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From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality
measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed
network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over
time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak
performance is intuitively more rewarding than defeating the same player in other periods. To account for this
factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men’s
tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking
system predicts the outcome of the future games with a higher accuracy than the static counterparts.

R
anking of individual players or teams in sports, both professional and amateur, is a tool for entertaining fans
and developing sports business. Depending on the type of sports, different ranking systems are in use1. A
challenge in sports ranking is that it is often impossible for all the pairs of players or teams (we refer only to

players in the following. However, the discussion also applies to team sports) to fight against each other. This is the
case for most individual sports and some team sports in which a league contains many teams, such as American
college football and soccer at an international level. Then, the set of opponents depends on players such that
ranking players by simply counting the number of wins and losses is inappropriate.

In this situation, several ranking systems on the basis of networks have been proposed. A player is regarded to
be a node in a network, and a directed link from the winning player to the losing player (or the converse)
represents the result of a single game. Once the directed network of players is generated, ranking the players is
equivalent to defining a centrality measure for the network. A crux in constructing a network-based ranking
system is to let a player that beats a strong player gain a high score. Examples of network-based ranking systems
include those derived from the Laplacian matrix of the network2–5, the PageRank6, a random walk that is different
from those implied by the Laplacian or PageRank7, a combination of node degree and global structure of net-
works8, and the so-called win-lose score9.

Previous network-based ranking systems do not account for fluctuations of rankings. In fact, a player, even a
history making strong player, referred to as X, is often weak in the beginning of the career. Player X may also be
weak past the most brilliant period in the X’s career, suggestive of the retirement in a near future. For other
players, it is more rewarding to beat X when X is in the peak performance than when X is novice, near the
retirement, or in the slump. It may be preferable to take into account the dynamics of players’ strengths for
defining a ranking system. In the present study, we extend the win-lose score, a network-based ranking system
proposed by Park and Newman9 to the dynamical case. Then, we apply the proposed ranking system to the
professional men’s tennis data.

In broader contexts, the current study is related to at least two other lineages of researches. First, a dynamic
network-based ranking implies that we exploit the temporal information about the data, i.e., the times when games
are played. Therefore, such a ranking system is equivalent to a dynamic centrality measure for temporal networks, in
which sequences of pairwise interaction events with time stamps are building units of the network10. Although some
centrality measures specialized in temporal networks have been proposed11–13, they are not for ranking purposes. In
addition, they are constant valued centrality measures for dynamic (i.e., temporal) data of pairwise interaction. In the
context of temporal networks, we propose a dynamically changing centrality measure for temporal networks.

Second, statistical approaches to sports ranking have a much longer history than network approaches.
Representative statistical ranking systems include the Elo system14 and the Bradley-Terry model (see ref. 15
for a review). Variants of these models have been used to construct dynamic ranking systems. Empirical Bayes
framework naturally fits this problem16–21. Because the Bayesian estimators cannot be obtained analytically, or
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even numerically owing to the computational cost, in these models,
techniques for obtaining Bayes estimators such as the Gaussian
assumption of the posterior distribution18,21, approximate message
passing21, and Kalman filter17–19, have been employed. In a non-
Bayesian statistical ranking system, the pseudo likelihood, which is
defined such that the contribution of the past game results to the
current pseudo likelihood decays exponentially in time, is numer-
ically maximized22.

In general, the parameter set of a statistical ranking system that
accounts for dynamics of players’ strengths is composed of dynam-
ically changing strength parameters for all the players and perhaps
other auxiliary parameters. Therefore, the number of parameters to
be statistically estimated may be large relative to the amount of data.
In other words, the instantaneous ranks of players have to be esti-
mated before the players play sufficiently many games with others
under fixed strengths. Even under a Bayesian framework with which
updating of the parameter values is naturally implemented, it may be
difficult to reliably estimate dynamic ranks of players due to relative
paucity of data. In addition, in sports played by individuals, such as
tennis, it frequently occurs that new players begin and old and under-
performing players leave. This factor also increases the number of
parameters of a ranking system. In contrast, ours and other network-
based ranking systems, both static and dynamic ones, are not founded
on statistical methods. Network-based ranking systems can be also
simpler and more transparent than statistical counterparts.

Results
Dynamic win-lose score. We extend the win-lose score9 (see
Methods) to account for the fact that the strengths of players
fluctuate over time. In the following, we refer to the win-lose score
as the original win-lose score and the extended one as the dynamic
win-lose score.

The original win-lose score overestimates the real strength of a
player i when i defeated an opponent j that is now strong and was
weak at the time of the match between i and j. Because j defeats many
strong opponents afterward, i unjustly receives many indirect wins
through j. The same logic also applies to other network-based static
ranking systems2–8.

To remedy this feature, we pose two assumptions. First, we assume
that the increment of the win score of player i through the i’s winning
against player j depends on the j’s win score at that moment. It does
not explicitly depend on the j’s score in the past or future. The same
holds true for the lose score. Second, we assume that each player’s
win and lose scores decay exponentially in time. This assumption is
also employed in a Bayesian dynamic ranking system22.

