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Abstract: As the average lifespan continues to climb because of advances in medical care,
there is a greater need to understand the factors that contribute to quality of life in the elderly.
The capacity to live independently is highly significant in this regard, but is compromised by
cognitive dysfunction. Aging is associated with decreases in cognitive function, including
impairments in episodic memory and executive functioning. The prefrontal cortex appears to be
particularly vulnerable to the effects of advancing age. Although the mechanism of age-related
cognitive decline is not yet known, age-related inflammatory changes are likely to play a role.
New insights from preclinical and clinical research may give rise to novel therapeutics which
may have efficacy in slowing or preventing cognitive decline with advancing age.

Keywords: aging, cognitive dysfunction, elderly, inflammation, quality of life

Introduction
The world’s population is rapidly aging and age-

related disease constitutes a growing proportion

of healthcare burden. The segment of the popu-

lation that is 85 or older is growing faster than

any other age group and is projected to account

for 4.3% of the US population by 2050 [Merck

Institute of Aging & Health et al. 2007]. These

changes in the population have led to a growing

realization that measures must be taken to ensure

a high quality of life in addition to increased lon-

gevity. Foremost among factors that determine

quality of life is the ability to live independently

[Bowling, 2005], and cognitive functioning is

particularly important in this regard [Desai

et al. 2010]. The biological basis of age-related

cognitive decline is not currently known with

certainty, in part because aging in humans is

associated with numerous age-related disease

conditions that complicate the attribution of

causality. For this reason, insights gained from

animal models are important because causality

can be established with greater certainty. A grow-

ing body of preclinical and clinical literature

suggests that age-related inflammatory changes

may contribute to cognitive changes.

Our goal here is to review evidence that aging

is associated with relatively selective deficits in

cognition that contribute to disability in the

elderly, and that neuroinflammation is an

important factor contributing to age-related

cognitive decline. We base these conclusions on

research findings drawn from the clinical litera-

ture as well as research performed using ani-

mal models. Although our focus is on cognitive

decline associated with normal aging, we discuss

evidence that the effects of inflammation on

cognition are further exaggerated in pathological

disease states such as in neurodegenerative dis-

eases. Finally, we review some possibilities for

intervening to reduce age-related neuroinflam-

mation in the hope of slowing or preventing

age-related cognitive decline. Because of the

importance cognition plays in one’s ability to

live independently, reducing the impact of

inflammation on cognition during aging is likely

to significantly impact on the quality of life of

older persons.

Normal aging is associated with declines in
memory and executive function
In normal human aging, certain facets of cogni-

tion seem to be affected more than others. Here

we review evidence that aging primarily affects

episodic memory and executive functioning

while leaving other aspects of cognition relatively

intact. We discuss the role of inflammation in

these age-related changes in cognition in subse-

quent sections below.
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Memory is not a unitary construct and distinct

components of memory are affected by aging dif-

ferently [Nilsson, 2003]. Explicit memory

includes episodic memory, which involves the

conscious recall of events and experiences, and

semantic memory, which involves the conscious

recall of facts and information [Tulving, 1987].

Episodic memory is affected by aging much more

than semantic memory. The Betula study, a

10-year longitudinal project examining memory

and health in 1000 people between the ages of 35

and 80 years, showed a striking decrease in epi-

sodic memory performance as people age

[Nilsson et al. 1997], which is consistent with

results from other studies [Birren et al. 2006].

These changes are likely because of age-related

dysfunction of the hippocampus and the cortex,

since explicit memory is largely encoded in the

hippocampus, though other brain regions, such

as various neocortical areas, are also thought to

be involved [Grady et al. 2003].

Difficulties with free recall and temporal ordering

in elderly people have been shown to be associ-

ated with deficits in encoding and retrieval of

information [Daum et al. 1996]. The frontal

lobes play an important role in the encoding of

information [Fletcher et al. 1998; Dolan and

Fletcher, 1997]. Functional magnetic resonance

imaging studies have correlated poor episodic

memory performance in older people with reduc-

tions in left frontal lobe activation during the ini-

tial encoding of a memory [Stebbins et al. 2002].

Therefore, older people may benefit from the use

of encoding strategies and cues, which result in

increases in left frontal lobe activation and

improved memory performance [Logan et al.

2002]. The frontal lobe is also involved in the

filtration of irrelevant information that would

otherwise interfere with the encoding of pertinent

information [Lustig et al. 2001]. Episodic

memory capacity in particular relies on successful

inhibition of irrelevant and interfering informa-

tion [Craik and Salthouse, 2007]. In addition,

free recall of information seems to depend on

prefrontal function, although cued recall and rec-

ognition do not [Mesulam, 2000; Jetter et al.

1986]. It is possible that the age-related sensitiv-

ity of episodic memory in comparison to seman-

tic memory is due in part to the greater demand

on prefrontal functioning during the encoding

of transitory events such as autobiographical

events (episodic memory) compared with the

encoding of public, noncontextual facts (seman-

tic memory).

Semantic memory is not as significantly affected

by aging. In the Betula study, there were no

observable differences in tests of vocabulary

between 35-year-old people and 50-year-old

people. In addition, after controlling for level of

education, there were no age-related declines

in general knowledge among people younger

than 75 years [Nilsson et al. 1997]. Similarly,

the Berlin Aging Study, a 6-year longitudinal

project exploring the intellectual abilities of

elderly people, showed that while factors such

as perceptual speed, episodic memory, and

fluency declined with age, other factors such as

knowledge (measured by vocabulary) remained

relatively stable and intact [Singer et al. 2003].

Some studies have, in fact, demonstrated

improvements in semantic memory with age,

despite losses in episodic memory performance.

One study tested individuals of various ages on

knowledge of events occurring from the 1930s to

the 1990s, and showed that general knowledge

about such historical facts (which required

semantic memory) was found to be positively

correlated with age [Schacter Daniel, 1987].

Another study revealed that older people had a

better recall of facts (semantic details), despite

having a poorer recall of thoughts and feelings

(episodic details), relative to younger people

[St Jacques and Levine, 2007]. Thus, semantic

memory remains relatively spared by normal

aging and performance may, in fact, increase

with age.

Implicit memory, much like semantic memory,

also remains relatively stable with age [Ackerman

and Rolfhus, 1999]. However, unlike the semantic

and episodic components of explicit memory,

implicit memory involves information that is

utilized without conscious awareness. An impor-

tant type of implicit memory is procedural

memory which involves unconscious, experience-

dependent learning of how to perform specific

tasks, such as riding a bike. In animal models

it has been shown that, after adjusting for

differences in baseline and gross motor abilities,

there are no significant implicit memory changes

associated with advancing age [Churchill et al.

