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Abstract
Annual vaccination against seasonal influenza is recommended to decrease disease-related
mortality and morbidity. However, one population that responds suboptimally to influenza vaccine
is adults over the age of 65 years. The natural aging process is associated with a complex
deterioration of multiple components of the host immune system. Research into this phenomenon,
known as immunosenescence, has shown that aging alters both the innate and adaptive branches of
the immune system. The intricate mechanisms involved in immune response to influenza vaccine,
and how these responses are altered with age, have led us to adopt a more encompassing systems
biology approach to understand exactly why the response to vaccination diminishes with age.
Here, the authors review what changes occur with immunosenescence, and some immunogenetic
factors that influence response, and outline the systems biology approach to understand the
immune response to seasonal influenza vaccination in older adults.
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Influenza vaccinology is rapidly changing. From the point of view of vaccine
recommendations, we have moved from a ‘one size fits all’, risk-based approach to a
population approach that now calls for all Americans aged 6 months and older to be
immunized annually. However, as far as which vaccine formulation to use, we have moved
to a more individualized, directed approach [1]. This is evident in the recent licensure and
availability of both high-dose trivalent influenza vaccines (HD-TIVs) and intradermal
trivalent influenza vaccines, respectively, in the USA [201]. In Europe, an MF59-adjuvanted
vaccine is available, and the pipeline of influenza vaccine development continues to grow.

Within this field is an area of special concern: immunosenescence and the resulting
decreased immunogenicity and efficacy of influenza vaccines in older persons. This concern
results from the reality that the older individual is more susceptible to morbid infection, may
be unable to mount an effective vaccine-induced protective response, and is likely to have
concomitant comorbidities that either contribute to the higher rates of morbidity and
mortality if influenza infection results, and/or further impairs the development of an
effective immune response to vaccine. While these are issues of considerable inquiry, to
date, the understanding of immunosenescence remains limited. In turn, this impairs our
ability to devise vaccines or adjuvants that can overcome such barriers. For this reason, an
expanded research agenda and approaches to understand immunosenescence and its
relationship to vaccine-induced immunity is essential.

In this review, the authors summarize data on the epidemiology of influenza in older
persons, the current understanding of immunosenescence, the role of immunosenescence in
reduced vaccine immunogenicity and finally, discuss a systems biology and vaccinomics
approach to unraveling the impact of immunosenescence on decreased vaccine
immunogenicity and the application of such knowledge to the development of improved
influenza vaccines for older persons [2].

Epidemiology of influenza in older adults
While older adults suffer the highest rates of hospitalization and mortality, they neither have
the highest rates of infection nor represent major contributors to local outbreaks. Local
outbreaks begin suddenly and unaccountably, peak over a 2–3-week period and then persist
for 2–3 months. The timing and nature of these outbreaks remain unpredictable, unexplained
and a target for scientific speculation [3–6]. In an outbreak, the first cases of influenza
appear in school-aged children and then spread to adults, including older adults, infants and
younger children. Attack rates vary from 10 to 20% in the general population, reaching
attack rates in the general population of more than 50% during a pandemic; attack rates can
be extraordinarily high in institutional settings.

Despite having no higher attack rate than in younger adults, influenza’s effects are more
significant in older adults. Barker’s study focusing on the impact of influenza infection in
the frail elderly showed a decline in functional status measurable 3–4 months after infection
on at least one major function (e.g., bathing, dressing or mobility) for 25% of older patients
residing in nursing homes as compared with 15.7% of controls – randomly selected residents
living in the same facility not contracting influenza or influenza-like illness during the same
outbreak [7].

As mentioned earlier, older adults also have higher rates of hospitalization and mortality.
Thompson et al. used the CDC’s influenza-infection surveillance data and the National
Hospital Discharge Survey data to estimate the annual influenza-related hospitalization rates
in the USA [8]. The results showed that hospitalization greatly increased with age in those
aged 65 years and older; specifically, the rates increased with each 5-year block of age from
65 to 69, to 85 years and older. Where pneumonia or influenza was listed as the primary
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diagnosis, the average hospitalization rate was 36.8 per 100,000 person-years, but this
increased in older persons from 37.9 for those 50–64 years old, to 71.1 for those 65–69 years
old, to 127.8 for those 70–74 years of age, to 302.2 for those 80–84 years old, and 628.6 for
those aged 85 years and older. Furthermore, the length of hospital stay also increased with
age from a median of 3 days for those less than 5 years of age, to 4 days for those 5–49
years of age, to 6 days for those 50–74 years of age, to 7 days for those 75 years and older.

