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Realistic modeling of neurons are quite successful in complementing traditional experimental techniques.
However, their networks require a computational power beyond the capabilities of current supercomputers,
and the methods used so far to reduce their complexity do not take into account the key features of the cells
nor critical physiological properties. Here we introduce a new, automatic and fast method to map realistic
neurons into equivalent reduced models running up to . 40 times faster while maintaining a very high
accuracy of the membrane potential dynamics during synaptic inputs, and a direct link with experimental
observables. The mapping of arbitrary sets of synaptic inputs, without additional fine tuning, would also
allow the convenient and efficient implementation of a new generation of large-scale simulations of brain
regions reproducing the biological variability observed in real neurons, with unprecedented advances to
understand higher brain functions.

I
t is becoming more and more evident that a much better understanding of the mechanisms underlying higher
brain functions and dysfunctions can be obtained by complementing traditional experimental techniques with
modeling methods using realistic, biophysically accurate implementations of neurons and networks as in the

Blue Brain Project1. This approach has been shown to be quite successful in supporting and explaining several
experimental findings on, for example, the functional connectivity of neocortical circuits2 or the network
mechanisms underlying epileptic conditions3. However, the amount of processing power needed to use it in a
network able to capture and reproduce the essential aspects of brain functions is beyond the capabilities of current
supercomputer systems. Alternatively, quite debated4 approaches using extremely simplified phenomenological
neurons appear to be too divorced from the real systems, as many fundamental cell properties (such as non
uniform distribution of active ion channels), and mechanisms (such as dendritic signal processing) are simply
ignored or assumed. For these reasons, the reduction of morphologically accurate neuron models into more
tractable units, without loosing important features of their complex dynamics, is quickly becoming a major
problem in Computational Neuroscience.

Recently, there have been several attempts to implement a suitable reduction method for conductance-based
neurons5 to allow neuronal systems to run with reasonable computing requirements while maintaining a direct
connection with experimental findings at all integration levels. To reach this goal, several reduction methods have
been proposed; for example maintaining the electrotonic properties of the full model by preserving the axial
resistance6,7, the total surface area and somatic input resistance8–10, or the original path resistance between the
soma and a single spine11. These kind of methods do not explicitly take into account key features of a neuron, such
as synaptic inputs or non uniform distribution of ionic conductances. Furthermore, it has been shown12 that for
branched neurons in the presence of dendritic synaptic inputs these methods do not provide significant accuracy
or reduction in the number of compartments and hence in computing time. On the other hand, more general
reduction methods using the iterative rational Krylov algorithm13,14 or a Direct Empirical Interpolation Method15,
have been proposed. While some of these methods are able to take into account the spatial distribution of synaptic
inputs and active currents, and seem to give accurate results, the reduction procedures do not preserve any direct
neurophysiologic interpretation, thus severely limiting their utility. Most importantly, however, all of these
methods require fitting parameters that must be obtained for each cell through optimization techniques and
fine tuning procedures that are usually computationally exhaustive.

In this paper, we introduce a new, automatic and fast method to simplify models of complex neurons with an
arbitrary distribution of active properties, synaptic inputs, and dendritic trees. Using suitable key properties of a
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homogeneous population of neurons to set up the reduction algo-
rithm, the method is able to transform any morphologically and
biophysically accurate neuron into an equivalently reduced model
that can run up to . 40 times faster. Furthermore, by mapping
arbitrary sets of synaptic inputs without additional fine tuning, the
method would also allow a convenient and efficient implementation
of large-scale networks reproducing the biological variability
observed in real neurons.

