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Genome and transcriptome sequencing of lung cancers
reveal diverse mutational and splicing events
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Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic
treatments. We performed deep whole-genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and
three lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human
tumor samples. Smoker and never-smoker cancer samples exhibit distinguishable patterns of mutations. A number of
epigenetic regulators, including KDM6A, ASH1L, SMARCA4, and ATAD2, are frequently altered by mutations or copy number
changes. A systematic survey of splice-site mutations identified 106 splice site mutations associated with cancer specific
aberrant splicing, including mutations in several known cancer-related genes. RAC1b, an isoform of the RAC1 GTPase that
includes one additional exon, was found to be preferentially up-regulated in lung cancer. We further show that its
expression is significantly associated with sensitivity to a MAP2K (MEK) inhibitor PD-0325901. Taken together, these
data present a comprehensive genomic landscape of a large number of lung cancer samples and further demonstrate
that cancer-specific alternative splicing is a widespread phenomenon that has potential utility as therapeutic bio-
markers. The detailed characterizations of the lung cancer cell lines also provide genomic context to the vast amount
of experimental data gathered for these lines over the decades, and represent highly valuable resources for cancer
biology.

[Supplemental material is available for this article.]

Lung cancer is the most common cause of cancer-related death

(Siegel et al. 2012). There are two broad categories of lung cancer,

small-cell lung cancer (SCLC) and non-small-cell lung cancer

(NSCLC), and the latter is further divided into three major types,

squamous cell carcinoma, adenocarcinoma, and large cell carci-

noma (Herbst et al. 2008). Significant heterogeneity exists even

within a given subtype of lung cancer (Sun et al. 2007; Herbst et al.

2008), thus necessitating personalized treatment based on the

underlying causal genetic events (Salgia et al. 2011). Indeed, key

drivers such as EGFR and EML4–ALK have become attractive

therapeutic targets for subsets of lung cancer patients. A more

comprehensive understanding of genomic alterations in lung

cancers is critical for identifying new therapeutic targets as well as

for identifying suitable patients who might respond to a given

targeted agent.

Recent advances in high-throughput sequencing have en-

abled the systematic analysis of genomic and transcriptomic al-

terations in cancer samples on the nucleotide level (Ley et al. 2008;

Maher et al. 2009; Zhao et al. 2009; Lee et al. 2010; Parsons et al.

2010; Pleasance et al. 2010a,b; Wu et al. 2012). For example,

whole-genome sequencing of the NCI-H209 SCLC cell line iden-

tified a total of 22,910 somatic substitutions (Pleasance et al.

2010b). We previously performed whole-genome sequencing on

the tumor and normal pair from a lung adenocarcinoma patient

with a history of smoking (Lee et al. 2010), and identified 50,675

high-confidence somatic point mutations and extensive structural

variations (SVs) throughout the cancer genome. In both the lung

cancer cell line and lung tumor studies, mutational selection

pressure was found to be associated with various genomic and

transcriptomic features such as the expression status, and the

overall mutation spectra were consistent with tobacco exposure

(Lee et al. 2010; Pleasance et al. 2010b). The broad similarities
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suggest that cancer cell lines might retain fundamental genomic

features of the original tumor samples and therefore should re-

capitulate some of the phenotypes of original tumors. Indeed,

breast cancer cell lines exhibit strikingly similar patterns of DNA

copy number alteration to those observed in breast tumors (Neve

et al. 2006). Cell lines are pivotal to drug screening and response

studies (Gazdar et al. 2010), so it is important to establish whether

cell lines retain key mutational features observed in tumors. De-

tailed understanding of genomic features of a large number of cell

lines also helps selecting appropriate cell lines as model systems

with particular genetic lesions. Recently, two research teams used

a combination of SNP array, expression array, and targeted se-

quencing technologies to interrogate several hundred cancer cell

lines, uncovering significant links between drug activities and the

functional complexity of cancer genomes (Barretina et al. 2012;

Garnett et al. 2012). Although these cell lines were not charac-

terized at the whole genome or transcriptome levels, it is clear

that projects like Cancer Cell Line Encyclopedia (CCLE) provide

highly useful resources for the generation and testing of hy-

potheses related to the grand goals of personalizing cancer med-

icine (Weinstein 2012).

In this study, we have applied next generation sequencing

technologies to multiple lung cancer cell lines and tissue samples

(Supplemental Tables 1, 2, 3). For 19 lung cancer cell lines, we

performed whole-genome sequencing, RNA sequencing, SNP array

analysis, and spectral karyotyping (SKY) in order to obtain detailed

and comprehensive views of genomic and transcriptomic alter-

ations. For three lung cancer patients, including the smoker lung

cancer patient we previously described (Lee et al. 2010), we per-

formed whole-genome sequencing, RNA sequencing, and SNP ar-

ray analysis on tumor/normal pairs in order to compare smoker

and never-smoker tumor genomes, and to compare tumors with

cell lines. The combined genome and transcriptome analyses also

provide opportunities to characterize mutations that might have

an effect on transcription and splicing. To this end, we performed

a genome-wide survey of cancer-associated splicing events that

might be caused by mutations in essential splice sites. In addition,

we examined differential isoform expression between cancer and

normal samples from the transcriptome data, and found that ex-

pression of RAC1b, which is up-regulated in tumors, is associated

with cell line response to a MAP2K (MEK) inhibitor. It is therefore

interesting to consider such genomic features as potentially un-

conventional biomarkers found from the combined genome and

transcriptome information of cancer cell lines.

Results

Mutation landscape in lung cancer genomes

We first performed whole-genome sequencing (;603) for paired

lung adenocarcinoma and adjacent normal lung tissue samples

from two patients with no history of cigarette smoking, and

compared the results with our previous study on a smoker genome.

Somatic mutations in tumors were identified by comparing the

variant calls in the tumor with the corresponding normal genomes,

and a subset of candidate mutations was validated using mass

spectrometry-based genotyping (Supplemental Table 4; Supple-

mental Fig. 1). In the two never-smoker tumor genomes, we

identified 1802 and 1169 novel, high-confidence somatic single

base substitutions, which reflect an approximate rate of 0.62 and

0.40 mutations per Mb. Among these, 16 are nonsynonymous

coding mutations in each genome. In comparison, the number of

somatic mutations and the consequent mutation rate were 20-fold

higher in the previous smoker genome, underscoring the profound

DNA damage caused by cigarette smoking. Among the somatic

missense mutations are some previously reported in lung cancer.

While the previously sequenced smoker tumor genome contains

a mutant KRAS and wild-type EGFR, both never-smoker tumor

genomes contain wild-type KRAS but mutated EGFR.

A collection of 19 lung cancer cell lines was sequenced in the

same fashion. Although the definitive list of somatically mutated

genes cannot be obtained due to the lack of matched normal samples

for most cell lines, we approximated this list by removing all known

germline variants from the cell line single nucleotide variant (SNV)

collection (Supplemental Table 5). The germline variants include

those in the dbSNP database, the 1000 Genomes Project, the 69 fully

sequenced genomes by Complete Genomics, and the NHLBI GO

Exome Sequencing Project (ESP). The numbers of filtered protein-

altering SNVs vary dramatically among the cell lines. Cell lines de-

rived from smoker patients tend to have more SNVs than those from

never-smoker patients. We also noticed that the four cell lines with

the most protein-altering SNVs all have mutations in at least one of

the mismatch repair (MMR) genes (Fig. 1A, bottom panel).