Death rates from pneumonia and influenza in the USA have ranged from 5000 to 50,000 a
year as a result of cardiovascular and respiratory pathology and depending upon the
circulating influenza strain. While hospital rates in older adults approximate the hospital
rates in infants and children younger than 2 years of age, the fatality rate associated with the
elderly is much higher. Thompson et al. found in their study that mortality rates due to
influenza have increased from the years 1976 to 1999, which they explained in part due to
the aging of the US population [9]. While the mortality rates from underlying pneumonia or
influenza for those younger than 50 years of age ranged from 0.3 per 100,000 person-lives,
the rates increased at 50 years of age and above [9]. The rates were 1.3 per 100,000 person-
lives for those 50–64 years of age and 22.1 person-lives for those 65 years and older [9]. The
increased death rate found in this study matched findings of other investigations [9,10].
Increasing the risk of mortality are the presence of high-risk medical conditions; Nordin et
al. found the lowest risk of mortality among those with no high-risk medical conditions who
were 65–74 years of age, and the highest risk of mortality among those with high-risk
medical conditions who were 75 years and older [10].

Using 2003 data, Molinari et al. estimate that the total financial burden of seasonal influenza
infection in the USA amounts to $10.4 billion a year and that the older population bear 64%
of the total economic burden [11]. Efforts to target the reduction of the disease burden in the
older population therefore would have a substantial impact on the expense of seasonal
influenza [11].

Vaccine efficacy & induced immune response in older adults
Vaccine efficacy against influenza illness in older adults is difficult to measure and reliable
data are scarce. To date, there has been only one placebo-controlled trial of influenza
vaccine efficacy against laboratory-confirmed illness in older adults [12]. The study
estimated protection from influenza illness at approximately 50%. An alternative and widely
accepted approach is the measurement of influenza-specific antibody titers as a correlate of
protection. Titers are traditionally measured using a hemagluttination inhibition (HAI)
assay, which quantifies the ability of hemagglutinin (HA)-specific antibodies to block N-
acetylneuraminic acid-mediated viral agglutination of red blood cells [13,14]. Using the set
guidelines of this assay, vaccine protection can be assessed based on patient seroconversion
(fourfold increase in antibody titers postvaccination) and seroprotection (HAI antibody titers
≥1:40 postvaccination). Although some discrepancies exist in studies focusing on antibody
response to influenza vaccine in older adults, a quantitative review concluded that HA-
neutralizing antibodies are considerably lower in vaccinated older adults than in younger
adults [15]. There is also a correlation between health status in older adults and HAI titers,
with healthy older adults having statistically significant higher levels of HAI titers than
those with chronic diseases [16].

A strain-specific robust humoral response to influenza is necessary to prevent primary
infection, but eventual viral clearance is dependent on the presence of CD8+ T cells directed
toward conserved regions of the virus [17]. Influenza-specific CD8+ T cells produce
antiviral mediators and directly kill infected cells [18]. Another approach used to measure
cellular-mediated efficacy of influenza vaccines against laboratory-confirmed disease is to
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quantify the ratio of IFN-γ:IL-10 and the cytolytic enzyme granzyme B from T cells
postvaccination [19]. Specifically, granzyme B production has been reported as a direct
method of assessing vaccine failure and subsequent illness in older adults [20,21].
Furthermore, several studies have demonstrated a defect in the production of IFN-γ and
granzyme B in CD8+ T-cell subsets obtained from vaccinated older adults [22–24].