2003].

Implicit memory is mediated by regions of the

brain such as the basal ganglia and cerebellum

[Hikosaka et al. 2002]. People with damage to

the striatum (such as patients with advanced

Parkinson’s disease) exhibit evidence of impaired
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learning of novel movements and difficulties

acquiring visuomotor skills [Laforce and

Doyon, 2002]. People with bilateral striatal

damage also have difficulties acquiring new stim-

ulus�response motor associations [Laforce and

Doyon, 2001]. These regions are, however, rela-

tively spared by normal aging.

Executive function is also affected by aging.

Executive function can be defined as the set of

capacities involved in planning, mental flexibility,

inhibiting inappropriate actions, attending to rel-

evant sensory information, and ignoring irrele-

vant sensory information [Stuss and Benson,

1986]. Executive dysfunction is an important

component of many neurodegenerative diseases

such as Alzheimer’s disease (AD) [Swanberg

et al. 2004], Parkinson’s disease [Zgaljardic

et al. 2006], frontotemporal dementia [Kertesz,

2006], and other neuropsychiatric conditions

(e.g. schizophrenia [Green, 2006]). Within

executive function, attention, or the ability to

focus on relevant sensory input and ignore irrel-

evant sensory input, is of particular interest to

this discussion.

Attention, like other components of executive

function, is dependent on the prefrontal cortex

(PFC), which plays many important roles in cog-

nition and has numerous subregions with special-

ized functions [Fuster, 1997]. A recent

comprehensive review of the literature on atten-

tion argues for a fundamental role of working

memory, top-down sensitivity control, competi-

tive selection, and automatic bottom-up filtering

for salient stimuli, with important roles for PFC

and posterior parietal cortex in the former three

processes [Knudsen, 2007]. It has been argued

that the decline of attention with aging is related

to inadequate inhibitory processes rather than

deficiencies in activation [Hasher and Zacks,

1988]. As such, memory-impaired adults are

more likely to experience difficulty ignoring

task-irrelevant inputs and suppressing knowledge

that is no longer applicable. In tests of selective

attention, patients with prefrontal lesions are less

able to ignore irrelevant information than healthy

controls [Chao and Knight, 1997]. In addition, it

appears that older adults are more vulnerable to

distractors than younger adults. This idea is sup-

ported by brain-imaging studies that show that

older people exhibit more cortical activation

compared with younger people when presented

with task-irrelevant information, while cortical

activity is similar in both age groups when

task-relevant information is presented [Gazzaley

et al. 2005]. In contrast, sustained attention,

which is the ability to maintain attention over a

period of time, is relatively stable with age

[Berardi et al. 2001]. When measuring sustained

attention using a high-speed digit discrimination

task, researchers found no age-related differences

in sustained attention capacity among young,

middle-aged, and elderly people [Berardi et al.

2001].

Given the evidence for decreased PFC function

with advancing age, it is not surprising that neu-

roimaging and neuroanatomical studies have

identified structural changes in the PFC with

advancing age in a number of mammalian spe-

cies. For example, aging is correlated with a thin-

ning of layer I of area 46 in monkeys [Peters et al.

1998]. A recent study examined the effects of

aging on layer III pyramidal neurons in the dor-

solateral PFC of rhesus monkeys [Dumitriu et al.

2010]. The authors determined that aging was

associated with a loss of dendritic spines, espe-

cially small and thin spines, and a reduction in

axospinous synapses. Synapse density and spine

morphology were found to correlate with acqui-

sition and performance on the delayed non-

matching-to-sample test. Similarly, another

study [Erraji-Benchekroun et al. 2005] demon-

strated a disorganization of ‘microcolumns’ in

area 46 of the PFC of monkeys which was

highly correlated with declines in spatial working

memory and recognition memory. In addition to

these changes in gray matter, aging is also asso-

ciated with alterations in frontal white matter.

For example, diffusion tensor imaging has dem-

onstrated a selective disruption of frontal cortical

circuitry with aging in humans [Pfefferbaum et al.

2005].

It is possible that the declines in episodic memory

and attention are not due solely to age-related

area-specific deficiencies within the brain, but

that global reductions in brain efficiency also

contribute. This view suggests that aging people

experience cognitive decline because of ‘global

brain aging’ in addition to area-specific degrada-

tion [Rabbitt and Lowe, 2000]. This concept of

‘global brain aging’ informs the processing speed

theory of cognitive aging, which suggests that

there is an age-related decrease in the speed

and efficiency of processing throughout the

brain. More specifically, cognitive performance

is reduced because the required cognitive opera-

tions cannot be executed in the necessary amount
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of time and because of a reduced ability to pro-

cess multiple concepts simultaneously

[Salthouse, 1996]. Thus, aging may lead to a

global reduction in processing efficiency, which

may also contribute to the observed age-related

declines in both episodic memory and attention

that are described above.

Overall, normal aging is associated with relatively

selective declines in episodic memory and in

executive function, while both semantic and

implicit memories are relatively spared. Because

episodic memory requires frontal lobe activity for

encoding and retrieval, frontal lobe dysfunction

appears to play a particularly important role in

cognitive decline with normal aging. It is impor-

tant to note that age-related cognitive decline has

important implications for elderly people because

cognition is strongly predictive of disability

[McGuire et al. 2006; Dodge et al. 2005] and

decline in executive functioning seems especially

important in this regard [Johnson et al. 2007;

Royall et al. 2005; Cahn-Weiner et al. 2002].

Age-related cognitive decline is due in part
to age-related increases in inflammation
The notion that neuroinflammation leads to a

decline in cognitive function is supported by the

association between markers of inflammation and

several pathological conditions, such as AD,

Parkinson’s disease, and mild cognitive impair-

ment (MCI). Postmortem examinations of

people with late-stage AD, for example, have

revealed that beta-amyloid plaques, one of the

defining characteristics of AD, are frequently

colocalized with a variety of inflammatory

factors, including proinflammatory cytokines,

acute phase proteins, complement factors,

and activated microglia [Eikelenboom et al.

2006; Eikelenboom and van Gool, 2004].

Neuroinflammation within the diseased brain

does not appear to be widespread, however,

because it is restricted to regions of the brain

that are particularly affected by AD [McGeer

and McGeer, 2002]. Additionally, as discussed

in more detail below, there is some evidence

that the risk of AD is reduced in people who

have a history of nonsteroidal anti-inflammatory

drug (NSAID) use [Wyss-Coray, 2006; Tuppo

and Arias, 2005; Lukiw and Bazan, 2000].

