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Under unfavorable environmental conditions, Acanthamoeba 
trophozoites transform into cysts those are resistant to extreme 
physical and chemical conditions [1]. The mature cyst has 2 
walls, an outer wall (exo-cyst) and an inner wall (endo-cyst) 
(Fig. 1). The cyst wall of Acanthamoeba castellanii contains car-
bohydrates (35%), protein (33%), ash (8%), lipid (4-6%), and 
unidentified materials (20%) [2]. Acid-resistant proteins and 
cellulose are the major components of the cyst wall [3]. The 
precursor of cellulose is glucose, and the source of glucose is 
glycogen in encysting amoeba [4]. According to the previous 
report, the glycogen molecule undergoes rapid degradation 
during the early phase of Acanthamoeba encystation, and the 
glycogen content of cysts is significantly less (18 µg/106 cells) 
than that of trophozoites (83 µg/106 cells) [4]. These results 
suggest the involvement of glycogen metabolism in cellulose 
synthesis during encystation of Acanthamoeba. However, the 
metabolic pathway of glycogen breakdown and cellulose syn-

thesis during encystation has yet to be clarified. In this study, 
we hypothesized that the short-cut process of cellulose synthe-
sis could be involved in rapid construction of the cyst wall of 
encysting Acanthamoeba. To conduct this study, A. castellanii 
Castellani (ATCC no. 30011) was used for induction of cysts, 
and comparison of ESTs and microarray analysis [7,8]. Real-
time PCR analysis was performed to compare the expression 
levels of 3 enzymes involved in glycogen degradation and cel-
lulose synthesis. Three sets of primers were used (Table 1), and 
18s rDNA was used as a reference gene [8].

Fig. 2 shows the metabolic pathway of glycogen degradation 
(arrow pathway) and cellulose synthesis (dot-arrow pathway). 
In general, breakdown of glycogen into units of glucose occurs 
through phosphorylitic cleavage by glycogen phosphorylase, 
phosphoglucomutase, and glucose-6-phosphatase [5]. Synthe-
sis of cellulose from glucose is also a multi-step process involv-
ing 4 enzymes; hexokinase, phosphoglucomutase, UDP-glu-
cose pyrophosphorylase, and cellulose synthase [6]. According 
to the process, it is 7 steps from glycogen to cellulose in Acan-

thamoeba. Glucose-1-phosphate is a metabolic product of gly-
cogen in glycogenolysis and converts to glucose through glu-
cose-6-phosphate. For cellulose synthesis, glucose-1-phosphate 
is also an important branch point to generate cellulose from 
glucose (Fig. 2). Therefore, we hypothesized that the short-cut 
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process of cellular synthesis from glycogen could be mediated 
by 3 enzymes in Acanthamoeba (Fig. 2, box).

Our previous ESTs analysis study provided partial sequences 
of glycogen phosphorylase (GenBank no. JX312797) and UDP-
glucose pyrophosphorylase (GenBank no. JX312798) [7]. Us-
ing sequence information on cellulose synthase from A. castel-
lanii Neff (Tang et al., unpublished), we cloned a partial cDNA 
of cellulose synthase from A. castellanii Castellani (GenBank 
no. JX312799). Results of cDNA microarray analysis between 
cysts and trophozoites indicated a 2.44-fold higher expression 
of glycogen phosphorylase in cysts than in trophozoites [8]. 
However, phosphoglucomutase was expressed less in cysts than 

in trophozoites (2.4-fold) [8]. These results suggested that the 
conversion of glucose-1-phosphate to glucose-6-phosphate is 
not essential in glycogen degradation during encystation of 
Acanthamoeba. Then, it is possible to hypothesize the short pro
cess to synthesize cellulose from glycogen through glucose-1-
phosphate, an important branch point.

