and considered factors such as
(i) gender, (ii) age, (iii) weight, and (iv) diet. We have not subdivided the data by age, etc.,
as we wished to compare our data with a large number of animals from each species, as this
is how normal human ranges are reported. We have included data from the literature on
various parameters from a large number of WT pigs or NHPs. Normal human values and
ranges were obtained from the Central Laboratory of Presbyterian Hospital of the University
of Pittsburgh Medical Center, Pittsburgh, PA, USA.

Data and statistical analyses

Data analyses were conducted with GraphPad Prism v5.01 (La Jolla, CA, USA). Mean
values of sample subsets were calculated and compared using the Student t-test, with a p
value of <0.05 being considered statistically significant.

RESULTS

Normal values obtained from healthy GTKO pigs with or without added transgenes from our
own study are shown in Table 2. Table 3 shows normal values in different breeds of WT
pigs, such as Landrace, Yucatan, and Yorkshire, from our own center and from published
studies. Healthy naive baboon normal values from our own center and from the literature are
shown in Table 4. Normal values for healthy cynomolgus and rhesus monkeys from the
literature are shown in Tables 5 and 6, respectively. Table 7 compares data on GTKO and
WT pigs and from baboons and monkeys with normal human values.

Hematologic parameters

White blood cell (WBC) count—GTKO pigs had a significantly lower mean WBC than
WT pigs (p<0.01) (Table 7). Pigs with a GTKO background appeared to have a lower WBC
when young (Table 2). Mean WBC count was significantly higher in GTKO and WT pigs
than in humans or NHPs (p<0.01) (Table 7). All NHP species tested showed a similar WBC
to humans, except in cynomolgus monkeys where the WBC count was significantly higher
(p<0.01), though cynomolgus monkeys from Mauritius exhibited similar WBC counts to
humans (Tables 5 and 7).

With regard to WBC subsets, GTKO pigs had significantly fewer neutrophils than WT pigs,
humans, baboons, and rhesus monkeys (p<0.01). Cynomolgus monkeys had the lowest
neutrophil counts among all species tested (p<0.01 vs all other species) (Table 7), but had
the highest lymphocyte counts (p<0.01 vs all other species). Monocyte counts were
significantly higher in pigs (GTKO and WT) in comparison to other species (p<0.01).
Eosinophil and basophil counts were similar in all species (Table 7).

Red blood cell (RBC) parameters—RBC counts were significantly higher in GTKO
and WT pigs than in humans and NHP species (p<0.01). Hemoglobin values were
comparable in all species, except WT pigs in which the hemoglobin was significantly lower
(p<0.01 vs all other species). GTKO and WT pig hematocrits were significantly lower than
in NHPs (p<0.01), but were within the human range (Table 7). GTKO and WT pigs
exhibited a significantly lower mean corpuscular volume (MCV) and mean corpuscular
hemoglobin (MCH) than seen in human and NHP species (p<0.01). Mean corpuscular
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hemoglobin concentration (MCHC) in all species, except WT pigs, was comparable to that
in humans. Percentage RBC distribution width (RDW) was significantly higher in pigs
(GTKO and WT) than in primate species (p<0.01) (Table 7).

Renal function and electrolytes

Pigs (GTKO and WT) exhibited higher potassium, calcium, and phosphorus values than
humans, baboons, and rhesus monkeys (p<0.01 in all comparisons) (Table 7). Cynomolgus
monkeys showed the highest potassium, calcium, and chloride values in comparison to other
species (p<0.01) (Table 7). Sodium values were comparable in all species, except in
cynomolgus monkeys, which had significantly higher values (p<0.01) (Table 7).
Cynomolgus monkeys showed significantly higher urea values than other species (p<0.01)
(Table 7). Serum creatinine values were comparable in all species. Carbon dioxide
(COy)levels were significantly lower in rhesus monkeys (p<0.01). GTKO and WT pigs and
baboons exhibited CO, levels within the human range (Table 7).