Likewise, polymorphisms in several inflamma-

tory factors appear to serve as risk factors for

the development of AD [Eikelenboom et al.

2002; Lukiw and Bazan, 2000].

While it is not yet known whether neuroinflam-

matory events precede disease states or are a

direct consequence of the damage that occurs

with ensuing pathology, beta-amyloid plaques

appear to act in a proinflammatory fashion

[Halliday et al. 2000; Tuppo and Arias, 2005].

It is not surprising then, that several groups

agree that it is likely that neuroinflammatory

events initiate or even aid in the progression of

AD [Heneka and O’Banion, 2007; Bales et al.

2000]. Indeed, as discussed in more detail

below, inflammatory factors have been identified

as a potential target in the treatment of AD

[Heneka and O’Banion, 2007; McGeer and

McGeer, 2003, 2002; Moore and O’Banion,

2002; Rogers et al. 1996]. Nevertheless, it is dif-

ficult to establish whether the cognitive decline

observed in cases of pathology (e.g. patients

with AD) is caused by inflammatory events or

other aspects of the progressing disease.

To address this issue, nonpathological neuroin-

flammation must also be explored.

To date, a link between nonpathological neuroin-

flammation and cognitive impairment has

been established in a variety of species, including

pigeons [Holden et al. 2008], rodents [Barrientos

et al. 2009, 2006; Wan et al. 2007; Gemma et al.

2005; Heyser et al. 1997], and humans

[Hilsabeck et al. 2010; van den Kommer et al.

2010; Magaki et al. 2007; Dik et al. 2005].

Inflammation, especially within the central ner-

vous system (CNS), leads to impairments in a

variety of cognitive domains, including learning

[Hein et al. 2010; Terrando et al. 2010;

Barrientos et al. 2009, 2006], memory [Frank

et al. 2010; Hirshler et al. 2010; Abraham and

Johnson, 2009; Wang et al. 2009] and attention

[Holden et al. 2008]. For example, mutant mice

overexpressing the proinflammatory cytokine

interleukin (IL)-1 [Moore et al. 2009], and rats

given chronic ventricular administration of lipo-

polysaccharide (LPS) [Rosi et al. 2006], a potent

activator of innate immunity, are significantly

impaired in spatial working memory tasks.

Microarray analyses of cortical tissue obtained

from mice given a single intracerebroventricular

injection of LPS revealed that, in addition to

enrichment for inflammation-related genes,

neuroinflammation leads to a significant reduc-

tion in genes known to be involved in learning

and memory [Bonow et al. 2009]. That being

said, neuroinflammation may lead to cognitive

and behavioral changes via multiple mecha-

nisms including regulation of gene expression
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[Bonow et al. 2009; Godbout et al. 2005], alter-

ations in neuronal function [Motoki et al. 2009;

van Gassen et al. 2005], reduced neurogenesis

[Bachstetter et al. 2009; Koo and Duman,

2008; Aalami et al. 2003; Monje et al. 2003;

Vallieres et al. 2002] and impaired long-term

potentiation [Min et al. 2009; Lewitus et al.

2007; Griffin et al. 2006; Lynch et al. 2004;

Hauss-Wegrzyniak et al. 2002; Kelly et al. 2001,

2003; Murray and Lynch, 1998].

Peripheral inflammation is also capable of pro-

ducing cognitive dysfunction [Buchanan et al.

2008; Tonelli and Postolache, 2005;

Reichenberg et al. 2001] and markers of inflam-

mation, such as peripheral cytokines, have been

associated with lower cognitive performance

[Hilsabeck et al. 2010; Rothenburg et al. 2010;

Gimeno et al. 2008; Rafnsson et al. 2007]. Like

central administration, systemic LPS has been

found to produce deficits in working memory

in rodents [Murray et al. 2010; Zhang et al.

2009]. In humans, a connection between periph-

eral inflammation and cognitive dysfunction

has been demonstrated repeatedly in people

experiencing acute infection [Elison et al. 2008;

Wratten, 2008; Logan et al. 2002; Reichenberg

et al. 2001] and recent surgical procedures [Xie

et al. 2009; Beloosesky et al. 2007; Gao et al.

2005]. In addition, immune-related impairments

in cognitive performance have served as a major

hypothesis for the development of a variety of

neurodegenerative diseases and dementias [e.g.

Cerejeira et al. 2010; McNaull et al. 2010;

Morales et al. 2010; Murray et al. 2010; de

Rooij et al. 2007; Vaccarino et al. 2007].

The effects of peripheral immune activation,

however, still occur in direct association with

increases in inflammation within the CNS

[Buchanan et al. 2008]. While it is plausible

that inflammatory agents or molecules penetrate

the CNS to produce direct effects on behavior

and cognition, the brain was initially believed to

be immunologically privileged, protected from

such occurrences by the blood�brain barrier.

However, during situations involving the break-

down of the blood�brain barrier [Cunningham

et al. 2009; Serres et al. 2009; McColl et al.

2008], sepsis [Semmler et al. 2008; Wratten,

2008; Reichenberg et al. 2001], or chronic

repeated stress [Munhoz et al. 2008, 2006],

peripheral inflammation leads to increases in

proinflammatory cytokine expression within the

brain parenchyma and, potentially, cognitive

decline [Popescu et al. 2009]. Regardless,

whether by direct signaling of inflammatory mol-

ecules within the CNS, or by alternative means,

peripheral inflammation has been shown to be a

potent regulator of neurocognition [Cerejeira

et al. 2010; Richwine et al. 2009; Myers et al.

2008; Meyers et al. 2005].

As discussed in the previous section, normal

aging is associated with relatively selective

declines in episodic memory and executive func-

tioning, with a relative sparing of semantic and

implicit memory. If inflammation is responsible

for these cognitive changes one would expect that

inflammation would be associated with declines

in episodic memory and executive functioning

more than semantic and implicit memory.

Although information is limited, some studies

have provided some insight into this question.

Marsland and colleagues [Marsland et al. 2006]

examined serum IL-6 in a cohort of healthy

people aged 30�54 years in relation to cognition.

IL-6 levels were inversely related to performance

on tests of auditory memory and attention/work-

ing memory and executive function but not with

word list recall, verbal paired associates, mental

control, faces, family pictures, or digit span tests.