We examined the spectra of filtered variations from tumors

and cell lines, and compared them with those of germline varia-

tions in the normal genomes. In our sequenced lung sample panel,

the previously published smoker genome (GS00018) has the larg-

est fraction of C:G > A:T transversions, the tobacco-related DNA-

damage signature (Fig. 1A, top panel). In contrast, the normal ge-

nomes and our two never-smoker tumor genomes (GS000000553

and GS000000552) are among those with the lowest proportion,

suggesting that never-smoker related lung cancer is distinct from

the smoking-related disease. Consistent with this, most cell lines

derived from known smokers (Supplemental Table 1) had signifi-

cantly higher C:G > A:T fraction than somatic mutations from the

never-smoker-derived tumor and cell line genomes (P = 4 3 10�5,

Student’s t-test) (Fig. 1A). Interestingly, the fraction of C:G > A:T

transversions is negatively correlated with that of C:G > T:A tran-

sitions (Supplemental Fig. 2). In contrast, prior to filtering, all

called variants have base change patterns similar to germline var-

iants (data not shown). This suggests that our variation filtering

strategy largely preserves the mutation spectra of cell lines. The

consistency between the mutation spectra and the smoking his-

tory in our panel of samples also indicates that the mutation data

can be used to annotate the smoking history of unannotated

samples, or even to resolve conflicting annotations.

The analysis of mutation rates of different genomic features

revealed that the CDS and UTR regions have the lowest mutation

rates, suggesting strong selective pressure (Fig. 1B). Interestingly,

when genes are grouped by their expression values derived from

our transcriptome sequencing data, we found that the mutation

rate was inversely correlated with expression status (Fig. 1C), con-

sistent with the previous observations related to the transcription-

coupled DNA-repair mechanism (Lee et al. 2010; Pleasance et al.

2010a,b). The reduced mutation rate in highly expressed genes

cannot be solely explained by selective constraints in the coding

region, since intronic regions display the same trend as the entire

gene regions (Fig. 1C).

Based on mutation effect predictors including SIFT (Kumar

et al. 2009), PolyPhen (Ramensky et al. 2002), and mCluster (Yue

et al. 2010), we found that a significantly higher proportion of

somatic nonsynonymous mutations in the tumors are predicted to

be deleterious compared with germline variations (Supplemental

Fig. 3; Supplemental Table 7). Overall, 41% of the somatic muta-
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tions are predicted to have an impact on protein function, based

on at least two of three prediction methods, in contrast to only

;12% in the germline set (P = 4.4 3 10�61, x2 test).

We also investigated the RNA and DNA sequence differences

(RDDs) in our genomes. We started with exonic positions that have

high-confidence nonreference calls in the RNA-seq data, but ho-

mozygous calls in the genomic sequence from the same sample.

Among such 12,476 positions in our 25 genomes, we identified

sequence differences between RNA and DNA in 624 positions

(Supplemental Table 8). The most prevalent RDDs in our data set

are A > G changes, suggesting that the observed differences are

enriched for RNA-editing events by ADARs (adenosine deaminases

that act on RNA) that deaminate adenosine to inosine. We ob-

served a highly recurrent A > G RDD at position chr1:225974614,

appearing in 14 of our samples, including normal tissues, tumor

tissues, and cell lines. This potential editing event results in an

amino acid substitution (I64M) in SRP9, the same gene that was

reported to undergo RNA-editing in breast cancer (Shah et al.

2009). It is also interesting to note that, in all three tissue samples,

the tumor genomes have a higher percentage of RNA–DNA dif-

ferences than their matched normal genomes, and two of three

tumors have a notably higher ADAR expression level than matched

Figure 1. The mutation spectra and mutation rate of lung cancer genomes. (A) Lung cancer genomes have a few distinct patterns of mutation
composition. Genomes from smokers tend to have a large fraction of C:G > A:T transversions, a known tobacco-related DNA-damage pattern (top panel),
and have larger number of filtered variations (bottom panel). In addition, the four cell lines with the most protein-altering SNVs all have mutations in at least
one of the mismatch repair (MMR) genes. (B) CDS and UTRs have the lowest mutation rates among genomic features. Mutation rates (i.e., number of
mutations per mega base) for different genomic features were calculated, and then normalized by the genome-wide mutation rates to obtain the relative
mutation rates. Each dot in the plot represents one genome (blue, cell lines; red, tumors). The boxes in the box-and-whisker plots represent the inter-
quartile range between the first and third quartiles; the dashed lines (whiskers) extend to the most extreme data points which is no more than 1.5 times the
interquartile range from the box. (C ) Mutation rates are negatively correlated with expression level. In each genome, genes were divided into three groups
according to their expression level based on the RNA-seq data from the same sample: zero (RPKM = 0), low (0 < RPKM # 1), and high (RPKM > 1). Mutation
rate for each group was calculated, and then normalized by average mutation rate for all genes in the genome to obtain relative mutation rates. Genes with
high expression levels tend to have the lowest mutation rates in either the entire intragenic region (i.e., exons and introns, left panel) or introns only (right
panel). This suggests that transcription-coupled DNA-repair mechanisms may play a role. The boxes in the box-and-whisker plots represent the inter-
quartile range between the first and third quartiles; the dashed lines (whiskers) extend to the most extreme data points which are no more than 1.5 times
the interquartile range from the box.
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normal; nevertheless, the differences did not reach statistical

significance.

Analysis of DNA copy number for our 19 lung cancer cell lines

revealed significantly recurrent gain and loss at regions typical for

NSCLC (Weir et al. 2007), including gain at CCND1, CCNE1, EGFR,

MYC, and chromosome 1q and loss at CDKN2B and PTPRD (Sup-

plemental Fig. 4). The most significant region of gain at 1q was

focused precisely on the RNA-editing gene ADAR. This gene has

been implicated in altered patterns of RNA editing in cancer,

resulting in activation of proto-oncogenes and inactivation of tu-

mor suppressor genes (Dominissini et al. 2011). ADAR expression

and copy number, by RNA-seq and SNP Array, are significantly

correlated (Spearman’s r = 0.65, P = 2.82 3 10�3) (Supplemental

Fig. 5). FHIT and ADAM3A were the foci of other significantly re-

current deletions (Supplemental Fig. 4). FHIT is frequently inacti-

vated in many tumor types, and reintroduction of FHIT leads to

reduced tumor cell growth in in vitro and animal models (Ishii

et al. 2001) and apoptosis in SCLC cells (Zandi et al. 2011). Focal,

homozygous deletion of ADAM3A has been reported in pediatric

high-grade glioma (Barrow et al. 2011).

Frequently altered genes in lung cancer cell line genomes

We also found that frequently mutated genes from lung cancer cell

lines are similar to what was found in lung tumors (Ding et al.