To overcome the diminished immune response observed in older adults, an ‘increase the
firepower’ approach has been adopted. HA concentrations for each strain of 60 μg or more,
as compared with 15 μg of HA in the standard trivalent inactivated vaccine (SD-TIV), result
in increased immunogenicity for influenza A strains and noninferiority for influenza B in
older adults [25,26]. This led to the formulation of an US FDA-licensed high-dose vaccine
for adults 65 years or older [202]. Each HD-TIV contains 60 μg of HA antigen for each
H1N1, H3N2 and B strain contained in the SD-TIV. The HD-TIV was more immunogenic
for both influenza A virus strains in older adults than the SD-TIV in a Phase III trial [27].
However, both antibody and cell-mediated immune responses in older adults vaccinated
with the HD-TIV never achieve the same levels observed in young adults vaccinated with a
standard-dose vaccination [28]. Although the antibody titers achieved with the high-dose
influenza vaccine in older adults may be effective against circulating influenza strains, the
increasing emergence of deadlier strains demands the development of vaccines that focus on
more than just increasing antigen dose. An aging immune system may not be able to mount
a sufficiently protective response to current or novel strains regardless of the amount of
antigen present without the addition of adjuvants or newer methods of antigen delivery.

Immunosenescence
A key factor driving vaccine failure in older adults is immunosenescence.
Immunosenescence is a broad term used to describe complex alterations in the immune
response attributed to aging. As the immune system ages, there is a significant increase in
susceptibility to infection, autoimmunity and cancers, and a decrease in vaccine-induced
immunity [29]. At a cellular level, immunosenescence is a combination of diminished
immune cell numbers and function, coupled with an inappropriate/unregulated inflammatory
response that results in less than ideal immunity. The following sections summarize
published work that addresses the influence of immunosenescence on the innate and
adaptive immune systems and how these properties may diminish vaccination response in
older adults.

Immunosenescence & the innate response
The innate branch of the immune system affords the host ability to respond rapidly and
nonspecifically to an invading pathogen by host pattern recognition receptors (PRRs) [30].
Specifically, influenza virus has been shown to interact with innate signaling mediators,
Toll-like receptors (TLRs; e.g., TLR7), Nod-like receptors (e.g., NLRP3, NOD2) and RIG-I-
like receptors [31–34]. Along with initial pathogen clearance, innate immunity is also
responsible for the genesis of the adaptive response by recruiting immune effector cells [35].
An age-related deficiency in innate immunity can negatively influence any subsequent
adaptive response. As described below, there is mounting evidence that the phenotypic
responses of many components of innate immunity are influenced by immunosenescence.

Monocytes, dendritic cells, NK cells and other innate immunity cells express TLRs [36].
The interactions between conserved molecular patterns present on microbial pathogens and
TLRs lead to a MyD88 or TRIF-dependent induction of proinflammatory cytokines and the
upregulation of type I interferons [37]. There is increasing evidence that a combination of
inappropriate activation of TLRs and diminished function in response to many ligands is
present in an aged population. Peripheral blood mononuclear cells from older adults produce
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decreased levels of IL-6 and TNF-α and TLR1 surface expression levels are reduced after
stimulation with a TLR1/2 ligand [38]. In the context of viral infection, pro-inflammatory
cytokine production and TLR3 expression levels are increased on West Nile virus-infected
macrophages from older human donors, which may result in an inappropriate inflammatory
response [39]. Plasmacytoid dendritic cells from aged donors secrete decreased amounts of
both IFN-1 and IFN-III after stimulation with both the TLR7 ligand CpG and live influenza
virus, which is due to impairment in IRF-7 phosphorylation [40]. These plasmacytoid
dendritic cells also exhibit diminished induction and priming of CD4/CD8 T-cell immunity.
Panda et al. demonstrated a correlation between defects in cytokine response from aged
human dendritic cells stimulated with TLR ligands and diminished influenza vaccine-
induced antibody production [41]. Taken together, impaired TLR response in immune cells
from older adults directly affects both cellular and humoral immunity to influenza.