The results of the quantitative real-time PCR analysis of ex-
pression of 3 enzymes supported our hypothesis strongly. As 
shown in Fig. 3, the mRNA level of glycogen phosphorylase 
showed a gradual increase and reached the maximum (10.3-
fold) at the third day after induction of encystation (Fig. 3A). 
Dictyostelium discoideum, a species of soil-living amoeba, has 
been reported to have 2 forms of glycogen phosphorylase [9]. 
The 2 forms of the enzyme may play different roles in the de-
velopment of Dictyostelium because they have different expres-
sion patterns. Glycogen phosphorylase 1 was found to be func-
tional during differentiation of Dictyostelium into spores which 
have walls containing cellulose [10]. During the time course of 
development of Dictyostelium, the ‘b’ form (glycogen phosphor-
ylase 2) showed a decrease, whereas the ‘a’ form (glycogen pho
sphorylase 1) showed an increase [11]. The partial glycogen 
phosphorylase of A. castellanii Castellani showed 65% similar-
ity with glycogen phosphorylase 1 of D. discoideum, and show
ed high expression during encystation. The mRNA levels of 
UDP-glucose pyrophosphorylase of Acanthamoeba showed the 
highest expression (6.1-fold) on the second day after induc-
tion of encystation (Fig. 3B). UDP-glucose pyrophosphorylase 
2 of D. discoideum was required for the differentiation and de-
velopment of the amoeba [12]. The partial UDP-glucose pyro-
phosphorylase of A. castellanii showed 62% similarity with 
UDP-glucose pyrophosphorylase 2 of D. discoideum. The ex-
pression level of cellulose synthase of A. castellanii showed an 
increase (3.0-fold) on the second day after induction of encys-
tation (Fig. 3C). The partial sequence of cellulose synthase of 
A. castellanii showed 99% similarity with that of A. castellanii 
Neff (ACC008015- Tang et al., unpublished) and 64% similar-

2 µm

Fig. 1. Cross section of an encysting Acanthamoeba after 24 hr 
of encystment. The cyst wall consists of 2 layers, exo-cyst (ar-
rows) and endo-cyst (arrowheads). 

Table 1. Primer sequences used in real-time PCR analysis

Gene name Primer sequence

Glycogen phosphorylase F´-TCGAGGTTGCTGATGGTGTTC
R´-ACGCACAAGCACTTTGAGGAG

UDP-glucose  
   pyrophosphorylase

F´-ACAAACCACACAATGGCCACC
R´-TGGTCTTGTGAGCCGCTAACT

Cellulose synthase F´-TCATCTACATGTTCTGCGCCC
R´-CGATCCAGTTGTTGAGCATGC

Fig. 2. Glycolysis and cellulose biosynthesis pathway in Acan-
thamoeba. Acanthamoeba trophozoites synthesize glycogen 
from glucose, which later breakdown during encystation to gen-
erate cellulose. It takes 7 steps from glycogen to cellulose through 
glucose. We hypothesized a brief pathway of cellulose synthesis 
from glycogen in Acanthamoeba (box).
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ity with that of D. discoideum. These results suggest the involve-
ment of these enzymes in the encystation process of Acantham-
oeba. 

The development of the acid-insoluble protein containing 
ectocyst wall and the cellulose containing endocyst wall leads 
to emergence of resistance to biocides in encysted Acanthamoe-

ba [13]. Cellulose, the primary component of the cyst wall, is 
also used for diagnosis of Acanthamoeba cysts [14]. This is the 
first study that we identified 3 enzymes involving cellulose 
synthesis in Acanthamoeba and confirm the short-cut pathway 
to synthesize cellulose by analysis of their expression patterns 
during encystation. Information on cellulose synthesis is im-
portant to understand the mechanism of encystation and to 
diagnose cyst-forming protozoa. This key process of cellulose 
synthesis may aid in understanding of cyst wall formation in 
Acanthamoeba. 
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Fig. 3. Real-time PCR analysis of 3 enzymes during encysta-
tion. (A) An increase in levels of expression of glycogen phos-
phorylase was observed on Day 1 (2.4-fold), Day 2 (6.7-fold), 
and Day 3 (10.3-fold). (B) High expression of UDP-glucose py-
rophosphorylase on Day 1 (2.3-fold), Day 2 (6.1-fold), and Day 3 
(4.0-fold). (C) Cellulose synthesis showed high levels of expres-
sion on Day 1 (2.8-fold), Day 2 (3.0-fold), and Day 3 (2.2-fold). 
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