Schram and colleagues examined the association

between serum C-reactive protein (CRP), IL-6,

and alpha1-antichymotrypsin and cognition

based on data from two large studies [Schram

et al. 2007]. The authors found that CRP and

IL-6 were associated with worse global cognition

[Mini Mental Status Exam scores (MMSE)] and

executive function in one study, and that IL-6

levels were associated with steeper declines in

performance on a picture memory test in the

other study. Hoth and colleagues studied the

association between peripheral inflammation

and cognition in patients with cardiac disease

[Hoth et al. 2008]. CRP levels were found to be

associated with declines in attention-executive-

psychomotor performance but not language,

episodic memory, or visuospatial performance.

Associations between genetic variation in IL-1

beta-converting enzyme (ICE) and IL-1beta

levels and cognition were recently demonstrated

[Trompet et al. 2008]. ICE variants that

predicted lower serum IL-1beta levels were

associated with better executive functioning, but

associations with episodic memory were not sig-

nificant. Serum levels of CRP have been found to

be associated with reduced fractional anisotropy

in the frontal lobes, corona radiata, and the

corpus callosum by diffusion tensor magnetic
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resonance imaging, as well as with decreased

executive functioning [Wersching et al. 2010].

Not all studies have found an association between

inflammation and executive function. For

example, Noble and colleagues studied associa-

tions between CRP levels and cross-sectional

cognitive performance [Noble et al. 2010].

People with the highest CRP levels had higher

rates of episodic memory impairment and visuo-

spatial impairment but not executive or language

impairment.

Although the results of such studies are not

entirely consistent, possibly because of differ-

ences in assessment methods and differences in

the subject populations studied, there is strong

evidence for a role of inflammation in decreased

executive functioning as well as episodic memory.

Selective effects of inflammation on particular

cognitive domains could be due to at least two

mechanisms which are not mutually exclusive.

First, it is possible that neuroinflammation may

not uniformly affect the brain. This view is sup-

ported by evidence that inflammatory cytokines

are not expressed uniformly in the mammalian

brain. For example, Lemke and colleagues exam-

ined IL-6 expression in the rat brain using anti-

body-based as well as in situ hybridization

methods and found that IL-6 mRNA and protein

are enriched in the hippocampus and cortex, with

much stronger expression in neurons than astro-

cytes or microglia [Lemke et al. 1998]. The IL-6

receptor in the mouse is most highly expressed in

the olfactory bulb, retrohippocampal region, and

hippocampus, with lower expression in the

cortex, striatum, and other regions. IL-1beta is

expressed at low levels in the mouse brain with

highest levels in the thalamus, hypothalamus,

striatum, and brainstem with somewhat lower

levels in the cortex, and even lower levels in the

hippocampus. Tumor necrosis factor (TNF)-

alpha is expressed most strongly in the olfactory

bulbs, ventral striatum, and pallidum, with more

intermediate expression in the hippocampus and

cortex (http://mouse.brain-map.org). Therefore,

it is possible that the distribution of inflammatory

cytokine expression is partially responsible for the

differential effects of inflammation on certain

cognitive domains, but other factors must also

play a role. For example, it is also possible that

certain brain regions are more vulnerable to the

effects of inflammation than other brain regions,

and this possibility will require further research

to assess.

It is interesting to note that one recent study

[Grigoleit et al. 2010] tested the effects of LPS

administration on healthy humans. The authors

tested 12 healthy men before and after the intra-

venous administration of 0.4 ng/kg LPS.

Although the injections caused transient (<4 h)

fever, elevated neutrophils, and elevated IL-6,

IL-10, and TNF-alpha levels, no changes in

episodic memory performance or performance

on the Stroop Color Word task were noted.

Therefore, it is likely that chronically elevated

cytokine levels are required to affect cognition.

Age-related increases in inflammation
linking deficits in cognition and physical
function
Whereas inflammation has been linked to cogni-

tive dysfunction in older people, it also has been

found to be associated with physical function in

this population. Because of the link between

cytokines and several disabling conditions,

including cerebrovascular disease [Vila et al.

2000; Kostulas et al. 1998] and coronary heart

disease [Tracy et al. 1997; Biasucci et al. 1996], it

has been hypothesized that inflammation is a

pathophysiological mechanism leading to decline

in physical function among older people.

Increasing serum levels of IL-6 have been found

to be associated, cross sectionally, with disability

in basic activities of daily living (ADLs) [Cohen

et al. 1997]. Similarly, an analysis of four studies

of older people with differing comorbidities

found that increasing serum levels of both IL-6

and CRP, but not TNF-alpha, were negatively

associated with performance-based mobility

function, such as longer time to complete a 4 m

walk and lower grip strength [Brinkley et al.

2009]. These associations were largely indepen-

dent of factors such as age, race, and body com-

position, and were generally consistent among

various chronic diseases such as chronic obstruc-

tive pulmonary disease and congestive heart fail-

ure [Brinkley et al. 2009]. Increased IL-6 has also

been found to be associated with incident self-

reported ADL disability [Ferrucci et al. 1999]

and mobility disability in longitudinal studies of

older people [Brinkley et al. 2009; Penninx et al.

2004; Ferrucci et al. 1999], with the study by

Penninx and colleagues also indicating that par-

ticipants with increased serum levels of CRP and

TNF-alpha were more likely to report mobility

disability at the 4-year follow-up assessment

[Brinkley et al. 2009; Penninx et al. 2004;

Ferrucci et al. 1999]. Participants having high
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levels of all three of these markers showed a par-

ticularly high incidence of self-reported mobility

disability, with associations persisting even after

people with cardiovascular disease were

excluded, thereby indicating that the relationship

between inflammation and subsequent mobility

function is independent of cardiovascular disease

[Penninx et al. 2004]. Inconsistencies across

studies in the assessment of multiple inflamma-

tory markers, evaluation of physical function (e.g.

self report versus performance based), as well as

differing follow-up periods, pose challenges in

summarizing the findings of these studies.

However, these inconsistencies also indicate

opportunities for future research.

In addition to being associated with impairments

in cognition and physical function, inflammation

also may play a role in contributing to increased

depressive symptoms in older people. Because

depression is also associated with cognitive

impairment and disability, the effects of inflam-

mation on depressive symptoms may mediate

some of the effects of inflammation on cognition

and disability. Cross-sectional [Bremmer, et al.

2008; Penninx et al. 2003; Dentino et al. 1999]

and longitudinal studies [Stewart et al. 2009]

indicate that increased serum levels of IL-6 are

associated with depression in older people.