Hepatic function

AST and ALT values were comparable in all species, except that WT pig ALT was
significantly higher than in other species (p<0.01) (Table 7). Alkaline phosphatase (ALP)
and lactate dehydrogenase (LDH) were higher in pigs and NHPs than in humans (Table 7).
ALP was highest in cynomolgus monkeys (10-fold more than in humans) and baboons (5-
fold more than in humans). WT pigs exhibited the highest LDH values (5-fold higher than in
humans, and 2-fold higher than in GTKO pigs) (Table 7). Total, direct, and indirect bilirubin
values were comparable in all species. Total protein and albumin levels were significantly
lower in pigs than in NHPs and humans (p<0.01) (Table 7). Levels of total protein and
albumin appeared to be lower in younger than in older GTKO pigs (p<0.01) (Table 2). In
contrast, WT pigs did not show significantly different total protein and albumin levels
between low (young) and high (older) weight pigs (Table 3). Total cholesterol, triglyceride,
and glucose levels were comparable in all species (Table 7), except in rhesus monkeys,
which exhibited higher cholesterol and triglyceride and lower glucose levels (p<0.01) (Table
7).

Coagulation profiles

WT pigs and cynomolgus monkeys had significantly lower prothrombin times (PT) and
partial thromboplastin times (PTT) than GTKO pigs, baboons, rhesus monkeys, and humans
(p<0.01 in all comparisons). GTKO pigs exhibited similar PT and PTT to humans. Rhesus
monkeys had significantly prolonged PTT compared with other species (p<0.01) (Table 7).
While GTKO pigs had international normalized ratio (INR) and d-dimer comparable to
humans, baboons showed significantly increased INR and d-dimer (p<0.01). GTKO pigs
showed positive fibrinogen degradation products (FDP). Fibrinogen levels were comparable
in GTKO pigs, cynomolgus monkeys, and humans, but baboons had significantly lower
fibrinogen levels than other species (p<0.01) (Table 7).

Other parameters

Although lipase levels were comparable in humans, GTKO pigs and baboons, amylase
levels were significantly lower in humans than in other species (p<0.01). GTKO pigs
showed a 13-to-45-fold increase in amylase in comparison to humans and baboons, but only
a 4-fold increase in comparison to cynomolgus monkeys (Table 7). Younger GTKO pigs
showed significantly higher levels of amylase in comparison to older GTKO pigs (p<0.01)
(Table 2). In contrast, amylase levels were higher in older baboons (p<0.01) (Table 4). Iron
levels were comparable in all species.

Xenotransplantation. Author manuscript; available in PMC 2013 November 12.
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The cardiac enzymes, total creatine kinase (CPK), myocardial band of CPK (CPK-MB) and
its relative index, and troponin | were measured only in pigs of GTKO.hCD46 background
(Table 2). Total CPK and CPK-MB were significantly higher in GTKO.hCD46 pigs than in
humans (p<0.01). However, the CPK-MB relative index and troponin | values were
comparable in GTKO.hCD46 pigs to humans (Table 7).

DISCUSSION

In biomedical research, it is essential to compare pre-treatment values (i.e., in a surgically
and immunologically naive animal) with post-treatment values. Therefore, knowledge of
normal hematologic, biochemical, and coagulation parameters is important. The present
study reports, for the first time, the mean values in genetically-engineered pigs important to
xenotransplantation research, all on a GTKO background. Moreover, the study compares
these values with those in WT pigs and 4 species of primate, including humans.