Results
The method is schematically illustrated in Fig. 1a and described in
details in the Methods section. To implement and test it, we used 17
realistic models of hippocampal CA1 pyramidal neurons (from
ref. 16), based on 3D reconstructions available on the public http://
neuromorpho.org database. A typical neuron including a random
group of excitatory synapses is shown in Fig. 1a (left). As a prelim-
inary step, we noted that the morphology and distribution of active
properties for these cells17 allowed us to define nine functional
regions (clusters) composed by a variable number of dendritic com-
partments, indicated with different colors in Fig. 1a. The first step in
the reduction algorithm (Fig. 1a, middle) is to map each cluster into
an equivalent single compartment. This is carried out by using mer-
ging rules based only on the passive, active, and morphological prop-
erties of the full neuron without any fitting or tuning procedure. The
synaptic and ion channels peak conductances are then rescaled, and
synapses are mapped to appropriate locations in the equivalent
model. The scaling of the peak conductances is the only step in which
an explicit set of simulations must be preliminarily carried out with
the full model to find the critical input strength (the max Stim para-
meter, see Methods) for which a particular neuron reaches a depol-
arization block state18. It should be stressed, however, that this is a
peculiar condition of this cell population with enough functional
importance to be included into the reduced model18. Typical results
are shown in Fig. 1b, where we compare the somatic membrane
potential of the full model and its reduced version in response to
an identical train of 140 or 420 synaptic inputs with random peak
conductance, spatial distribution, and activation (see Methods). The
good agreement between the two models is demonstrated by the
average results reported in Fig. 1c, as a function of the number of
synaptic inputs, in terms of the number of action potentials (APs)
and the interspike distribution (ISI) obtained from 10 simulations
using random redistributions of peak conductance, spatial location,
and activation frequency of all synapses without any parameters
tuning. These results show that the method is able to map a detailed
realistic neuron into a reduced version that quantitatively reproduces
the firing properties of the full model.

To evaluate the firing behavior of the reduced models, for all
neurons used in this work we compared the somatic APs and ISIs
obtained during all simulations with those obtained in the full mod-
els under the same conditions. It should be noted that, given the high
variability observed in experimental recordings from the same neu-
ron in response to multiple instances of the same stimulus19, the main
aim of the method was not to obtain identical traces but to build a
reduced model able to reproduce the same average I/O properties,
i.e., APs and ISIs, generated by a number of synaptic inputs randomly
located on a specific neuron. Thus, a rigorous comparison of the
somatic voltage trajectories was not appropriate. However, we tested
and confirmed that the average number of APs and ISI values
obtained in the group of accurate neurons within the physiological
range of input (i.e., below the depolarization block state for most
neurons, up to 200 synapses in our case) were statistically indistin-
guishable from those obtained in the reduced models (Wilcoxon
Signed Rank test, p 5 0.553 for APs and p 5 0.232 for ISIs). Above
this range, the statistics was biased by the large variability (in both the
full and reduced model) caused by the complex spiking dynamics of
these neurons when they are close to the depolarization block state18.

For a more appropriate evaluation of the differences over the
entire range, we tested whether the reduced neuron was able to
correctly identify the presence (or absence) of a spike within a given
time interval (see Fig. 2a and Methods). An accuracy factor was
calculated as:

Accuracy~
TPzTN

TPzFPzTNzFN

where TP (True Positives), is the number of spikes from the morpho-
logical neuron that are also found in the reduced model; TN (True
Negatives) is the number of intervals in which the neuron does not
fire a spike in both the morphological and the reduced model; FP
(False Positives) is the number of mismatched spikes in the reduced
model; FN (False Negatives) is the number of spikes in the morpho-
logical neuron that are not matched in the reduced model. An accu-
racy value of 1 represents the ideal case of a perfect correspondence of
spikes and silent periods between the full and the reduced model. In
Fig. 2b we plot the average accuracy (from 10 simulations) for cell
c70863 as a function of the number of synaptic inputs (Fig. 2b, black).
As can be seen, it is quite high over the entire input range tested.
However, physiological processes can result in some variability in the
ion channels peak conductance and excitability properties for indi-
vidual neurons, even if they belong to the same cell population. To
test the robustness of the method, we thus ran additional simulations
(Fig. 2b, red and blue) with random perturbations of the peak chan-
nel conductances and the critical input (max Stim) used to imple-
ment the reduced model. We stress that all simulations were carried
out automatically, using only the input data without any tuning or
fitting procedure. The results demonstrate that the method is quite
robust and able to maintain very good accuracy even in those cases
where model parameters are not precisely defined.

We next tested the overall accuracy obtained for all the 17
morphologies used in this work, and its robustness against changes
in the parameters used to calculate it, i.e., a and t (see Methods). The
results presented in Fig. 3a, and in Fig. 3b for each cell, demonstrate a
very good average accuracy over the entire input range, with a rela-
tively large variability around the critical input region, where there is
a drastic change of the firing regime caused by the depolarization
block18.

Since the accuracy is a probability measure within a given time
interval, its value may depend on the number of events occurring
during simulations of different length. For all calculations we used
500 ms long simulations. To test if this was enough to avoid system-
atic errors, we calculated the accuracy as a function of the simulation
length for three representative cases:

1) 10 synapses, to test conditions close to subthreshold activity,
2) 140 synapses, well within the regularly firing regime for all

neurons, and
3) 340 synapses, a condition for which all neurons will reach a

depolarization block state.