Studies evaluating the relationship between

CRP and depression, however, report inconsis-

tent relationships; two report a positive associa-

tion [Stewart et al. 2009; Penninx et al. 2003] and

two report no association [Bremmer et al. 2008;

Ladwig et al. 2005]. Like the studies evaluating

the association between inflammation and physi-

cal function, the methodological discrepancies

across these studies, such as differences in study

design and whether or not the investigators are

evaluating depressive symptoms or major depres-

sion, hinder researchers’ ability to draw conclu-

sions about the association between

inflammatory markers and depression, in general.

Importantly, however, because impairments

in cognition, physical function, and mood are com-

mon in older people, are risk factors for each

other [Yogev-Seligmann et al. 2008; Johnson

et al. 2007; Yanagita et al. 2006; Wilson et al.

2004; Sheridan et al. 2003; Lockwood et al.

2002; Penninx et al. 2000], and have repeatedly

been shown to have profound deleterious effects

on everyday functioning [Inzitari et al. 2006;

Studenski et al. 2006; Raji et al. 2004; Stuck

et al. 1999], it has been postulated that

inflammation may be the underlying mechanism

largely responsible for the widely reported associ-

ations between deficits in cognition, physical func-

tion, and mood in older people.

It is however impossible to definitively establish

causality from the epidemiologic studies.

As noted above, inflammation is associated with

many disease states which may affect physical

functioning independently of inflammation.

True experimental designs are for the most part

impractical and unethical in humans, with the

study of Grigoleit and colleagues reviewed

above, as one notable exception [Grigoleit et al.

2010]. Therefore, animal models are essential for

determining whether inflammation can in fact

cause cognitive impairment and disability.

As reviewed in the previous section, it is clear

from preclinical research that inflammatory

insults are sufficient to cause cognitive and

behavioral impairment. Although the precise

contribution of inflammation to age-related dis-

ability remains unclear, when the existing body of

clinical and preclinical data is considered

together it is evident that inflammation is likely

to be an important contributor to disability in the

elderly.

Aging and inflammation: mechanism
Normal aging is thought to include some aspects

of inflammation. The aging brain, for example, is

said to be in a state of transition from relative

immunocompetence and surveillance, to one of

primed immune activation [Dilger and Johnson,

2008; Sparkman and Johnson, 2008]. Microarray

analysis has found that inflammatory genes

account for the vast majority of those that are

upregulated in the aging brain [Godbout et al.

2005; Prolla, 2002]. Additionally, changes are

observed in the activation of a variety of

immune-related cells. Microglia, for example,

the major immune cells of the CNS, switch

from a state of relative quiescence to one of acti-

vation in which they exhibit an increase in their

expression of many inflammatory markers [Deng

et al. 2010; Njie et al. 2010; von Bernhardi et al.

2010; Miller and Streit, 2007; Conde and Streit,

2006]. Microglia, particularly when activated,

are the primary source of proinflammatory cyto-

kines within the brain [e.g. ILs, interferons

(IFNs), and chemokines]. While increases in

proinflammatory cytokines are often observed

during times of infection, these same factors are

found to be upregulated as a function of
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increasing age, in the absence of any overt signs

or symptoms of illness [Campuzano et al. 2009;

Dilger and Johnson, 2008; Sparkman and

Johnson, 2008]. IL-1, IL-6 and IFN-alpha for

example, have all been found to be greater in

the brains of old-aged mice and rats compared

with adults [Campuzano et al. 2009; Sparkman

and Johnson, 2008]. Additionally, primed and

activated microglia residing in the aging brain

often show an exaggerated response to infection

and stress [Dilger and Johnson, 2008; Henry

et al. 2008; Rosczyk et al. 2008; Godbout et al.

2005; Kelly et al. 2003].

Peripheral markers of inflammation are also

elevated in elderly people. Normally low under

nonpathological conditions, serum levels of

proinflammatory cytokines, such as the ILs and

IFN-gamma, have been found to be elevated in

aging humans [Zhu et al. 2009; Pietschmann

et al. 2003] and animals [Campuzano et al.

2009; Sparkman and Johnson, 2008]. In addi-

tion, evidence of peripheral inflammation serves

as a risk factor for the development of age-related

neurodegenerative disease [Tan and Seshadri,

2010; Tan et al. 2007; McRae et al. 1993] and

may play a primary role in the etiology or pro-

gression of age-associated pathologies [McNaull

et al. 2010; Morales et al. 2010; Tan et al. 2010;

Holmes et al. 2009; Pompl et al. 2003]. In gen-

eral, elderly people are far more sensitive to mild

inflammatory insults, such as those associated

with surgical procedures [Aalami et al. 2003].

Indeed, increasing age is the primary risk factor

for the development of postoperative cognitive

dysfunction, memory deficits that persist from

days to months following even mild surgical pro-

cedures [Ramaiah and Lam, 2009; Rasmussen,

2006]. Given the evidence of greater basal

inflammation and the morphological changes

observed in neuroimmune cells, it is not surpris-

ing that aging people are increasingly sensitive to

insults or perturbations and often experience

cognitive and behavioral consequences to infec-

tion and stress that are larger, more robust and

more prolonged than in adults.

Considering the already established links

between aging and cognitive decline, aging and

inflammation, and inflammation and cognitive

dysfunction, it is not surprising that increasing

age has been shown to exacerbate the effects of

neuroinflammation on cognition and, likewise,

inflammation may worsen the effects of aging

on cognitive decline. As mentioned previously,

aging organisms are more sensitive to the conse-

quences of mild insults, inflammation and per-

turbations [Ramaiah and Lam, 2009; Aalami

et al. 2003; Kelly et al. 2003]. The inflammatory

response to chronic mild repeated stress, for

example, is exaggerated in old-aged mice com-

pared with adult mice [Buchanan et al. 2008].

Elderly people are at an increased risk for the

development of postoperative cognitive dysfunc-

tion, which is likely mediated through inflamma-

tion-related events [Xie et al. 2009]. Likewise,

LPS administration augments the cognitive defi-

cits observed in diseased animals [Cunningham

et al. 2009], and may speed the progression

of age-related degenerative disorders [Vaccarino

et al. 2007].

Inflammation as a therapeutic target
As reviewed above, neuroinflammation clearly

does occur with advancing age in the brain.