CD80 and CD86 are costimulatory molecules expressed on antigen-presenting cells and help
activate T cells after interaction with CD28 [42,43]. Costimulatory molecule expression on
TLR-activated monocytes can predict influenza vaccine immune response in both young and
older adults; in one study, TLR-induced CD80 levels were approximately 68% less in older
adults (p = 0.0002) compared with young adults [44]. A decreased ability to interact with
and activate effector T cells would ultimately result in both a deficient cellular and humoral
response to vaccine.

NK cells are vital to the clearance of viral infection by the production of IFN-γ and lysis of
infected cells [45]. Multiple studies have highlighted the importance of NK cells during
influenza infection in both humans and mice [46–49]. NK cell activity in human subjects is
augmented by influenza vaccination [50]. Interestingly, the overall numbers of NK cells are
increased in healthy older adults [51]. However, the function and number of NK cells
decrease with diminished health status, and NK activity correlates with health status and
HAI titers in vaccinated older adults [16,52]. Any perturbation in NK cell function would be
detrimental to the development of a protective immune response to infection.

In contrast to the many diminished responses associated with immunosenescence is the
subclinical hyperinflammatory state known as ‘inflamm-aging’ [53]. Immune cells isolated
from older adults produce higher concentrations of inflammatory cytokines, such as IL-1β,
IL-6 and TNF-α after stimulation. Serum IL-6 levels increase with age in humans and are
associated with disability and geriatric frailty [54–56]. Constant inflammation could leave a
host susceptible to infection by not having the ability to recognize a true inflammatory
response to a pathogen. This is true in a mouse model of systemic herpes viral infection,
where an elevated state of inflammation increases susceptibility [57]. Vaccination failure
and susceptibility to influenza illness may be a result of too much inflammation and not
enough regulation.

Immunosenescence & the adaptive response
Bone marrow-derived T-cell progenitors undergo development and selection in the thymus
and emerge as mature naive T cells [58]. One of the more dramatic observations associated
with aging is thymic involution, which results in a measurable decrease in circulating levels
of new naive T cells [59]. Surprisingly, there is no change in overall circulating T-cell
numbers with age [60]. Research postulates that T-cell homeostasis and the production of
new T cells is maintained through clonal expansion of peripheral, antigen-specific T cells
[61].

An adverse effect of new T cells produced from existing T cells is a decrease in the diversity
of T-cell receptors (TCRs) [62]. A robust immune response to influenza infection is
dependent on TCR diversity and there is evidence of a decrease in influenza-specific CD8+

Lambert et al. Page 5

Expert Rev Vaccines. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



T-cell repertoire in older adults [22,63]. T-cell population diversity is also diminished in
older adults after lifelong exposure to certain antigens and the accumulation of memory T
cells [64].

A decline in T-cell diversity and massive expansion of memory T-cell clones has also been
linked to persistent viral infections. For example, chronic infection with CMV in the older
population results in extensive accumulation of exhaustive, high-affinity, CMV-specific
memory T cells [65]. CMV-specific CD8+ T cells also produce higher levels of IFN-γ,
which could partly explain age-associated ‘inflamm-aging’ [66]. The abundant numbers of
CMV-specific memory T cells alone can alter homeostasis and decrease the amount of
circulating naive T cells.

The expression of the costimulatory molecule CD28, which is needed for differentiation of
naive T cells after initial antigen exposure, on CD8+ T cells decreases with age [67]. There
is also a direct link between a decrease in CD28 expression (CD8+ CD28− T cells) and a
poor immune response to influenza vaccine. In one study, a 10% proportional increase in
CD8+ CD28− cells correlated with a 24% decrease in humoral response to influenza [68].
The presence of other late effector T-cell subsets (CD8+ KLRG1hi CD57hi) is also inversely
correlated with influenza vaccine immunogenicity [69]. The identification of specific
cellular subsets in older adults that successfully predict immune outcome could be a
powerful tool in developing the next generation of vaccines.

A portion of decreased humoral response in older adults can also be attributed to a
deficiency in extrinsic cellular signaling between CD4+ T cells and B cells [70]. Senescent
CD4+ T cells express lower levels of CD154 (CD40L) and this molecule is crucial for
stimulation of B cells. Antibody response in older adults is also altered by a shift in B-cell
homeostasis from naive to effector cells similar to that observed in T cells [71]. B-cell class
switching, recombination and somatic hypermutation are also defective in older populations
[72]. This defect would result in an inability to produce high-affinity antibodies against
influenza.