The results, presented in Fig. 3c, demonstrate that the average
accuracy values obtained from simulations of different length
(180–500 ms) are quite robust over the entire input range. The a,
and t parameters set the width of the time window used to calculate
the accuracy (see Methods). They thus determine the relative pre-
cision needed to define an event as True Positive/Negative or False
Positive/Negative in comparing the somatic traces obtained using the
full and the reduced model. In general, large values may result in the
accuracy being biased toward very high or very low values, whereas
very small values will require a perfect match between the traces. As
discussed before, here we were not interested in a perfect match of
voltage trajectories. In all cases we used a 5 0.35 and t 5 10 ms (i.e.,
a maximum time window of 7 ms, see Methods). To test if this choice
was appropriate we repeated the accuracy calculations for 10, 140,
and 340 synapses, using different combinations of a and t around
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these values. As shown in Fig. 3d the accuracy was quite robust to
significant changes in either parameter. The only exception was the
low accuracy obtained for a 5 0.2 and a strong stimulation (140
synapses, Fig. 3d, gray triangles). This result can be explained by

considering that, under these conditions, the largest time window
was only < 1.4 ms. The run times for the reduced models were, 13–
50 times faster (at a confidence level of 95%) than the corresponding
full models (Fig. 4, gray), with setup times (i.e., the time required to

Figure 1 | A method to reduce the computational complexity of realistic models of neurons. (a) (left) typical 3D reconstruction of a realistic

hippocampal CA1 pyramidal neuron (cell c70863 from the neuromorpho.org public archive), composed by 843 membrane segments; red circles indicate

synapses location; different colors for dendrites highlight the different clusters used for this kind of cell population; (middle) Flow-chart illustrating the

main steps to reduce a morphologically and biophysically detailed neuron model into a reduced, but functionally equivalent, version; (right) schematic

representation of the equivalent model (27 membrane segments) obtained after application of the reduction method. (b) Somatic membrane potential of

the full (black traces) and the reduced (red traces) model during a simulation activating 140 (left) or 420 (right) synapses. (c) (left) Average (n 5 10, 6sd)

number of APs elicited in 500 ms long simulations as a function of the number of synaptic inputs activated in the original (black) or in the reduced (red)

model; the two curves are statistically indistinguishable (Wilcoxon Signed Rank test, p 5 0.879); (right) normalized InterSpike Interval (ISI) distribution,

from 10 simulations of the original (black) or the reduced (red) model during a simulation activating 140 synapses; the two curves are statistically

indistinguishable (Wilcoxon Signed Rank Sum test, p 5 0.626).
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map an accurate morphology and its synaptic inputs into a reduced
version ready to run) of 0.2–0.3 s, less than < 0.5% of the average
runtime of the full model, and orders of magnitude faster than the
current optimization procedures. Taken together, these results dem-
onstrate that our method is fast to apply and able to map a biophy-
sically detailed neuron into a very accurate reduced version running
much faster than the original model.

Discussion
The reduction of a neuron model’s complexity, without losing the
fundamental properties of a biophysically accurate implementation,
especially synaptic inputs, is a major obstacle to understand the
cellular mechanisms of higher brain functions and dysfunctions
through large-scale network models closely related to experimental
data. The modeling of neurons properties starts with the fun-
damental works by Rall20,21, and continued with several reduced
models proposed to represent the intrinsic electrophysiological
properties of a neuron population. A few of the most representative
examples in this field are those for hippocampal CA3 pyramidal
neurons, implemented with models of two22 or nineteen compart-
ments23. Along the same line were the models of neurons in the
olfactory bulb24, and in the Dentate Gyrus25. The main aim in these
cases was to implement a physiologically reasonable subset of prop-
erties for neurons belonging to a given population, without any
reference to specific cells. This is different from the main aim of this
work, which focuses on individual cells. We were interested in redu-
cing the complexity of an existing biophysically accurate model of
individual cells. The rationale for this approach is that the intrinsic
properties of each neuron are the result of cell-specific activity
dependent changes26. These changes may represent a unique syn-
aptic input history and form the basis for the immense computa-
tional power of single neurons26. It is thus important to preserve these
properties in implementing reduced models of individual cells to be

Figure 2 | The method is accurate and robust to fluctuations of model
parameters. (a) Schematic representation of accuracy calculation in a

typical case (cell cd1152); somatic traces obtained from simulations of the

full (black) and reduced (red) model were scanned to test for mismatch of

spikes or silent periods occurring within a variable time window (see

Methods); light green: True Positive; dark green: True Negative; light pink:

False Positive; dark pink: False Negative; Accuracy 5 0.9; (b) accuracy of the

reduced model for cell c70863 as a function of the number of active

synaptic inputs using the original set of the full model parameters (black),

and average accuracy (n 5 10) for 625% or 620% random fluctuations in

peak channels conductance (red) or in the critical input max Stim (blue),

respectively.