Because there is evidence that inflammation

may cause cognitive decline, a number of efforts

have focused on reducing inflammation in an

effort to prevent or treat cognitive decline associ-

ated with normal aging as well as neurodegener-

ative disease. Here we review the major classes of

pharmaceuticals that have been studied with

respect to neuroinflammation, with a focus on

AD and MCI. Because the literature on these

drugs is very large, we focus here on the proposed

mechanism of action of these agents as well as a

selected review of the clinical findings obtained to

date.

Because of the long availability of NSAIDs,

inhibitors of cyclooxegenase 1 and 2 (COX1

and 2), this class of compounds has been exten-

sively studied. At a cellular level, membrane

phospholipids are converted to arachidonic acid

by phospholipase A2. Arachidonic acid is then

converted to the prostaglandins (PG) PGG2

and PGH2 by cyclooxygenases and PGH2 is

then converted to a variety of prostaglandins

and thromboxane A2. In humans, the cyclooxy-

genases are coded by the genes PTGS1 (COX1)

and PTGS2 (COX2). Both enzymes are

expressed in the brain, although there are regio-

nal and cell-type specific differences in expression

that have been reported. In autopsy specimens,

COX1 was found to be highly expressed in

microglia and weakly expressed in neurons,

whereas COX2 was undetectable in control

brains but highly expressed in neurons and
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microglia after an acute ischemic event [Hoth

et al. 2008]. COX3 is a splice variant of COX1

and is expressed particularly in endothelium,

such as the major arteries and microvasculature

of the rat brain [Noble et al. 2010]. The expres-

sion of COX1 in the mouse brain is particularly

high in the medulla, cortex, pallidum, cerebel-

lum, and hippocampus, whereas COX2 is highest

in the hippocampus followed by the cerebellum,

olfactory bulbs, retrohippocampal region, and

cortex (http://mouse.brain-map.org). PGE2 is a

particularly important product of COX and

exerts its effects by interaction with a family of

PGE receptors (PTGER1�PTGER4) which are

coupled to Gq, Gs, Gi/Go, and Gs class G pro-

teins, respectively [Grigoleit et al. 2010]. COX

inhibitors reduce PGE2 levels, and because

PGE2 is capable of increasing IL-1beta levels,

the levels of this important inflammatory media-

tor are reduced by COX inhibitors. NSAIDS

have certain effects that are independent of

their ability to inhibit COX. For example,

NSAIDS can reduce the levels of reactive

oxygen species (ROS), inhibit NF-kappaB, and

activate peroxisome proliferator activated recep-

tor (PPAR) gamma [Grigoleit et al. 2010].

COX inhibitors have been found to have efficacy in

relation to normal aging in preclinical models. In

the rat, celecoxib administered at 12 months of age

was found to reduce age-related increases in IL-

1beta, TNF-alpha and PGE2 in the hippocampus,

and to reduce circulating corticosterone levels at 16

and 22 months of age [Trompet et al. 2008].

Interestingly, the authors found that when the

drug was started at 18 months of age, after the

inflammatory changes had already developed, no

differences in inflammatory cytokine levels were

noted at 22 months, suggesting that the drug

must be given prior to the onset of neuroinflamma-

tion. Drug treatment also improved Morris water

maze performance at 16, but not 22 months of age.

Another group [Schram et al. 2007] administered

the COX2 inhibitors nimesulide and rofecoxib and

the nonselective COX inhibitor, naproxen, for 15

days to aged (16-month-old) mice and found that

the drugs improved passive avoidance performance

in aged but not young (3-month-old) mice.

Another group [Marsland et al. 2006] studied the

effects of 2 months of oral sulindac in aged (18-

month-old) rats. The drug was found to reduce

age-related alterations in performance on the

radial arm maze and contextual fear conditioning

relative to young (6-month-old) rats and also

reduced age-related increases in hippocampal IL-

1beta levels.

NSAIDs have been tested in humans in relation to

AD and the results have been controversial

[Trepanier and Milgram, 2010; Marsland et al.

2006]. On the one hand, positive evidence for the

efficacy of NSAIDS has been demonstrated in

some studies. For example, the Rotterdam study

[Trompet et al. 2008] involved a cohort of 6989

people who were free of dementia at baseline.

People were screened 2�3 years later and again

6�8 years later. AD risk was analyzed in relation

to NSAID use, which was estimated from phar-

macy records, and the level of NSAID use was

inversely related to the risk of developing AD.

Similarly, the Baltimore Longitudinal Study of

Aging examined AD risk in relation to the use of

aspirin and other NSAIDs over a 15-year period in a

cohort of 1686 people [Schram et al. 2007]. Longer

duration of NSAID use, but not aspirin or acet-

aminophen use, was associated with a lower risk

of developing AD. Not all observational studies

have been positive, however. For example, one

group examined 2736 dementia-free people for up

to 12 years and determined that people using

NSAIDs most heavily had the highest incidence of

AD [Breitner et al. 2009]. Additionally, studies

using randomized controlled trials have been largely

negative. As recently reviewed [Imbimbo, 2009],

celecoxib and naproxen given over 2 years to

patients aged 70 and over with AD risk factors

failed to prevent the development of AD and, in

fact, increased the incidence of AD (although this

was not statistically significant) [Lyketsos et al.

2007]. Results have also been mixed when

NSAIDs were studied for MCI. Trials of rofecoxib

[Thal et al. 2005], triflusal [Gomez-Isla et al. 2008],

and celecoxib [Small et al. 2008] in patients with

MCI were inconsistent. The first study was nega-

tive, the second study showed a trend toward

improved cognition and significantly reduced risk

of developing AD, and the later study showed

some benefit with regard to executive functioning

and language/semantic memory.

Estrogens are another class of agents that have

received considerable attention. At a cellular

level, estrogens signal through nuclear receptor

superfamily receptors coded by the genes ESR1

(ERalpha) and ESR2 (ERbeta). Both genes are

subject to extensive alternative splicing. The two
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receptors have similar affinities for the endoge-

nous estrogen 17beta-estadiol. ERalpha and

ERbeta have somewhat distinct distributions in

mammalian brain [Hughes et al. 2009]. In the

nonhuman primate brain ERalpha immunostain-

ing is present in several amygdaloid and hypotha-

lamic nuclei, lateral septum, nucleus of the stria

terminals, subfornical organ, and periaqueductal

gray, with sparse staining in the cholinergic basal

forebrain [Blurton-Jones et al. 1999]. ERalpha

expression has been observed in pyramidal neu-

rons as well as nonpyramidal neurons of the PFC

of humans, monkey, and rat [Montague et al.