In summary, immunosenescence and its contribution to suboptimal vaccine response in
older adults is a complex and multi-faceted process. The majority of research has focused on
pinpointing singular components of the immune system responsible for a diminished
response. In reality, many key systems contribute to immunosenescence. A successful model
to predict and define vaccine outcome in older adults must therefore take into account not
only individual aspects of the aging immune system, but also other systems, such as
epigenomic, genomic, proteomic and transcriptomic factors.

Immunogenetic factors associated with host responses to seasonal
influenza vaccine

Relationships between genetic polymorphisms (and nongenetic factors) and immune
response to influenza vaccine in the human population have been reported [73–76]. With
regard to human influenza infection, evidence was found for a heritable predisposition to the
development of severe influenza virus infection and death, strongly suggesting genetic
associations with the immune response to influenza infection [77,78]. It is also thought that
the predisposition to a fatal outcome of influenza illness also depends on environmental,
nutritional, demographic and virologic factors [79]. The authors of these reports comment
that “… it is important to identify those genes associated with the ability to respond (to
influenza) with protective immunity after natural or vaccine challenge” [77]. One specific
gene responsible for the anti-inflammatory response to severe influenza infection is the
inducible heat shock protein gene, heme oxygenase-1 (HO-1) [80]. Recent studies have
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demonstrated the lungs of mice that were infected with highly pathogenic strains of
influenza virus exhibited increased levels of HO-1 gene expression and a decrease in the
expression levels of antioxidants Gpx3 and Prdx5 [81]. Furthermore, impaired antibody
production in response to influenza vaccination was observed in aged HO-1-deficient mice
[82]. Importantly, a recent study suggested that decreased influenza vaccine response in
humans is associated with polymorphisms in the HO-1 gene [82]. Also, in a genome-wide
association study of 147 influenza-vaccinated individuals, promoter SNP rs743811 and
intronic SNP rs2160567 in the HO-1 and constitutively expressed isoform HO-2 genes,
respectively, were found to be associated with decreased H1-specific HAI titers following
influenza vaccine [82]. Thus, the HO-1 and other gene polymorphisms should be
investigated to better understand possible genetic determinants for influenza disease and
vaccine effectiveness.

Host genetic polymorphisms probably play a significant role in immunity against influenza
vaccine. There is limited immunogenetic information available to explain significant
interindividual variations observed in immune response to influenza vaccines. Population-
based association studies revealed the importance of HLA and other immunity-related gene
polymorphisms in influenza vaccine-induced humoral immunity [73,76]. HLA class I and
class II molecules present antigenic epitopes to CD8+ and CD4+ T cells, respectively, and
initiate adaptive immune responses. Influenza-derived peptide presentation by HLA class I
and class II molecules induces T-cell populations with diverse specificities and functions
[83,84]. Various HLA class I (A*2, A*11, B*27 and B*35) and class II (DRB1*07,
DRB1*13 and DQB1*06) alleles have been reported to correlate with the serologic response
to influenza vaccination [73,76,85]. These differences in HLA class I and class II pathway
presentations of immunodominant epitopes are likely the source for some proportion of the
interindividual variation in influenza vaccine-induced immune responses.

Preliminary data from the candidate gene studies demonstrate significant correlations
between influenza H1-specific HAI antibody levels and single nucleotide polymorphisms
(SNPs) in cytokine (IFNG, IL6, IL12A, IL12B and IL18), and cytokine receptor (IFNAR2,
TNFRSF1A, IL1R, IL2RG, IL4R, IL10RB and IL12RB) genes (range of p values 0.005–
0.045) [76]. Associations were also discovered between polymorphisms in genes regulating
vitamin A receptor retinoic acid receptor γ and innate immunity (TLR4) and variations in
influenza H1-specific antibody levels [Poland GA, Ovsyannikova IG, Jacobson RM,
Unpublished Data]. For example, in the pilot studies, an increased frequency of the minor
allele of the 5′UTR SNP (rs7398676; p = 0.08) in the retinoic acid receptor γ gene was
associated with protective serum H1 antibody titers (median HAI titer of 1:320) after
influenza vaccine. Similarly, an intronic SNP (rs1927907; p = 0.1) in the TLR4 gene was
marginally correlated with higher H1 antibody levels (median HAI titer of 1:320); however,
a larger sample size is needed in order to improve statistical power and confidence. These
preliminary data provide evidence that the immune-related gene polymorphism is associated
with influenza H1-specific antibody titers after vaccination.