Figure 3 | The method is accurate for different morphologies. (a) Average accuracy (n 5 17, 6sd) obtained for the reduced models of all morphologies

as a function of the number of active synaptic inputs; (b) average accuracy for the reduced model of each morphology, from 260 simulations using a

different number of synaptic inputs with random spatial redistribution, activation times, and peak conductance; (c) average accuracy for 10, 140, and 340

synaptic inputs as a function of the simulation length; in all cases, a 5 0.35 and t 5 10 ms; (d) average accuracy (n 5 170) obtained for the reduced models

of all morphologies from 500 ms long simulations with 10, 140, and 340 synaptic inputs as a function of t (black plots, a 5 0.35), and as a function of a

(gray plots, t 5 10 ms).
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used in large networks. None of the previously published reduction
methods is able to take into account this aspect in a fast and accurate
way, since they are either not designed to include synaptic inputs or
active dendritic conductances, or require prohibitively long and
rather specialized optimization and fine tuning procedures for each
cell. With our method, an arbitrary number of neurons of a given
population can be efficiently and accurately mapped, in a negligible
time, into much smaller equivalent units that maintain all critical
cellular and synaptic properties, allowing a direct comparison with
experimental findings. In particular, it is the mapping of arbitrary
synaptic inputs without any additional tuning that makes our
method to stand out from all previously published reduction meth-
ods. This will allow the convenient and efficient implementation of a
new generation of large-scale simulations of brain regions repro-
ducing the biological variability observed in real neurons, with
unprecedented advances to understand higher brain functions.

Methods
Computational details. All simulations were implemented using v7.0 of the
NEURON simulation environment27. The model and simulation files are available for
public download under the ModelDB section (acc.n. 146376) of the Senselab database
(http://senselab.med.yale.edu). To ensure a representative range of morphological
properties, we used 17 3D reconstructions of CA1 neurons from young (about 6 wk
old) rats available on the public archive www.neuromorpho.org. One of the
morphologies was used to setup the method, 16 to test its accuracy. The set of passive
properties, voltage-dependent ionic channels, kinetic, and distribution were identical
to those in ref. 16 (ModelDB acc.n. 55035). In this model, already validated against a
number of different experimental findings on electrophysiological and synaptic
integration properties of CA1 neurons28,29, sodium and DR-type potassium
conductances were uniformly distributed throughout the dendrites, whereas A-type
Potassium and Ih conductances were linearly increasing with distance from soma.

To simulate a generic background excitatory synaptic activity, a variable number of
excitatory synapses were modeled as a double exponential conductance change with
0.4 and 0.6 ms for rise and decay time, respectively, consistent with single EPSC
currents at physiological temperature30. They were randomly distributed in the apical
dendrites 10–500 mm from the soma, with peak conductance drawn from a Gaussian
distribution of 2 6 1 nS. Each synapse was independently and randomly (Poisson)
activated at a frequency in the gamma range (40–80 Hz), which is an ubiquitous
rhythm of neuronal population31 and involved in memory encoding and retrieval
processes32.

Merging rules and scaling of ionic and synaptic conductances. As preliminary step,
we considered experimental findings on the morphology and the electrophysiological
properties of the neuron population that we were interested to study (i.e., CA1
pyramidal neurons, reviewed in ref. 17) and the specific biophysically accurate model

that we used as reference16. They suggest that these neurons have different functional
regions, that we empirically identified in the following finite set of clusters:

cluster 0: soma;
cluster 1: axon;
cluster 2: apical trunk at distance d # 100 mm from soma;
cluster 3: apical trunk at distance d . 100 mm from soma;
cluster 4: apical dendrites (oblique) at distance d # 100 mm from soma;
cluster 5: apical dendrites (oblique) at distance d : 100 mm , d # 300 mm from soma;
cluster 6: apical dendrites (distal) at distance d . 300 mm from soma;
cluster 7: basal dendrites (proximal) at distance d # 100 mm from soma;
cluster 8: basal dendrites (distal) at distance d . 100 mm from soma.