2008). Such frequently mutated genes were identified by calcu-

lating the number of protein-altering single-nucleotide mutations

per kilobase of coding sequences. Genes that are not expressed

based on transcriptome data are excluded from this list. The KRAS

proto-oncogene and the TP53 tumor suppressor exhibited the

highest mutation rates (Fig. 2A; Supplemental Table 9). Also

among the highly mutated genes is STK11, a gene frequently

inactivated in lung cancers (Sanchez-Cespedes et al. 2002). These

findings are consistent with previous genome-wide analyses of

lung tumor samples (Ding et al. 2008), suggesting that cell lines

exhibit mutations in genes similar to those of tumor tissues when

extensive germline variant filtering is applied. It is worth noting

that the mutation rate of known cancer genes, as defined by the

Cancer Gene Census (Futreal et al. 2004), is significantly higher

than that of other protein-coding genes in the genome (P = 0.0004,

one-sided Wilcoxon rank sum test). We further examined genes

that are affected by either protein-altering mutations or substan-

tial copy number alterations. Such integrated analysis reveals 27

known cancer-related genes that are altered in at least five cell lines

(Fig. 2B). Interestingly, these commonly altered cancer-related

genes include several genes involved in epigenetic regulation,

SMARCA4, CREBBP, MLL, and MLL2.

To examine if epigenetic regulators as a class are frequently

mutated as compared with other classes of genes, we examined the

mutation status of all genes known or predicted to be involved in

writing, erasing, and reading histone modifications (Chi et al.

2010). Indeed, such genes are mutated at a higher rate than others

(P = 0.004, one-sided Wilcoxon rank sum test). Combined with

DNA copy number data, we found that 31 epigenetic regulators

have either mutations or copy number alterations in at least five

cell lines (Fig. 2C). For example, SMARCA4 (BRG1), a gene encod-

ing a SWI/SNF family member that is part of an ATP-dependent

chromatin remodeling complex, is mutated in seven distinct cell

lines, and two additional cell lines harbor SMARCA4 copy number

gains. KDM6A, a gene encoding a JmjC domain-containing protein

that catalyzes the demethylation of K27 of histone H3, has a point

mutation or copy number loss in nine cell lines. The ASH1L gene is

mutated in nine cell lines. ASH1L is a bromodomain-containing

protein that also contains a SET domain and is predicted to meth-

ylate K4 of histone H3. ATAD2, another bromodomain-containing

protein that has been shown to co-activate E2F1, CCND1, and MYC

in breast cancers (Kalashnikova et al. 2010; Revenko et al. 2010),

has DNA copy number gain or mutations in seven cell lines. It is

clear that such epigenetic modifiers are significantly altered in

these lung cancer cell lines.

Structural variations and cytogenetic characterization

We screened for SVs and translocations based on discordant paired-

end genomic sequencing data. Normal SVs called from a pool of

normal samples were used as a filter to remove germline SVs and

technical artifacts, resulting in a list of candidate SVs. A subset of

these alterations was experimentally validated using PCR and

sequencing (Supplemental Tables 10, 11; 57% successfully vali-

dated at the base pair level).

Among the 22,030 candidate SVs in the tumors and cell lines,

812 have both ends mapped to intragenic regions of two different

genes. We examined our transcriptome sequencing data for reads

consistent with the fusion gene pairs in these SVs, and found 62

putative gene fusion events (Supplemental Table 12). We also

attempted to obtain a list of candidate chimera transcripts from

our transcriptome sequencing data alone using ChimeraScan (Iyer

et al. 2011). There are 1097 predicted chimeras in our tumors and

cell lines, 291 of which have at least one read spanning the fusion

junction. Among these predicted chimeras, 44% have more than

one genomic sequencing read supporting the same gene pair

(Supplemental Fig. 6), suggesting that they may result from ge-

nomic-level SVs, rather than read-through at the transcript level.

Among the SVs supported by both genomic and transcriptomic

evidence, we selected four cases involving genes in the cancer-re-

lated pathways for further experimental validation. In three out of

four cases, we were able to confirm the existence of the chimera

transcripts and the exact sequences spanning the breakpoints by

RT-PCR (Supplemental Fig. 7) and Sanger sequencing. They are

CLTC–VMP1, HIF1A–SNAPC1, and MLLT3–TMIGD1 fusions in two

cell lines. The VMP1 (vacuole membrane protein 1) locus is fused to

the CLTC (clathrin heavy chain gene) locus in H1229. The fusion is

supported by 81 discordant RNA-seq reads, more than 60 of which

can be perfectly mapped across the breakpoint (Supplemental Fig.

8A,B). Sequence analysis based on this fusion junction indicated

a putative fusion protein product containing the first 1609 amino

acids from CLTC and the last 141 amino acids from VMP1 (Sup-

plemental Fig. 8C). CLTC has been previously implicated in on-

cogenic gene fusions in inflammatory myofibroblastic tumor

(Bridge et al. 2001), pediatric renal adenocarcinoma (Argani et al.

2003), and large B-cell lymphoma (De Paepe et al. 2003). In-

terestingly, the breakpoint within the CLTC protein in the CLTC–

VMP1 fusion is very close to what was reported in the CLTC–ALK

fusion in the case of inflammatory myofibroblastic tumor (Bridge

et al. 2001). The HIF1A (hypoxia inducible factor 1, alpha subunit)

locus is juxtaposed to the SNAPC1 (small nuclear RNA activating

complex, polypeptide 1) locus through a 50-kb deletion in H1299

(Supplemental Fig. 9A). The resulting potentially in-frame fusion

protein product is 284 amino acids in length, missing the critical

C-terminal transactivation domain of the wild-type HIF1A protein.

The MLLT3–TMIGD1 fusion in H838 resulted from an inter-chro-

mosomal translocation between chromosome 9 and chromosome

17 (Supplemental Fig. 9B). The fusion was predicted to be out-of-

frame, therefore no productive fusion protein product was expected;

Liu et al .
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nevertheless, we were able to detect the fusion transcript from

both RNA-seq reads and RT-PCR (Supplemental Fig. 7).

For the 19 cell lines, we performed SKYanalysis to characterize

the cytogenetic abnormalities (Supplemental Fig. 10A,B,C). Al-

though the resolution of SKY is limited and cannot be used for

detection of all breakpoints in complex samples, the SKY results

allow us to assess the overall ploidy level of the cell lines and to

observe large chromosomal abnormalities, along with the rate of

occurrence to determine clonality. Ten to 20 cells were examined

in detail for each cell line. Within a given cell line, different cells

exhibit largely consistent chromosomal patterns, but minor de-

viations from the main pattern were frequently observed, sug-

gesting the heterogeneous nature of the cell lines. In one cell line

(NCI-H226, Supplemental Fig. 10A), ;50% of cells have diploid

genome (2n) while the remaining cells are tetraploid (4n), but the

overall translocation pattern clearly suggests that they have the

same origin. Based on the SKY results, copy number increases in

the form of an increase in the number of chromosomes are ap-

Figure 2. Frequently altered genes in lung cancer genomes. (A) The top 20 genes with the highest mutation rates in lung cancer cell lines include three
frequently mutated genes (KRAS, TP53, and STK11) in lung tumors from previous studies (Ding et al. 2008). (B) Profiles of single-nucleotide variation and
copy number alterations in lung cancer cell lines and tumors for a subset of known cancer-related genes. (C ) Profiles of single-nucleotide variation and
copy number alterations in lung cancer cell lines and tumors for a subset of genes in epigenetic pathways.