In addition to the findings associated with TLR4, it has been demonstrated that gene
polymorphisms in TLR4 (that recognizes lipopolysaccharide) may influence innate immune
responses to respiratory syncytia virus and influence the predisposition to severe respiratory
syncytia virus disease [86,87]. Another study of the transcriptional targets of immune
responses to influenza virus in human peripheral blood mononuclear cells following
influenza vaccination demonstrated a high expression of interferon-induced and -regulated
genes, including IFN-γ-induced protein precursor 10 (IP-10) gene, suggesting their function
in immune response to influenza antigens [78]. In addition, the RIG-I gene is involved in the
influenza virus-specific production of IFN-β. Also, influenza virus non-structural protein-1
has been demonstrated to interact with RIG-I and inhibit the RIG-I pathway, thereby
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inhibiting the generation of IFN-β [88]. By understanding genetic influences on the
generation of immunity due to vaccination, it is feasible to develop new vaccines against
influenza [1,89–92]. By applying knowledge on the interactions of various pathways of key
gene families critical to developing protective immune responses, it is feasible to gain an
understanding of the host response to influenza vaccine antigens.

Systems biology approach
Each of the aforementioned components is an important individual contributor to the ability
of an older adult, or indeed any individual, to mount an effective immune response
following vaccination against influenza; evidence supporting their roles has been well
established. While this understanding has come through extensive studies, these
investigations have primarily focused on relatively small components of the immune system.
In order to fully understand the way in which vaccines induce protection against foreign
antigens, it is important to take a broader view of the components of the system that together
give rise to immunity. In the study of biological processes, approaches are being developed
that address this more expansive view and use more comprehensive modeling techniques
that are integrated with existing biologic knowledge bases [93–96]. These approaches
comprehensively integrate data gathered from a variety of often high-throughput, high-
dimensional assays with human-collated models of biological function. These approaches,
which have come to be known as systems biology, have not coalesced into a single defined
entity, but rather encompass a broad class of methods that all seek to arrive at a deeper and
global understanding of biological processes and the complex inter-relationships of systems
that compose an organism [97–100].

The general idea guiding the study of systems biology is that to understand the full process
by which specified biologic systems function, one needs both empirical data and structured
models of existing knowledge. In the current era, the availability of technology to extract
data measuring a wide variety of both inputs and outputs of molecular systems is greater
than ever. Thus, it is relatively simple to obtain simultaneous detailed information about
genomic, transcriptomic, proteomic and other measures. There is also an ever-increasing
knowledge base consisting of models of genetic and protein networks, as well as other
models of immune function. The key to effective systems biology research is to effectively
apply robust multivariate statistical analyses of these data in the context of the existing
biological knowledge base. These analyses make it possible to either modify known models
or to confirm and refine already-described models. Such approaches carry the promise of
making it possible to more deeply understand the initiation and maintenance of immune
responses [2,96,100].

The current research group has initiated a series of studies within the context of a systems
biology approach in order to more deeply understand the mechanistic underpinnings and
complexities of diminished vaccine response in older adults. The authors organize
information from a wide variety of sources, including genetic polymorphisms, gene
transcripts, epigenetics, genetic pathways and protein–protein interactions. Using these data
sources as inputs, the authors employ a variety of state-of-the-art statistical models and
approaches to determine the extent to which the interplay of these data clarify existing
models or bring new understandings that may lead to the development of novel biological
models.