The second step is to map each functional region into a single compartment in the
reduced model and calculate its morphological and passive properties. Following
Destexhe et al. (1998)9 and Bush & Sejnowski (1993)7, the length of the compartment
equivalent to a given cluster is chosen as the sum of the dendrites’ length if the
dendrites are sequential (seq) or as the average length weighted by their respective
areas if the dendrites are branched (br), i.e.,

Lseq~
X

i

Li, Lbr~

P
i

SiLiP
i

Si
,

where Li and Si are the lengths and the areas of the i–th dendrite, respectively. Then,
we obtain

Leq~

P
seq,br

ShLhP
seq,br

Sh
: ð1Þ

The diameter of the equivalent compartment is chosen taking into account the axial
resistance of the ensemble of dendritic segments it represents

req~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
seq,br

r2
h

s
, ð2Þ

where

rseq~

ffiffiffiffiffiffiffiffiffiffiffiffi
RaLseq

pra,seq

s
, ra,seq~

X
i

ra,i,

rbr~
ffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

r2
i

r
,

and Ra is the specific axial resistance of each dendrite in the cluster, and ra,i is the axial
resistance of the i–th dendrite.

Moreover, in our method we set

ra,br~
Pjra,j

Sjra,j
, req

a ~

P
seq,br

ra,h

H
,

Req
a ~

p reqð Þ2req
a

Leq
,

where H is the total number of the dendrites in the cluster and Req
a is the specific axial

resistance in the equivalent compartment.
In the above merging rules, the membrane area and the axial resistance of the

neuron are not conserved, and this modifies the electrotonic properties of the equi-
valent neuron. To account for these differences, a set of scaling factors is usually
applied to ionic and synaptic conductances, and passive properties. Current reduc-
tion methods find an appropriate set of scaling factor through a fine tuning procedure
for the passive and active models using a somatic current injection7,9,11, and they do
not thus take into account the input-output properties of the detailed model in
response to synaptic stimulations.

In our method, for each cluster we determine a scaling factor, facteq
S , which depends

on the presence of synaptic inputs as follows:

facteq
S ~

1
Seq

X
i

Si, if there are no synaptic inputs,

1
Seq

X
i

wiSi, otherwise,

8>>><>>>: ð3Þ

where Seq is the surface area of the equivalent compartment, and wi 5 1 if in the i–th
dendrite there is at least one synapse and 0 otherwise. This factor, which thus depends
on the spatial distribution of synapses, is used to calculate the scaled values for the
specific membrane capacitance, the specific membrane resistance, and ion channels
peak conductance �gionic

Ceq
m ~facteq

S Cm, Req
m ~

Rm

facteq
S

, ð4Þ

Figure 4 | The method greatly reduces the run time. (black) Average

runtime for a 500 ms simulation, as a function of the number of active

synaptic inputs (a 5 0.35, t 5 10 ms), for the original models (circles) and

their reduced version (triangles). (gray) Average run time reduction (error

bars represent 95% confidence interval).
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�geq
ionic~facteq

S �gionic: ð5Þ

The reduced model will thus follow any specific spatial distribution of the peak
conductances of the full neuron.

It should be stressed that the above parameters are calculated directly from the full
model properties without any fitting or parameter tuning procedure.

Mapping synaptic inputs location. The most challenging aim of our paper was to
build an accurate reduction technique taking into account the effect of synaptic
inputs. This is the primary and the most difficult mechanism to preserve for an
accurate reduction procedure. In this work, we hypothesized that this problem could
be solved by rescaling (and repositioning) the synaptic conductances in such a way to
maintain the same signal propagation as in the full model. We found that a good way
to achieve this goal was to take into account the axial path resistance. To this purpose,
synapses were repositioned in the equivalent model according to the following
procedure. Let’s consider synapse i on cluster C of the full model. We define the axial
path resistance, ri,PATH, as

ri,PATH~
Xj

h~1

ra,h,

where ra,h is the axial resistance of the h–th segment of the path consisting of the
unique sequence of j segments leading from the soma to the dendrite on which the
synapse is positioned.

Let rmax and rmin be the maximum and the minimum axial path resistance of cluster
C, i.e.,

rmax~ max
C

rPATH , rmin~ min
C

rPATH ,

where rPATH indicates the axial path resistance of a given dendrite belonging to cluster
C.