Mutational and splicing events in lung cancers

Genome Research 2319
www.genome.org



parent. For example, in the 4n cell line H1993 there were seven to

eight distinct copies of chromosome 8q, which contains the MYC

gene (Supplemental Fig. 10C). This demonstrates that the MYC

amplification was primarily caused by the presence of multiple

chromosomes rather than by tandem duplication of the genomic

region. Such spectral karyotyping data also revealed a large number

of translocations for each cell line. Although detailed comparison

with WGS-based translocation data is not feasible due to signifi-

cant differences in resolution, we were able to identify cases where

SKY-supported translocations are clearly missed by whole-genome

sequencing. Surprisingly, sequencing data did not support about

half of the cytogenetic abnormalities reported by SKY results. Such

discrepancies likely result from the fact that many translocations

occur at low complexity genomic regions, and therefore cannot be

detected by our WGS approach that uses only uniquely mapped

sequence reads.

Splice site mutations in tumors and cell lines

The combined whole-genome and RNA-seq data provide oppor-

tunities for global analysis of mutations potentially affecting the

mRNA splicing process. Among the 133,738 somatic mutations in

the three tumor genomes and 2,953,975 filtered variations in the

cell lines, 438 were found to affect essential splice acceptor and

donor sites (i.e., the first two or the last two base pairs of introns) in

433 genes. To evaluate the potential functional significance of

these splice site mutations, we examined transcriptome sequenc-

ing data in these samples for splicing events (exon skipping or

inclusion, aberrant 59 or 39 splice sites) that are inconsistent with

current exon models from all RefSeq and Ensembl transcripts. By

associating splice site mutations with aberrant splice junctions

observed in the same sample, we identified 101 genes with po-

tential mutation-associated aberrant splicing (Supplemental Table

13). This constitutes about one-third of the 321 genes containing

splice site mutations that were expressed. We did not detect any

recurrent splice site mutations among the examined samples.

Among the mutations with no detectable aberrant splicing, 106 do

not have any RNA-seq reads covering the adjacent exons, and 30

additional mutations have fewer than three reads covering the ad-

jacent exons. Therefore, of mutated genes that have sufficient read

coverage, the majority exhibit evidence for altered splicing patterns.

Of the 101 genes with splice site mutations and evidence of

aberrant splicing, several are known cancer-related genes in-

cluding RB1, EP300, ABL1, and AKT3 (Supplemental Table 14). In

tumor genome GS000000552, we identified a novel mutation in

the tumor suppressor gene RB1 affecting the AG splice acceptor

sequence of exon 22 (Fig. 3A). From the RNA-seq data, we observed

three reads spanning a novel exon–exon junction connecting

exons 21 and 25, skipping the three exons in between. The re-

sulting protein product has a 103-amino-acid in-frame deletion

close to the C terminus of RB1, which is essential for the binding of

RB1 to the E2F–DP transcription factor complexes (Rubin et al.

2005). Therefore, this mutation likely leads to a RB1 protein product

that is unable to bind E2F to block the G1-S cell cycle transition.

Consistent with this finding, many E2F target genes involved in the

G1-S transition are up-regulated in this tumor, compared with both

the adjacent normal tissue and the other two tumors (Fig. 3B,C).

Another example is a mutation in a splice donor site of a serine/

threonine–protein kinase AKT3. Four reads support the expression

of a novel isoform of AKT3 that skips exons 6 and 7, which would

lead to an in-frame deletion of 45 residues, thereby disrupting the

essential protein kinase domain (Supplemental Fig. 11).

Differential isoform usage revealed by RNA-seq

The comprehensive transcriptome sequence data also allowed us

to directly identify differential isoform usages related to cancer. We

compared the tumor transcriptomes with their corresponding

normal transcriptomes using Cufflinks (Trapnell et al. 2010) and

complemented the analysis by checking exon-level expression

values and by manual inspection. We identified four genes, ENAH,

OSBPL8, PSD3, and RAC1, with splicing products that were ex-

pressed at significantly higher levels in all three tumors compared

with the corresponding normal samples (Supplemental Fig. 12).

Similar analysis was performed for the cell lines using pooled

transcriptome data from the three normal lung tissue samples as

baseline, resulting in 153 genes with splicing isoforms differen-

tially expressed between the cancer cell lines and normal samples

across at least four different cell lines. We investigated whether

these cancer-related alternative splicing events are related to any

splice site mutations. Among these events, we found only ;5% of

them have splice site variations (including germline variations and

variations located at nonessential splice sites). Very similar per-

centages were found in genes without cancer-related alternative

splicing events. Therefore, we found no evidence in our data sug-

gesting the systematic role of cis-acting mutations in cancer-related

alternative splicing.

Overall, 13 out of these 153 genes were involved in cancer-

related pathways, including RAC1, KRAS, CHEK2, and FBXW11

(Supplemental Table 15). RAC1 (ras-related C3 botulinum toxin

substrate 1), which is differentially spliced in both tumors and cell

lines (Supplemental Fig. 12; Supplemental Table 15), encodes a rho

family small GTPase that is involved in regulating several cancer-

related pathways including the PI3K/AKT pathway, the mitogen-

activated protein kinase (MAPK) cascades, and the JUN NH2-

terminal kinase (JNK) pathway (Bosco et al. 2009). RAC1b, a splice

variant of RAC1 that predominantly exists in the GTP-bound ac-

tive form, has been previously shown to be highly expressed in

breast and colon cancers (Jordan et al. 1999; Schnelzer et al. 2000).

More recently, two papers reported that RAC1b promotes K-ras-

induced lung tumorigenesis, and that RAC1b stimulates epithe-

lial–mesenchymal transition and spontaneous tumor formation

(Stallings-Mann et al. 2012; Zhou et al. 2012). We observed near

twofold up-regulation of total RAC1 expression levels in all three

lung tumors. In contrast, the expression level of exon 3b, which is

unique to the RAC1b isoform, is about 10 times higher in the tu-

mors than in the corresponding normal samples, suggesting pref-

erential up-regulation of the RAC1b isoform in the tumors (Fig.

4A). To investigate the prevalence of RAC1b up-regulation in tu-

mors, we examined an Affymetrix exon array data set (GEO ac-

cession: GSE16534) (Lin et al. 2009) containing 12 normal lung

tissues and 49 lung tumor samples. Tumor samples expressed sig-

nificantly higher levels of exon 3b, even after subtracting the gene-

level difference (Fig. 4B, P = 0.00026, Student’s t-test). We did not

detect any mutations in RAC1 in our tumors or cell lines, sug-

gesting that expression of RAC1b in these samples may be regu-

lated by trans-acting splice factors, similar to what was reported

previously in a colorectal cancer cell line (Goncxalves et al. 2009).

Differential isoform usage as potential biomarkers

Cancer cell lines have been extensively used as in vitro systems and

in preclinical animal models to study disease progression and drug

response. We hypothesize that expression of the RAC1b isoform,

given its potential to influence the RAS–MEK–ERK pathway ac-

tivity, may influence the response of cell lines to drugs that target
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this pathway. To this end, we tested how this panel of cell lines re-

sponds to PD-0325901, a small molecule inhibitor of mitogen-ac-

tivated protein kinase kinase (MAP2K or MEK, including MAP2K1

and MAP2K2). Interestingly, cell lines sensitive to PD-0325901 have

significantly higher expression of the RAC1b isoform (P = 0.019,

Student’s t-test), while no difference in RAC1 total expression was

observed between resistant and sensitive cell lines (Fig. 4C). This

suggests that expression of the specific RAC1b isoform can poten-

tially serve as a predictive biomarker for response to PD-0325901.