We report differences in certain parameters between GTKO and WT pigs and/or pigs
between primates and/or between NHPs and humans, which may prove important in
xenotransplantation research and, ultimately, in clinical xenotransplantation. It should be
kept in mind that the health status of the animals may affect a specific parameter. For
example, designated pathogen-free pigs may have lower white blood cell counts than pigs
housed under routine circumstances. Differences in normal levels of potassium or other
electrolyte may be problematic after pig kidney xenotransplantation. After the
transplantation of a pig kidney or liver into a NHP, the level of a parameter may reflect the
normal level in the NHP (e.g., WBC count), or the normal level in the pig (e.g., serum
potassium or albumin). In fact, prominent proteinuria has been underlined by several groups
after pig-to-NHP kidney xenotransplantation (16,20). The loss of protein may reflect the
physiologic ability of the pig kidney to reduce the albumin levels of the NHP to the normal
pig albumin level, which is significantly lower (Table 7). Alternatively, it could reflect an
inability of pig kidneys to retain NHP albumin, or reduced synthesis of aloumin in the pig
liver. Soin et al previously reported severe hypophosphatemia and persistent
hypoalbuminemia due to increased proteinuria after pig-to-NHP renal xenotransplantation
(21). Whether this was related to a physiologic incompatibility between pig and primate or
was the result of a low-grade immune response remains unknown. In our experience, healthy
pigs do not have proteinuria (Hara H, personal observation). The topic of physiologic
incompatibilities has been reviewed elsewhere (22).

After pig liver xenotransplantation, a great number of parameters may reflect those in the
pig, since the liver is the major site of production of many proteins. After pig heart
xenotransplantation, the knowledge of normal values of CPK and troponin | is important to
monitor damage to the transplanted heart.

GTKO pigs had significantly lower WBC counts than WT pigs, which may be related to the
cleanliness of the housing in which they are reared (though GTKO pig values fell within the
range of published normal values for WT pigs). Pigs (both GTKO and WT) have higher
WBC counts than the primates we tested (Table 7). As important as high WBC count could
be, the higher percentage of lymphocytes in the recipient NHPs may also be important with
regard to successful lymphocyte depletion. Cynomolgus monkeys have the highest
lymphocyte count among four primate species and pigs (Table 7). This high lymphocyte
count may result in an increased need for of lymphocyte-depleting agents to achieve the
desired outcome.

Xenotransplantation. Author manuscript; available in PMC 2013 November 12.
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It should be kept in mind that the health status of the animals may affect a specific
parameter. For example, designated pathogen-free pigs may have lower white blood cell
counts than pigs housed under routine circumstances.

Cynomolgus monkeys are also special in respect to RBC. It is well known that CD52 is
expressed on erythrocytes of most NHP species. As a result, alemtuzumab (anti-CD52
monoclonal antibody) can be used only in cynomolgus monkeys of Indonesian origin, which
do not express CD52 on their RBCs (23). The RBC MCV in humans is almost 30-50%
greater than that in GTKO pigs, and the MCV of baboon RBC is 30-40% greater than in
pigs. Theoretically, this discrepancy could well adversely impact the perfusion of a pig
organ after transplantation into a primate. However, evidence from numerous pig-to-NHP
organ transplantation studies suggests that this is not the case, and that organ perfusion is
satisfactory (unless affected by rejection, etc.). Furthermore, biopsies obtained after pig-to-
NHP kidney, heart, and liver xenotransplantation have not shown unequivocal defects in the
microcirculation (except when thrombosis occurs following fibrin and platelet aggregation)
(15-18,20).

These observations illustrate how baseline (pre-treatment) knowledge of parameters is key
to success in biomedical research. Attention has been drawn to the importance of knowing
normal parameters in NHP by recent publications by the Emory Group (24,25) with
particular regard to MHC typing as a key to successful outcome.

Although our study did not detect any significant difference in total, direct, or indirect
bilirubin levels among the species tested (Table 7), the relevance of these data should be
interpreted cautiously. Kobayashi et al reported that hepatic bile was significantly less
viscous in baboons compared with that in humans and pigs, with pig and human hepatic bile
viscosity being similar (26). In our experience of GTKO pig-to-baboon liver
xenotransplantation, we observed cholestatic damage on liver histopathology without
structural obstruction of the bile ducts, but with the presence of viscous bile (18,27).
However, bile stasis may not be a significant problem after pig liver Tx into humans (25).