2008]. A recent quantitative electron microscopy

study determined that ERalpha is present within

excitatory synapses, and presynaptic expression

was correlated with performance on a PFC-

dependent task [Wang et al. 2010]. ERbeta dis-

tribution in nonhuman primate brain has been

examined by in situ hybridization which revealed

high expression levels in the preoptic area, para-

ventricular nucleus, and ventromedial nucleus of

the hypothalamus, the substantia nigra, caudal

linear raphe nuclei, dorsal raphe, and pontine

nuclei of the midbrain, the dentate gyrus, CA1,

CA2, CA3, CA4, and the prosubiculum/subicu-

lum areas of the hippocampus. Expression in

the suprachiasmatic region, supraoptic nucleus,

arcuate nucleus, and amygdala was less intense

[Gundlah et al. 2000]. Estrogen receptors signal

by a ‘classical’ route that involves dimerization of

the receptor and recruitment of SRC and

N-CoR, and by a nonclassical route that involves

direct interaction with activator protein-1 (AP1),

NFkappaB, and specificity protein-1 (SP-1), as

well as extracellular signal-regulated kinase

(ERK), AKT, and protein kinase A activation

[Hughes et al. 2009]. Estrogens, particularly

ERbeta agonists, have been found to have anti-

inflammatory effects and reduce expression of

IL-1beta and TNF-alpha. ERalpha agonists

reduce IL-1beta expression [Hughes et al. 2009].

A protective effect of estrogen use with respect to

risk for AD is supported by a number of observa-

tional studies. For example, Baldereschi and col-

leagues studied 2816 women aged 65�84 years

and found a higher frequency of estrogen use

among nonpatients than among patients with

AD [Baldereschi et al. 1998]. The results of ran-

domized trials, however, have been less positive.

One randomized, placebo-controlled, cross-over

study tested 12 weeks of estrogen versus placebo

in 43 men with MCI and noted a benefit only for

the men randomized to placebo followed by

estrogen [Sherwin et al. 2009]. The Women’s

Health Initiative Memory Study determined the

effects of estrogen plus progestin on the incidence

of dementia and MCI in 4532 postmenopausal

women without dementia who were aged 65 and

older. The authors noted increased risk in the

patients receiving estrogen and progestin

[Shumaker et al. 2003]. Estrogens have also

been tested in several randomized controlled

trials for AD. In one study, 120 women with AD

were randomized to 1 year of estrogen or placebo

and no group differences were noted [Mulnard

et al. 2000]. Similarly, Henderson and colleagues

randomized 42 women with AD to estrogen versus

placebo for 16 weeks and no differences were

detected [Henderson et al. 2000].

Endocannabinoids are lipids which interact with

cannabinoid receptors including CB1 (coded by

the gene CNR1) and CB2 (coded by the gene

CNR2) which couple to Gi/Go class G proteins.

Whereas CB1 receptors are widely expressed in

brain, CB2 receptors are expressed on immune

cells, including T cells, macrophages, B cells,

and microglial cells [Wolf et al. 2008]. The anti-

inflammatory effects of cannabinoids are medi-

ated mainly by activation of CB2 receptors.

Activation of CB2 receptors inhibits the

expression of proinflammatory cytokines such as

TNF-alpha, IL-1beta, IL-6, and IL-8, and

increases the expression of anti-inflammatory

cytokines [Wolf et al. 2008]. Although this class

of drugs has received attention in preclinical stud-

ies, we are not aware of any randomized controlled

trials in humans in relation to MCI or AD.

Drugs that act as PPAR agonists have found clin-

ical application mainly in the area of diabetes but

have been tested experimentally for efficacy in

neuroinflammation. The PPARs are nuclear hor-

mone receptors and are coded by the genes

PPARA, PPARB, and PPARG in humans.

These receptors regulate gene expression by

forming heterodimers with retinoid X receptors

(coded by RXRA, RXRB, and RXRG) and inter-

act with PPRE sequences on target genes [Shie

et al. 2009]. All of the PPARs are expressed in

neurons and astrocytes, and PPARG is the main

isoform expressed in microglia. PPARG agonists

are capable of inhibiting activated microglia and

astrocytes [Storer et al. 2005]. The most potent

endogenous ligand is 15d-PGJ2, a derivative

of the prostaglandin, PGD2. Most of the experi-

mental work on this system has relied on thiazolidi-

nediones (TZDs; also known as glitazones) [Shie
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et al. 2009]. In addition, a class of compounds

known as heterocyclic thiadiazolidinones

(TDZDs) is under development and may have

much better CNS permeability than the TZDs

and are GSK3beta inhibitors in addition to being

PPARG agonists [Shie et al. 2009]. In addition to

these compounds, NSAIDS have some ability to

activate PPARG. Some data support the use of

PPARgamma agonists in AD. For example,

Watson and colleagues randomized 30 people

with mild AD or amnestic syndrome to 6 months

of rosiglitazone or placebo. People receiving rosigli-

tazone showed improved delayed recall compared

with people receiving placebo [Watson et al. 2005].

The activation of microglial cells contributes to

increased oxidative stress. A number of studies

have examined the ability of drugs with antioxi-

dant properties to interfere with this process. One

such drug is resveratrol, a naturally occurring

compound found in red wine that is readily avail-

able as a dietary supplement. This drug has been

found to be neuroprotective in a variety of preclin-

ical studies and has the ability to inhibit microglial

activation [Zhang et al. 2010]. The mechanism is

thought to involve effects on reduction of ROS,

decreased mitogen-activated protein kinase sig-

naling, and activation of the Sirt1 pathway, and

the drug is capable of reducing inflammatory

cytokine release as well [Zhang et al. 2010].

N-Acetylcysteine (NAC) has seen widespread use

in preclinical and clinical studies. It is believed

that the thiol group has antioxidant effects and

acts as a free radical scavenger. In addition to its

US Food and Drug Administration (FDA)

approved use in acetaminophen overdose and

renal protection, it has proven effective in a wide

range of neuropsychiatric conditions [Dean et al.

2010]. Thus far, NAC has not been subjected to

any randomized trials for MCI to our knowledge.

It has been tested for AD [Adair et al. 2001] in a

small study involving 43 people with probable AD.

Although no differences were noted at 24 weeks

on the primary outcome measures, a trend toward

improvement on MMSE scores and figure recall

and significant improvements on letter fluency

were noted. Similarly, omega-3 fatty acids have

received some attention. Omega-3 fatty acids

such as eicosapentaenoic acid and docosahexae-

noic acid are found in oily fish. Omega-3 fatty

acids have been studied as potential treatments

for AD with no clear positive effects but further

research is needed [Cederholm and Palmblad,

2010].