Discussion
Although cell lines are widely used in cancer biology study and

drug screening, it is still controversial whether they provide a

Figure 3. Splice mutation in RB1 and the associated aberrant splicing event. (A) Splice site mutation is associated with an exon skipping event in RB1 in
the tumor genome GS000000552. A novel mutation in the tumor suppressor gene RB1 alters the AG essential splice acceptor sequence just before exon
22. There are three RNA-seq reads spanning a novel exon–exon junction between exons 21 and 25, skipping the three exons in between. The resulting
protein product has a 103-amino-acid in-frame deletion close to the C terminus of RB1, which is essential for the binding of RB1 to the E2F–DP transcription
factor complexes. (B) Most cell cycle-related E2F target genes (Bracken et al. 2004) are up-regulated in sample GS000000552. For each gene, we obtained
the expression values in matched normal and tumor samples from the patient, and calculated the log2 fold-change between tumor and normal. (C )
Among the three tumor samples, E2F target genes are up-regulated the most in sample GS000000552. Each dot represents one of the known cell cycle-
related E2F target genes (Bracken et al. 2004). P-values shown on the plot are derived from paired t-tests between GS000000552 and one of the other
tumors. The result is consistent with the hypothesis that the truncated RB1 in this sample resulting from aberrant splicing is unable to bind to E2F and
suppress the expression of its target genes. The boxes in the box-and-whisker plots represent the interquartile range between the first and third quartiles;
the dashed lines (whiskers) extend to the most extreme data points which are no more than 1.5 times the interquartile range from the box.
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suitable system for studying cancer genomics (Borrell 2010). There

are two major challenges associated with cell line sequencing. One

is the concern over spontaneous accumulation of mutations dur-

ing the cell culturing and passaging process; and the second is

the typical lack of matched normal samples. Both factors lead to

difficulties in data interpretation. To our best knowledge, whole-

genome sequencing has been reported on only three cancer cell

lines, NCI-H209 (Pleasance et al. 2010b), COLO-829 (Pleasance

et al. 2010a), and U87MG (Clark et al. 2010), although exome se-

quencing is more frequently applied (Chang et al. 2011; Wang

et al. 2012). While H209 and COLO-829 have matched normal cell

lines, the lack of a noncancer counterpart for U87MG limited the

biological interpretation of such a large collection of variations

throughout the cancer genome. Regardless, the U87MG study

showed that cell lines can be genetically stable since genotype re-

sults across different groups were remarkably consistent (Clark

et al. 2010). The key question with cell lines is how to extract

meaningful mutation information despite the lack of matched

normal samples.

Our study suggests that, in absence of matched normal sam-

ples, it is reasonable to use a large pool of germline variants as

a filter to obtain a list of likely somatic mutations. With the ever-

increasing collection of germline variants in the public domain,

this strategy is gaining traction for cell line genome studies. To

estimate the effectiveness of the filtering strategy, we took our

three normal lung tissue genomes and went through the same

filtering steps that remove known SNPs. We found that the three

normal genomes have an average of 73,700 private SNPs, or ;2.5%

of the entire SNP collection per genome. Restricting to the protein

altering private SNPs, we observed an average of 315 per normal

genome. These private SNPs form the basis for false positive mu-

tation calls. In contrast, most of our cell line samples harbor a

much higher number of variants not already represented by known

SNP collections (Supplemental Fig. 13; Supplemental Table 5). These

variants are a combination of private SNPs and true mutations.

Assuming the number of private SNPs after our filtering procedure is

relatively constant, our false positive rate of ‘‘somatic’’ mutation

calls vary substantially, depending on the total number of filtered

SNVs in the genomes. Subtracting the expected number of private

SNPs from all cell lines, we estimate that ;55% of reported variants

are true somatic mutations. By that count, the fraction of somatic

mutations in our filtered set is enriched by more than 50-fold

compared with the unfiltered set. We anticipate that the percent-

age of true somatic mutations will gradually increase as we include

more comprehensive germline variants in our filtering step.

We also demonstrated the effectiveness of such a germline

filtering process in two other aspects: the overall mutation pattern

and the most frequently mutated genes. Our previous study

showed that compositions of germline and somatic variants are

different in a smoker lung cancer genome, where C:G > A:T

transversions are enriched in the somatic mutation group (Lee

et al. 2010). For the cell lines we analyzed in this study, while called

variants prior to filtering resemble the germline SNP collection

(data not shown), the candidate mutations after filtering show an

obvious presence of the C:G > A:T smoker signature in those

smoker samples (Fig. 1A). More importantly, the most frequently

mutated genes in these cell lines (such as KRAS, TP53, STK11) are

consistent with previously reported frequent somatic mutations

from a group of lung tumors (Ding et al. 2008), even though the

precise list of commonly mutated genes is dependent on the spe-

cific lung tumor cohort. Therefore, the vast majority of germline

variants can be filtered out using the current data sets and strate-

gies, revealing patterns of somatic mutations in these cell lines.

The similarities in the mutation spectra and frequently mutated

genes between cell lines and tumors are also quite remarkable

considering that many of these cell lines were derived ;30 yr ago,

so they have stably maintained their presumed genetic alterations

in cultured life.

Our integrated mutation and DNA copy number analysis re-

veals that several epigenetic regulators are frequently mutated in

these lung cancer cell lines (Fig. 2C). In recent years, advances in

both cancer genomics and epigenomics have led to discoveries

that many epigenetic regulators are frequently mutated in various

cancer types, and many of those mutations have been shown to be

driver mutations and thus could serve as a new class of anti-cancer

targets (Esteller 2007; Jones and Baylin 2007; Baylin and Jones

2011; Rodriguez-Paredes and Esteller 2011; Wang et al. 2011). Our

study shows that, as in other cancer types, epigenetic regulators

Figure 4. Alternative splicing of RAC1 in lung cancer. (A) The RAC1b isoform, which includes exon 3b, is preferentially up-regulated in all three lung
tumors in our study. (B) Up-regulation of the RAC1b isoform is confirmed by exon array data from an independent data set (GSE16534). Each dot
represents a tissue sample. To account for differences in the expression of total RAC1, we calculated the difference between the exon 3b expression and
total RAC1 expression, and compared the differences between normal and tumor samples. The analysis showed that RAC1b is significantly up-regulated in
tumors (P = 0.00026, Student’s t-test). (C ) Cell lines sensitive to PD-0325901 have significantly higher expression of the RAC1b isoform (P = 0.019,
Student’s t-test), while no difference in RAC1 total expression was observed between resistant and sensitive cell lines. Each dot represents one cell line. The
boxes in the box-and-whisker plots represent the interquartile range between the first and third quartiles; the dashed lines (whiskers) extend to the most
extreme data points which are no more than 1.5 times the interquartile range from the box.
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tend to be mutated, suggesting epigenetic distortion in these lung

cancer cell lines. In fact, all of the cell lines we have studied so far

have at least one mutation or copy number alteration in ASH1L,

KDM6A, SMARCA4, or ATAD2 (Fig. 2C). The combined mutation

and copy number loss profile of KDM6A is reminiscent of the status

of tumor suppressors like TP53 or CDKN2A in our study. In con-

trast, the mutation and copy number gain of ATAD2 is similar to

the profiles of oncogenes like KRAS and PIK3CA. The prevalence of

alterations in epigenetic regulators in lung tumors still needs to be

established in a bigger data set, since the three tumors in our data

(two were derived from never-smokers with a very small number of

mutations) do not appear to harbor many of these alterations. In

addition, the definitive functional roles of these epigenetic regu-

lators in lung cancer still require further biochemical validation,

but our study provides the needed genomic evidence and choices

of cell lines with various genetic backgrounds for further experi-

mental work.