Each cluster C of the full model is modeled with a single compartment (C9) in the
reduced model. To define the number of membrane segments, n9, composing each
cluster C9 we used33

n’~2t1
2

Leq

dll
eq
f

z0:9

 !
sz1, ð6Þ

where

l
eq
f ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
req

pfReq
a Ceq

m

s
,

dl 5 0.1, and f can be used as a parameter to adjust the number of C9 membrane
segments. Owing to Eq.(6), the number of segments, n9, of the equivalent compart-
ment C9 is a function of the number and spatial distribution of the synapses, through
Ceq

m .
We found that f 5 3 gave the best compromise between a high reduction factor in

the total number of segments (which reduces computing time) and a better signal
propagation (which increases the accuracy). The average reduction factor, i.e., the
ratio between the total number of segments in the morphological and reduced
models, and accuracy for a few values of f are reported in Supplementary Fig. 1.

The next aim is to find the most appropriate segment of C9 to place the i–th
synapse. To this purpose, we define

req
max~

Xkzn’

h~1

req
a,h, req

min~
Xk

h~1

req
a,h,

where k represents the number of segments from the soma to compartment C9 and
req

a,h the axial resistance of the h–th segment of C9.
The C9 segment where the i–th synapse will be placed is defined by its axial path

resistance req
i,PATH in such a way to fulfill the relation

req
i,PATH{req

min

req
max{req

min

~
ri,PATH{rmin

rmax{rmin
: ð7Þ

In other words, equation (7) identifies the segment si of C9 in such a way that

req
i,PATH[ req

minz
Xsi{1

h~1

req
a,h,req

minz
Xsi

h~1

req
a,h

" #
:

Finally, the peak synaptic conductance is scaled as

geq
i, max~factgmax

req
i,PATH

ri,PATH
gi, max,

where gi,max is the original peak conductance of the i–th synapse of the full neuron,
and factgmax is a scaling factor defined as

factgmax ~

Nsyn

max Stim

� �0:75

, if Nsynƒ max Stim,

1z
Nsyn{ max Stim

max Stim

� �0:6

, otherwise,

8>>><>>>:
where Nsyn is the total number of synapses, the 0.75 and 0.6 exponents depend on the
type of neuron population to model, and max Stim represents the number of synapses
above which the neuron reaches the depolarization block state18. This is the only place
where a preliminary set of simulations with an increasing number of activated
synapses is needed to better characterize a specific feature of these cells. In Table 1 we
report the max Stim value for all the morphologies used in this work. The computing
time per cell to find this value was approximately 15 min, on the same system used for
all simulations (Intel Xeon 2.93GHz, 4 core).

Accuracy calculation. For any given morphology, the overall quality of the reduction
was calculated by comparing 260 simulations (26 sets of increasing number of
synapses, each repeated 10 times with random spatial distribution, activation times,
and peak conductance). The accuracy factor was calculated as:

Accuracy~
TPzTN

TPzFPzTNzFN
,

where TP (True Positives), is the number of spikes from the morphological neuron
that are also found in the reduced model; TN (True Negatives) is the number of
intervals in which the neuron does not fire a spike in both the morphological and the
reduced model; FP (False Positives) is the number of mismatched spikes in the
reduced model; FN (False Negatives) is the number of spikes from the morphological
neuron that are not matched in the reduced model.

For any spike in the full model at time ti, TP, FP, and FN are calculated by exploring
the behavior of the reduced model in the interval

Dti~ ti{a ti{ti{1ð Þ, tiza tiz1{tið Þ½ �,

in such a way that

TP~
1, if there is at least 1 spike in the reduced model,

0, otherwise,

�

FP~
n{1, if there are nw1 spikes in the reduced model,

0, otherwise,

�

FN~
1, if there are no spikes in the reduced model,

0, otherwise:

�
Unless noted of otherwise in all simulations we used a 5 0.35, and the maximum

semiamplitude of any interval Dti was set as

Dtij j~
1
2

a tiz1{ti{1ð Þ, if
1
2

a tiz1{ti{1ð Þv10 ms,

10 ms, otherwise:

8<:
Finally, TN is calculated in the interval fDti~ tiza tiz1{tið Þ, tiz1{a tiz1{tið Þ½ � (no
activity in the full model) in such a way that TN is equal to the number of subintervals

of fDti , of amplitude t 5 10 ms, without any spike in the reduced model.
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