A large number of pharmaceuticals have been

developed to specifically combat neuroinflamma-

tion associated with conditions such as multiple

sclerosis (MS). Although these drugs have for the

most part not been tested for normal aging, AD,

or MCI, the pharmacology is of potential impor-

tance for these conditions.

IFNs include type I IFNs (IFN-alpha, IFN-beta,

and IFN-omega) and type II IFNs (IFN-gamma).

IFNs play an important role in host response to

viral infection and enhance major histocompatibil-

ity complex I (MHC I) and MHC II expression

and immunoproteasome activity [Codarri et al.

2010]. Thus far, only the type I IFNs have

found clinical application, with IFNalpha used in

hepatitis. IFNbeta-1a (Avonex [Biogen Idec,

Weston, MA, USA], Rebif [EMD Serono, Inc.,

Rockland, MA, USA], and CinnoVex

[CinnaGen company, Tehran, Iran]) and

IFNbeta-1b (Betaseron [Bayer HealthCare

Pharmaceuticals, Leverkusen, North Rhine-

Westphalia, Germany], Extavia [Novartis, Basel,

Switzerland]) are FDA approved for use in MS.

Glucocorticoids such as dexamethasone and

methylprednisolone have proven efficacy in MS.

Despite powerful anti-inflammatory effects, these

drugs are limited by numerous adverse neuropsy-

chiatric effects. Preclinical studies (e.g. Li and

colleagues [Li et al. 2010]) show that glucocorti-

coids worsen outcomes in animal models of AD.

Prednisone has been tested in one randomized

trial for AD [Aisen et al. 2000] which involved

a high dose over 4 weeks followed by a lower dose

over 1 year. No differences in cognition were

noted between the treatment groups, but predni-

sone worsened behavioral decline.

Glatiramer acetate (Copaxone) [TEVA

Neuroscience, Inc, Kansas City, Missouri,

USA] has proven efficacy in relapsing�remitting

MS. Although the drug is thought to mimic the

myelin basic protein component of myelin, it has

been found to have numerous other anti-inflam-

matory effects. There is some support for the use

of this agent in AD based on preclinical models.

For example, vaccination of doubly transgenic

APP/PS1 mice with amyloid beta-peptide

(Abeta) and glatiramer acetate reduced plaque

formation and cognitive decline [Butovsky et al.

2006]. A similar report based on Abeta vaccina-

tion given along with glatiramer acetate showed

clearing of Abeta fibrils.

AA Simen, KA Bordner et al.

http://taj.sagepub.com 185



Many pharmaceutical companies are developing

pharmaceuticals known as biologics, which

include recombinant antibodies and proteins

that may have more highly targeted actions than

small molecules. Natalizumab (Tysabri [Biogen

Idec, Weston, MA, USA]) is a humanized mono-

clonal antibody against the cellular adhesion mol-

ecule alpha4-integrin. The drug is believed to

work by inhibiting the migration of leukocytes

into the CNS. Its use is limited primarily by the

infrequent occurrence of progressive multifocal

leukoencephalopathy [Clifford et al. 2010;

Warnke et al. 2010] and has not been tested in

AD or MCI. Another important biologic is eta-

nercept, a recombinant molecule consisting of a

soluble TNF receptor 2 fused to the Fc portion

of IgG1. Although the drug is FDA approved for

arthritis and ankylosing spondylitis, some prelim-

inary findings, based on open-label administra-

tion, suggest possible efficacy in AD [Tobinick

and Gross, 2008a, 2008b; Tobinick, 2007].

In addition to pharmaceuticals, certain lifestyle

factors are known to have important roles in

inflammation and cognition, and may help to

inform future drug development. One of the

most replicated findings in the aging field is

that caloric restriction slows the rate of aging

through, at least in part, a reduction of inflam-

mation in both the periphery and CNS. The

results of a landmark 20-year study of caloric

restriction in Rhesus macaques were recently

published [Colman et al. 2009] featuring 46

males and 30 females randomized to 30% caloric

restriction or control. Of the animals that died of

age-related causes, 37% of control animals died

compared with only 13% of the caloric restriction

animals. Improved maintenance of muscle mass,

glucose homeostasis, a 50% decline in cancer,

and a 50% drop in cardiovascular disease was

noted. Within the CNS, caloric restriction led

to decreased atrophy of subcortical regions,

mid-cingulate cortex, lateral temporal cortex,

and right dorsolateral frontal lobe. A recent

meta-analysis of caloric restriction and aging in

mice [Swindell, 2009] found evidence for an

upregulation of numerous immune-related

genes such as complement components and CD

antigens with aging and a reversal of these

changes by caloric restriction. The mechanism

of caloric restriction is an area of intense investi-

gation. One important hypothesis involves the

mammalian target of rapamycin (mTOR) path-

way, which plays an important role in nutrient

sensing [Kapahi et al. 2010]. Interestingly,

mTOR appears to play an important role in

microglial activation in response to cytokines as

well as in microglial survival [Dello Russo et al.

2009], suggesting that mTOR inhibitors may

have therapeutic value. It is likely that research

on the mechanism of caloric restriction will

continue to suggest novel therapeutic targets for

age-related cognitive decline.

Conclusions
Whereas aging is associated with declines in exec-

utive functioning as well as episodic memory,

semantic memory is only affected much later in

life, and implicit memory appears to be relatively

spared. Since prefrontal functioning is likely to be

more important for episodic memory than seman-

tic memory and directly mediates executive func-

tioning, it is not surprising that these differences in

sensitivity to aging are consistent with a particular

sensitivity of prefrontal cortex to aging.

Age-related declines in cognition, especially in

executive functioning, significantly affect a per-

son’s ability to live independently, along with

their overall quality of life. As the population

ages, maintaining a high quality of life is a very

important objective. The etiology of age-related

cognitive decline is not entirely clear, but a model

where age-related increases in inflammation lead

to decrements in cognition is consistent with the

literature, although other mechanisms also likely

play a role. Such a model would suggest that aging

effects on cognition are not inevitable and are

potentially modifiable by reductions in inflamma-

tory signaling. There is some evidence that phar-

maceuticals directed against neuroinflammation

can affect cognitive changes associated with

normal aging as well as neurodegenerative diseases

but much more research is needed to develop

more effective drugs for this application. In the

future, drugs which target CNS inflammation

may prove effective in preventing or slowing age-

related cognitive decline and promise to increase

the quality of life in this growing segment of the

population.
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