The combined genome and transcriptome studies also provide

ample opportunities to study the functional effect of mutations on

different aspects of transcription: expression level, splicing, and

allele-specific expression. In this study, we focused on the re-

lationship between splice site mutations and splicing differences

by examining two complementary angles. One is to examine the

frequency of observing aberrant splicing events in genes with

splicing site mutations; the other is to determine the contribution

of cis-acting mutations to differential isoform usage. On the first

aspect, our data showed that for genes with an essential splicing

site mutation, if adequate RNA-seq reads are available, the majority

of these genes show aberrant splicing around the mutation. We

have identified relevant splice site mutations in cancer, including

a novel mutation in the RB1 gene (Fig. 3A), which results in a

truncated protein predicted to deregulate E2F targets (Fig. 3B). On

the second aspect, for all differential splicing isoform usage cases

detected by RNA-seq analysis, only ;5% have splice site variations.

Since a majority of alternative splicing in this study cannot be

explained by cis-acting variants within a gene, we argue that al-

ternative splicing primarily results from other independent fac-

tors. The finding of the RAC1b splicing isoform, for example, is

independent of the mutation data. Regardless of mutation-

dependent aberrant splicing or mutation-independent alternative

splicing, it is important to characterize the expression of particular

splicing isoforms like RAC1b, whose expression status is associated

with cell line response to MEK inhibition (Fig. 4C). This is of par-

ticular interest in biomarker discovery since the abundant genome

and transcriptome data significantly broaden the search space for

these biomarkers.

In summary, we used multiple genomic, transcriptomic, and

cytogenetic technologies to characterize more than twenty lung

cancer samples (Supplemental Fig. 14). Our comprehensive and

integrative analysis showed that cancer cell lines can be useful models

for finding mutations of interest, uncovering functional splice site

mutations, and exploring events like splicing isoforms as uncon-

ventional predictive biomarkers. Such data on a much wider collec-

tion of cancer cell lines should prove to be extremely valuable re-

sources for cancer biology study and therapeutic drug development.

Methods

Sample descriptions and preparation
Frozen tissues samples were obtained from Indivumed. Four-micron
thick frozen sections were obtained from both primary lung

adenocarcinoma and the matched normal lung tissues. Sections
were H&E stained and examined by a pathologist to verify di-
agnosis and evaluate tumor content. Both tumor samples had
a tumor percentage >80%. The DNA and RNA were extracted from
frozen tissues and cell lines by a standard protocol using DNA/RNA
extraction kit (Qiagen).

Since reports on smoking history of the patients from which
the cell lines were derived can be inconsistent (such as those from
the ATCC database), we obtained such information from the
original report describing these cell lines (Phelps et al. 1996). In the
case of H460, we based the information on personal communica-
tions with the doctor who treated the original donor patient.

Whole genome sequencing

Whole genome DNA sequencing (DNA-seq) was performed by
‘‘unchained combinatorial probe anchor ligation sequencing,’’ as
described previously (Drmanac et al. 2009). The resulting mate-
paired reads with an expected intervening distance (;400 bp) were
mapped to the human reference genome (NCBI Build 37). First,
both paired-end reads were aligned to the reference genome,
resulting in an average of 185 billion base pairs of mapped se-
quences per sample. The average coverage was >603 (Supple-
mental Table 3). For locations with any evidence of differences
from the reference genome, mapped reads were assembled into the
best-fit diploid genome. This process results in single nucleotide
variation, insertion, and deletion calls with associated variant
quality scores (Drmanac et al. 2009). Overall, 92%–96% of the
human reference genome was fully called.

Mutation detection, filtering, and validation

Variations were called, with respect to the reference genome, for
each of the sequenced genomes as described previously (Drmanac
et al. 2009). Loci that were called as variant in the tumor and ref-
erence in the normal genome were considered as somatic muta-
tions. Somatic scores were assigned to the mutation calls using
calldiff-1.3, where a higher score indicates a lower likelihood that
the called variation in the tumor genome is false positive and the
reference call in the normal genome is false negative. Mutations
that were present in dbSNP (v131) were filtered out to obtain novel
mutation calls. We further filtered out any variations that were
found in 1000 Genomes (Nov 2010 release), variations present
in 69 complete human genomes release by Complete Genomics
Inc. (http://www.completegenomics.com/sequence-data/download-
data/), and SNPs present in the ESP2500 release of the NHLBI Exome
Sequencing Project (http://www.ncbi.nlm.nih.gov/projects/SNP/
snp_viewBatch.cgi?sbid=1055207). Mutations that were also
present in COSMIC v55 (http://www.sanger.ac.uk/genetics/CGP/
cosmic/) were retained, even if also present in any of the pre-
viously mentioned filtering sets.

Mutations were annotated for their effect on transcripts using
the variant effect predictor tool (McLaren et al. 2010). The different
types of consequences predicted are intergenic, regulatory region,
upstream (within 5 kb), 59 UTR, complex indel (spans intron/exon
border), splice site (1–3 bp into exon, 3–8 bp into intron), synon-
ymous coding, nonsynonymous coding, intronic, frame-shift cod-
ing, stop gained, stop lost, 39 UTR and downstream (within 5 kb).

We experimentally tested a selective subset of somatic single
base substitutions for tumor-normal comparisons from all three
patients using Sequenom (223 mutations from patient 21214, 187
from 34560, and 995 mutations from patient 39876). For the
purpose of validation, we filtered out mutations that were anno-
tated as intergenic, intronic, or downstream. We also filtered out
mutations in pseudogenes or hypothetical genes, based on their
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description in the Entrez Gene database. The score performed well
in all the patients (Supplemental Fig. 1; AUC for never-smokers
were 0.92 each and 0.79 for the smoker). The optimal somatic score
threshold was determined this way: A set of scores was chosen such
that the positive predictive value (PPV) was $80%. Among these
scores, the score with the highest true positive rate (TPR) was
chosen, and its PPV and TPR were reported. For the two never-
smokers, the data were pooled and an optimal score threshold of
0.064 was determined, at a PPV of 82.3% and a TPR of 68.9%. For
the smoker, a score threshold of 0.034 was used, which gave a PPV
as well as a TPR value of 92%.

A selected list of mutations is shown in Supplemental Table 4
satisfying all of these criteria, that the mutation is:

• novel

• high-confidence (somatic score is greater than determined
threshold and mutation was not invalidated experimentally)

• transcript-associated (i.e., it does not have the consequences
‘‘intergenic’’, ‘‘intronic’’, ‘‘downstream’’, ‘‘upstream’’, or ‘‘within_
non_coding_gene’’).