Specifically, a systems biology generated immune profile will be constructed around time
points associated with distinct temporal stages of influenza vaccine response. The baseline
data, or day 0, correspond with prevaccination immunity. Days 3, 28 and 75 will be
associated with innate, adaptive and the immune system’s return to homeostastis,
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respectively. The authors will then have a distinct set of data points for each individual over
a broad duration of immune response to seasonal influenza vaccination. The innovation of
this study lies in pairing traditional influenza vaccination outcomes, such as cellular and
humoral measures, with flow cytometric markers for adaptive and innate immunity,
proteomics and cutting-edge technologies such as next-generation mRNA sequencing
(Figure 1). The authors also incorporate assays to quantify and compare the contribution of
immunosenescence markers to vaccine response by measuring TCR diversity, CD28
expression and TCR excision circles analysis.

Once all data have been generated and analyzed in the context of the current biological
knowledge base, the authors will utilize the findings to examine the entire spectrum of
biological responses and compare and contrast them across a range of ages and
immunization strategies. This will enable the authors to comprehensively understand
interactions among the components of the aging immune system and their impact on the
development and maintenance of immunity to influenza vaccine. Ultimately, this will lead to
a method of more directed development of vaccines against influenza, perhaps by ‘reverse
engineering’ around identified genetic or cellular elements.

Similar approaches have already been applied and these have led to novel information
relative to processes by which immunogenicity might be induced. The earliest example of
this is the case of yellow fever vaccine, where a large collection of data gathered across
multiple time points were analyzed with multivariate statistical techniques to identify a
collection of gene signatures that predicted the immunogenicity of the YF-17D vaccine [96].
Importantly, these gene signatures were validated in an independent sample set; an
important step in the research process when complex statistical approaches are applied with
the goal of integrating information across a number of high-throughput technologies and
existing knowledge bases. The advantage offered by this approach to studying immune
responses is in its focus on simultaneously studying a large number of input and output data;
something that more closely approximates the reality of the complex interactions that take
place within living organisms mounting an immune response against an antigen. Classical
approaches that are typically used to study correlates of immunity tend to focus on simple
associations between a single input and a single output, perhaps while adjusting for a small
number of potentially contributing factors, and are therefore not able to provide insight into
the full cellular and immunologic milieu. Because of this, it is essential that research be
extended into the realm of systems biology, where information across a wide range of data
sources can be integrated to provide insight into the immunologic processes.

Moving forward
This review has briefly outlined the epidemiology of influenza in older persons,
acknowledging the high rates of morbidity and mortality that older adults experience as a
result of influenza infection. In addition, the huge economic costs associated with influenza
resulting in increased medical care, lost work and lost time in school, in tandem with annual
epidemics of influenza (and periodic pandemics), combine to make prevention of influenza a
major public health concern. An additional and pertinent temporal trend must also be
recognized, and that is the rapid increase in the aging of populations throughout the world.
For example, in the USA, the fastest growing segment of the population is individuals over
the age of 85 years. The implications are considerable. Older persons are increasing in
number, have increased rates of illness, hospitalization, medical care use and death from
increasing virulent strains of influenza, in the context of yearly epidemics, and respond
poorly to current influenza vaccines. It therefore becomes imperative that the research
agenda be expanded to both understand the mechanisms that result in poor immunity in
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older persons, and use such information to devise more immunogenic influenza vaccine
candidates.

Critical to our work, and to progress in the field, is to ‘unravel’ the complexity of the
immune response in older persons, and to understand how it differs from younger persons.
The task is daunting, although made easier by the plethora of high-throughput, high-
dimensional technologies rapidly becoming available at an affordable price. A more serious
obstacle, however, are the bioinformatics personnel and processes needed to analyze and
make sense of such data. Consider that the combination of transcriptomic, other
immunophenotyping and sequencing data can result in a terabyte of data in just one
experiment involving a single subject. Analyzing such data in the context of models built on
the current understanding of the immune response network theory and a vaccinomics
approach requires a significant investment in devising and testing bioinformatics models
[1,89–92,101]. In many cases, the current models are simply insufficient and reflect the
difficulty in reducing extremely complex systems to more simple models.