The lower values for PT and PTT in WT pigs and in cynomolgus monkeys need particular
attention as they may impact a coagulopathic state and related complications. A significantly
shorter PTT in WT pigs could be related to intrinsic pathway coagulation factors, such as
FXII, FXI, and FIX. We have previously reported data suggesting that FXII (initiator of the
intrinsic coagulation pathway) in WT pigs is significantly higher (2-fold) than in GTKO pigs
(27,28). We have also documented the production of pig coagulation factors after GTKO pig
liver xenotransplantation in baboons (27). Knowledge of baseline coagulation values in both
organ-source pig and recipient NHP is of importance when monitoring post-transplantation
changes. We previously reported the baseline extended coagulation profile in nine healthy
baboons (29).

There are other observations from our data that cannot be explained. For example, in GTKO
pigs with added transgenes, serum amylase was high when compared with GTKO pigs
(Table 2). However, at necropsy, no features suggestive of pancreatitis were observed in
these pigs. Similarly, serum cholesterol was particularly low in these pigs. Larger numbers
of pigs will need to be studied to confirm, and possibly explain, these observations.

While differences have been observed in various parameters between WT and genetically-
engineered pigs, there is no evidence that such differences would lead to an increased risk
profile, as compared to the significant benefits that genetically-engineered pigs may provide
in overcoming the challenges for human clinical application.

Xenotransplantation. Author manuscript; available in PMC 2013 November 12.
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A minor weakness of our comparative study is that data from different centers may have
been obtained using different laboratory equipment. However, our own and most other
studies have been carried out in hospital laboratories in which standard equipment is used.
We suggest there are unlikely to be wide or significant differences in the data obtained.
Furthermore, our own data, and we strongly suspect the vast majority of data in the
literature, were obtained using equipment equilibrated and validated with respect to human
material, not to nonhuman primate material. We do not see this as a major problem. If data
from various centers are to be compared, it could be argued that this provides some
uniformity to the data as they will all have been obtained on equipment validated to human
material.

In conclusion, it appears that genetic modification of the pig (e.g., deletion of the Gal
antigen and/or the addition of a human transgene) (i) does not result in abnormalities in
hematologic, biochemical, or coagulation parameters that might impact animal welfare, (ii)
seems not to alter metabolic function of vital organs, though this needs to be confirmed after
their xenotransplantation, and (iii) possibly (though by no means certainly) modifies the
hematologic, biochemical, and coagulation parameters closer to human values. The present
study may provide a good reference for those working with genetically-engineered pigs in
xenotransplantation research and eventually in clinical xenotransplantation.
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Abbreviations (in text and tables)

ALP alkaline phosphatase

ALT alanine transaminase

AST aspartate transaminase

GGT gamma-glutamy! transferase

GTKO al,3-galactosyltransferase gene-knockout
INR international normalized ratio

LDH lactate dehydrogenase

MCH mean corpuscular hemoglobin

MCV mean corpuscular volume

MCHC mean corpuscular hemoglobin concentration
MPV mean platelet volume

NHP nonhuman primate

PT prothrombin time

PTT partial thromboplastin time

RBC red blood cells

RDW red blood cell distribution width

Xenotransplantation. Author manuscript; available in PMC 2013 November 12.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Ekser et al.

Page 9

WBC white blood cells
WT wild-type
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Table 1

Common genetically-engineered pigs currently available for biomedical research

Knock-out technology for deletion of antigen expression

- GTKO (al,3-galactosyltransferase gene-knockout)

Knock-in technology for human complement regulation

- human CD46

- human CD55

- human CD59

Knock-in technology for human thromboregulation

- human CD39

- human thrombomodulin (TBM)

- human endothelial protein c receptor (EPCR)

Pigs with multiple gene modifications exist (e.g., GTKO.hCD46.hCD55 or GTKO.hCD46.hTBM or GTKO.hCD55.hCD59.hCD39.hTBM)

Xenotransplantation. Author manuscript; available in PMC 2013 November 12.
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