We also attempted to validate our lists of filtered variations
using our transcriptome sequence data. The number of SNVs that
can be validated is limited by the RNA-seq coverage at the SNV
positions, which vary greatly among the genomes (Supplemental
Fig. 15, top panel). Nevertheless, among SNV positions with suf-
ficient RNA-seq coverage (10 or more reads), ;75% of SNVs are
supported by the presence of variant RNA-seq reads (Supplemental
Fig. 15, bottom panel; Supplemental Table 6). To estimate the false
negative rate of our SNV calling, we compared our results with
recently published targeted-sequencing data from the CCLE
(Barretina et al. 2012). Fourteen cell lines in our collection were
also analyzed in the CCLE project. On average 94% of all the
mutations published by CCLE were also called by our Complete
Genomics data, representing a possible 6% false negative rate
(Supplemental Fig. 16).

Predicting the effects of amino acid substitutions on protein
function

SIFT 4.04 (Kumar et al. 2009), PolyPhen-2 (Ramensky et al. 2002;
Adzhubei et al. 2010), and mCluster (Yue et al. 2010) were applied
to predict the effects of nonsynonymous mutations on protein
function. To compare the proportions of deleterious mutations in
both the somatic and the germline mutation set, we applied SIFT
and PolyPhen using default parameters. Mutations, which were
predicted to be ‘‘deleterious’’ by SIFT or ‘‘probably damaging’’ by
PolyPhen, were defined as deleterious in our analysis. For the
derivation of mutations that were predicted to affect protein
function based on at least two methods, mutations classified as
‘‘possibly damaging’’ by PolyPhen were also defined to have an
impact on function. Nonsynonymous mutations that could not be
scored (e.g., because of the lack of homologous proteins) were
excluded from our analysis.

Transcriptome sequencing

Total RNA was subject to enrichment using the Ribo-minus Eu-
karyote kit (Invitrogen), and the resulting RNA fraction was used to
construct complementary DNA libraries. Transcriptome sequenc-
ing (RNA-seq) was performed on the Illumina GAIIx Platform us-
ing the standard paired-end protocol. The RNA-seq reads were first
aligned to ribosomal RNA sequences to remove potential ribo-
somal reads. The remaining reads were aligned to the human ref-
erence genome (NCBI Build 37) using GSNAP (Wu and Nacu 2010),

allowing a maximum of five mismatches per 75-bp sequencing
end. To quantify the gene expression level, the number of reads
mapped to the exons of each RefSeq gene was calculated, and the
corresponding RPKM value (reads mapping to the genome per
kilobase of transcript per million reads sequenced) (Mortazavi
et al. 2008) was also derived.

Structural variations (SV) detection and validation

All uniquely mapped reads from whole-genome sequencing were
used for the estimation of normal pair-span. The set of mate pairs
was further refined by aligning each read within a normal range of
pair-span with penalties for mismatches and indels. Each read with
fewer than four penalty units was retained. The orientation of the
reads that were mapped to the forward strand of the reference
genome was designated as plus (‘‘+’’); otherwise it was assigned
minus (‘‘�’’). The discordant mate pairs were defined as either (1)
mate-span beyond normal range (500 bp) or (2) with discordant
orientation. Adjacent discordant reads (within 500 bp) with the
same orientation were then merged to make a discordant reads
cluster. The clusters that contained too few discordant mate pairs
(<3) after merging were discarded.

We then applied a filtering process to define high confidence
somatic SVs as (1) SVs supported by a sufficient number of dis-
cordant mate pairs (pair_count $ 10), and (2) a discordant span
($5 kb) for an intrachromosomal deletion call. We also excluded
those SVs that were also present in matched non-neoplastic sam-
ples or other unrelated normal samples that we sequenced. A
subset of putative somatic SVs that overlapped with RefSeq genes
were subjected to a further experimental validation by PCR. PCR
primers were designed to flank putative SV breakpoints. PCR am-
plification was performed on both tumor and nontumor lung tis-
sues and cell lines. PCR conditions and validation criteria were
described previously (Jiang et al. 2012). About 57% (51/89)
breakpoints were confirmed at base-pair resolution.

Spectral karyotyping (SKY)

Metaphase slides were prepared from 20 lung cancer cell lines that
were cultured, harvested, and fixed with methanol:acetic acid
(3:1), according to standard cytogenetic procedures. Seven micro-
liters of denatured SkyPaint probe (Applied Spectral Imaging [ASI])
was added to each denatured metaphase slide, which then was
covered by a glass coverslip and incubated overnight in a 37°C
humidified chamber. Slide pretreatment and post-hybridization
washes were performed according to the standard supplied pro-
tocol (ASI) with slight modifications. Image acquisition was per-
formed with a COOL-1300 SpectraCube camera (ASI) mounted on
an Olympus BX43 microscope using a SKY optical filter (ASI). For
each sample, a minimum of 10–15 metaphases were analyzed us-
ing the HiSKY v6.0 software (ASI).

Copy number variations (CNV) and loss of heterozygosity
(LOH) detection from sequencing data

DNA copy number variation (CNV) and allele-imbalance (AIB/LOH)
in tumor samples was defined by read depth coverage and B-allele
frequency analysis. For each sample, DNA sequencing reads were
binned at 50-Kbp intervals along the genome and counted. The
ratio of counts per bin in the tumor and its matched normal sample,
log2 transformed, was calculated as the raw measure of copy number
(log2[tumor/normal]). This value was corrected for GC content bias
using GC content information from UCSC (http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/gc5Base/hg19.gc5Base.txt.gz).
These GC content data were averaged over 500-bp windows and
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then smoothed over a 1-Mb window using a running mean. The
residuals of the regression of log2 ratio on GC content were taken as
the measure of copy number. These log2 ratios were then shifted to
have a mode of 0. These values were segmented into discrete blocks
of uniform copy number using the CBS algorithm from the Bio-
conductor package DNAcopy (Venkatraman and Olshen 2007).
The parameters for CBS were smooth.region = 2, outlier.SD.scale =

4, smooth.SD.scale = 2, and trim = 0.025. Segments with a log2

ratio less than or equal to�0.15 were considered as regions of copy
loss whereas segments with a log2 ratio $0.15 were defined as copy
gain regions.

Genome-wide allelic imbalance (AI) was assessed using the
counts of A, C, G, and T nucleotides in the tumor at positions
called heterozygous in the matched normal sample. The most
common nucleotide was called ‘‘Allele B’’ and the sum of the
counts for the other three nucleotides was taken as the frequency
of the ‘‘Allele A.’’ The raw B-Allele Frequency (BAF) was calculated
as BAF = 2/pi * atan(B counts/A counts) (Peiffer et al. 2006). BAF was
converted to modified BAF (mBAF) by reflecting it around the
value 0.5 (Diskin et al. 2008). mBAF values were averaged in the
same 50-kb bins used for the copy number above. These binned
mBAF values were segmented using CBS and the same parameters
used for copy number (Diskin et al. 2008). Segments with a mBAF
value $0.75 were considered as allelic imbalance. Segments with AI
and without copy gain were said to have loss of heterozygosity (LOH).