As the authors have reviewed, immunosenescence has far-reaching implications in terms of
generating immune responses on innate, adaptive, T-cell and B-cell function. Further
research is needed on the critical changes and impairments that together result in
immunosenescence, and possibilities for reversing adverse changes associated with the
aging immune system. Important findings have been published, and progress made – but
there is a long way to go to meet the challenge of protecting an aging population against
infectious diseases for which they are particularly susceptible.

Expert commentary
With the approval of an HD-TIV for older adults, novel vaccines are being developed to
address the issue of immunosenescence. However, as stated previously, both the humoral
and cellular responses in HD-TIV-vaccinated older adults do not reach the same level as
those in SD-TIV-vaccinated younger adults [28]. With the emergence of highly pathogenic
influenza strains and a decrease in vaccine response in older adults, we have to consider a
different and more directed approach to vaccine research and development. To truly
understand why vaccine efficacy decreases with age, we will have to decrease our
dependence on reductionist-based science [102]. Although the immune system can be
thought of as the summation of multiple smaller parts (innate and adaptive), aging causes
too many complex alterations to these systems to attempt to understand the whole of
immunosenscence by focusing on a single component.

Our own work, and that of others, is directed at just such issues. Importantly, the NIH has
developed and funded a research program that seeks to uncover drivers of immune response
to viral and other vaccines. The Human Immunology Project Consortium is currently
funding seven centers throughout the USA to perform exactly the systems-level research
work described above [203]. In addition, through this program funds are available to finance
preliminary human-based studies that are consistent with the priorities of the consortium,
and that are performed in collaboration with one of the funded primary centers.

Five-year view
Recent innovative work demonstrates that a systems biology approach can be successful in
elucidating predicative markers of immune response [96]. We believe that our approach, and
others like it, will be adopted to not only gain a thorough understanding of host interactions
with vaccines, but will also be applied to the interactions between host and specific
pathogens.
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Our model is unique in that we focus on the influence of immunosenescence on seasonal
influenza vaccination, but immunosenescence is a contributing factor in host response to
other viral vaccines as well. Interestingly, the elderly exhibit a delayed antibody response to
yellow fever vaccination (YF-17D) and an increase in adverse events [103]. In addition,
both cell-mediated immunity and antibody response against herpes zoster vaccine declines
with age [104]. If we are successful in developing a holistic predictive immune profile to
seasonal influenza vaccination, this model can be applied to research focusing on other
vaccine systems and the contribution of immunosenescence. Such work will be accelerated
by increasing complex bioinformatc models that will allow us to understand the
simultaneous contributions of genetic, proteomic, epigenetic and cellular systems; and ever-
expanding, high-dimensional, high-throughput, whole systems-level assays becoming
available.
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Key issues

• Older adults have a significantly higher rate of influenza-related morbidity and
mortality.

• Vaccine efficacy is decreased in older adults, and compromises efforts to protect
the elderly.

• Immunosenescence is associated with complex and multifaceted changes in both
the innate and adaptive response to influenza.

• Our previous work has demonstrated that immunogenetic factors contribute to
immune response variations to seasonal influenza vaccination.

• A systems biology approach incorporates assays aimed at measuring complex
interactions between the aging host and immune responses to seasonal influenza
vaccine, and complex statistical models that aid in understanding these
interactions.
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Figure 1. Systems biology approach to developing an influenza A/H1N1 vaccine-induced immune
profile
Multifunction immune and systems analysis over the duration of vaccine response will be
used to determine individual immune outcomes, functional pathways and longitudinal
immune profiles that will lead to the explanation and prediction of immune response to
influenza A/H1N1 vaccine. This will be accomplished using a fusion of traditional measures
of humoral, cellular and innate immunity, paired with measures of gene regulation and
large-scale analysis of protein response. Immune response to seasonal influenza vaccination
will be measured after in vitro stimulation of subject peripheral blood mononuclear cells
with live influenza A/California/H1N1 virus. Assays specific to markers of
immunosenescence will also be used to measure the influence of age on immune response to
vaccine.
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