Copy number variations (CNV) analysis from SNP array

Illumina HumanOmni2.5_4v1 arrays were used to assay 19 lung
cancer cell lines for genotype, DNA copy number, and LOH. A
subset of 2,295,239 high-quality SNPs was selected for all analyses.
These SNPs were concordant in >17 cell lines assayed by both
Illumina HumanOmni2.5_4v1 array and Complete Genomics full-
genome sequencing.

We applied a modified version of the PICNIC (Greenman et al.
2010) algorithm to estimate total copy number and allele-specific
copy number/LOH. PICNIC was modified to work with Illumina
arrays as described previously (Seshagiri et al. 2012).

Genomic regions with recurrent DNA copy gain and loss were
identified using GISTIC (Mermel et al. 2011), version 2.0. Seg-
mented integer total copy number values obtained from PICNIC,
c, were converted to log2 ratio values, y, as y = log2(c + 0.1) – 1.
Cutoffs of 60.2 were used to categorize log2 ratio values as gain or
loss, respectively. A minimum segment length of 20 SNPs and
a log2 ratio ‘‘cap’’ value of 3 were used.

Association between essential splice site variations
and aberrant splicing junctions

Variations at essential splice sites (the first and last two base pairs of
introns in RefSeq transcripts) were extracted from the list of all
filtered mutations. Variations in genes with low expression level
(RPKM < 0.01) were excluded from the analysis. The aberrant splicing
junctions were obtained from the spliced reads in transcriptome se-
quencing data by removing splicing junctions which match any
exon junction in RefSeq or Ensembl transcripts (downloaded from
http://genome.ucsc.edu/). Aberrant splicing junctions were excluded
if they do not completely fall within the gene boundaries. Filtered
essential splice site mutations that are located within the ranges of
introns spanned by aberrant splicing junctions were reported.

Identification of differential isoform expression between
cancer and normal samples

We used a two-step procedure to identify differential isoform ex-
pression between cancer and normal samples. In both steps, three

tumor transcriptomes were compared with corresponding paired
normal genomes, and 19 cancer cell line transcriptomes were
compared with data pooled from three normal transcriptomes. In
the first step, cancer transcriptomes were compared with normal
transcriptomes using the Cufflinks method (Trapnell et al. 2010) to
identify genes which are expressed (average transcript FPKM > 0.1,
Fragments Per Kilobase of exon per Million fragments mapped)
and have significant changes in splicing (P < 0.01) across at least
a number of transcriptomes (three for tumor and four for cell lines)
with consistent (>70%) top expressed transcripts. In order to pin-
point the specific isoforms that were differentially expressed, the
gene list obtained in the first step was further filtered by comparing
gene and exon level expression (RPKM) of the cancer tran-
scriptomes to those of normal transcriptomes. Specifically, genes
were kept if they are expressed (RPKMgene > 0.01) and have iso-
form-specific exon(s) which have at least twofold change of rela-
tive expression ratio (RPKMexon/RPKMgene) between cancer sam-
ples and normal samples across at least a number of cancer
transcriptomes (three for tumor and four for cell lines).

Validation of fusion transcripts in cell lines

Cell culture

H1299, H441, and H838 cell lines were obtained from the Ameri-
can Type Culture Collection and were grown at 5% CO2 in RPMI
1640 supplemented with 10% Fetal Bovine Serum and 2 mM
Glutimax (Life Technologies, Cat No. 35050061).

Nucleic acid extraction, PCR , and RT-PCR

Cell line DNA was extracted using DNeasy Blood & Tissue Kit
(Qiagen, Cat. No. 69506) and RNA was extracted using TRIzol (Life
Technologies, Cat No. 15596-026) according to the manufacturer’s
instructions. cDNA was generated using the ABI High Capacity
cDNA Reverse Transcriptase Kit (Applied Biosystems, Cat No.
4368813). Both genomic DNA and cDNA were amplified with
Platinum PCR Supermix (Life Technologies, Cat No. 11306-016) at
95°C for 5 min, then 35 cycles of 95°C for 30 sec, 55°C for 30 sec,
and 72°C for 1 min, and then a final extension at 72°C for 8 min.
PCR products were separated using 2% E-gels (Life Technologies,
Cat No. G800802) and were imaged with a FluorChem 8900 gel
imager (Alpha Innotech). PCR primers used are as follows: (F, for-
ward primer; R, reverse primer; all sequences are 59 to 39) MLLT3_
TMIGD1, F: CTGGGGAAATTGTGGATTTG, R: CCTGTACTGTGA
GCCATGCT; HIF1A_SNAPC1, F: ATCTCCAAAATGCAGAACCG, R:
AAAGCCACACACCTACGACC; CLTC_VMP1, F: GCTTTGGTTGA
GAGACCAGC, R: CCTGGGTGACAAGAGGGAG; PCNXL3_RELA,
F: CCCCTGTTCCACAGCACTAT, R: GACCCAGAGCTGTCCTTG
AG. RT-PCR primers used are as follows (RT1, primer set 1; RT2,
primer set 2; F, forward primer; R, reverse primer; all sequences are
59 to 39): MLLT3_TMIGD1, RT1F: TGTTTGGAAGTCGTTTCCACT,
RT1R: GCTGGTTTCATTTTGCCAAT, RT2F: GCCTGCAGGTAAA
GCTGATT, RT2R: CTTCCACTTGCACGAAAGC; HIF1A_SNAPC1,
RT1F: CCTTCCTGCTGGTTTCAATC, RT1R: TGCGTGTGAGGAAA
CTTCTG, RT2F: CCCTTGACCAGATGCAGAAT, RT2R: TGCTCAT
CAGTTGCCACTTC; CLTC_VMP1, RT1F: CGTTGAGCCTCCAGG
TACTC, RT1R: CAACAATCGCTGGAAACAGA, RT2F: CATTTCG
CTTTTGTGGTGAA, RT2R: CAGCCTTTACAAGGATGCAA; PCNXL3_
RELA, RT1F: GGCGAGAGGAGCACAGATAC, RT1R: TGAAGCCA
AACACAGAGTGC, RT2F: TCTGCTTCCAGGTGACAGTG, RT2R: AA
GCTCTTGCTCAGCTCCTG.

TA cloning and sequencing

PCR products were cloned using the TOPO TA Cloning Kit for Se-
quencing (Life Technologies, Cat No. K457540) according to
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manufacturer’s instructions and plated on LB agar plates contain-
ing 50 mg/mL Carbenicillin. A minimum of 12 colonies per PCR
product was selected and grown overnight at 37°C in LB media
containing 50 mg/mL Carbenicillin. Plasmid DNA was extracted
with a miniprep kit (QIAGEN, Cat No. 27361) and sequenced using
a 3730 3 1 DNA Analyzer (Applied Biosystems). DNA sequence was
analyzed using Sequencher v4.10.1.

Data access
The sequencing data used in this study have been submitted to the
NCBI database of Genotypes and Phenotypes (dbGaP) (http://
www.ncbi.nlm.nih.gov/gap) under accession number phs000299.
The SNP array data for lung cancer cell lines have been submitted
to the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.
nlm.nih.gov/geo/) under accession number GSE40908.
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