Let Atn be the win-lose matrix for the game that occurs at time tn

(1 # n # nmax). In the analysis of the tennis data carried out in the
following, the resolution of tn is equal to one day. Therefore, players’
scores change even within a single tournament. If player j wins against
player i at time tn, we set the (i, j) element of the matrix Atn to be 1. All
the other elements of Atn are set to 0. We define the dynamic win score
at time tn in vector form, denoted by wtn , as follows:

Wtn~Atnze{b tn{tn{1ð Þ
X

mn[ 0,1f g
amn Atn{1 Amn

tn

ze{b tn{tn{2ð Þ
X

mn{1,mn[ 0,1f g
amn{1zmn Atn{2 Amn{1

tn{1
Amn

tn

z � � �ze{b tn{t1ð Þ
X

m2,...mn[ 0,1f g
a
Pn

i~2
mi At1 Am2

t2
� � �Amn

tn

ð1Þ

and

wtn~W>
tn

1, ð2Þ

where a is the weight of the indirect win, which is the same as the case
of the original win-lose score (Methods), and b $ 0 represents the
decay rate of the score.

The first term on the right-hand side of Eq. (1) (i.e., Atn ) represents
the effect of the direct win at time tn. The second term consists of two
contributions. For mn 5 0, the quantity inside the summation repre-
sents the direct win at time tn21, which results in weight e{b tn{tn{1ð Þ.
For mn 5 1, the quantity represents the indirect win. The (i, j)
element of Atn{1 Atn is positive if and only if player j wins against a
player k at time tn and k wins against i at time tn21. Player i gains
score e{b tn{tn{1ð Þa out of this situation. For both cases mn 5 0 and
mn 5 1, the jth column of the second term accounts for the effect of
the j’s win at time tn21. The third term covers four cases. For mn21 5

mn 5 0, the quantity inside the summation represents the direct win
at tn22, resulting in weight e{b tn{tn{2ð Þ. For mn21 5 0 and mn 5 1,
the quantity represents the indirect win based on the games at tn22

and tn, resulting in weight e{b tn{tn{2ð Þa. For mn21 5 1 and mn 5 0,
the quantity represents the indirect win based on the games at tn22

and tn21, resulting in weight e{b tn{tn{2ð Þa. For mn21 5 mn 5 1, the
quantity represents the indirect win based on the games at tn22, tn21,
and tn, resulting in weight e{b tn{tn{2ð Þa2. In either of the four cases,
the jth column of the third term accounts for the effect of the j’s win at
time tn22.

To see the difference between the original and dynamic win scores,
consider the exemplary data with N 5 3 players shown in Fig. 1. The
original win-lose scores calculated from the aggregation of the data
up to time tn (n 5 1, 2, and 3), denoted by wtn

(i) for player i, are given
by

wt1 1ð Þ~1,

wt1 2ð Þ~0,

wt1 3ð Þ~0,

8><
>:

wt2 1ð Þ~1za,

wt2 2ð Þ~1,

wt2 3ð Þ~0,

8><
>:

wt3 1ð Þ~1zaza2z � � � ,
wt3 2ð Þ~1zaza2z � � � ,
wt3 3ð Þ~1zaza2z � � � :

8><
>: ð3Þ

The scores of the three players are the same at t 5 t3 because the
aggregated network is symmetric (i.e., directed cycle) if we discard
the information about the time.

The dynamic win-lose scores for the same data are given by

wt1 1ð Þ~1,

wt1 2ð Þ~0,

wt1 3ð Þ~0,

8><
>:

wt2 1ð Þ~e{b t2{t1ð Þ,

wt2 2ð Þ~1,

wt2 3ð Þ~0,

8><
>:

wt3 1ð Þ~e{b t3{t1ð Þ,

wt3 2ð Þ~e{b t3{t2ð Þ,

wt3 3ð Þ~1zae{b t3{t1ð Þ:

8><
>: ð4Þ

The score of player 1 at t2 (i.e., wt2
(1)) differs from the original win-

lose score in two aspects. First, it is discounted by factor e{b t2{t1ð Þ.
Second, the value of wt2

(1) indicates that player 1 does not gain an
indirect win. This is because it is after player 1 defeated player 2 that
player 2 defeats player 3. In contrast, player 3 gains an indirect win at
t 5 t3 because player 3 defeats player 1, which defeated player 2
before (i.e., at t 5 t1). It should be noted that the win scores of the
three players are different at t 5 t3 although the aggregated network
is symmetric.

Equation (1) leads to

Figure 1 | Example time series of games with N 5 3.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 904 | DOI: 10.1038/srep00904 2
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ð5Þ

Therefore, by combining Eqs. (2) and (5), we obtain the update
equation for the dynamic win score as follows:

wtn~
A>t1

1 n~1ð Þ,

A>tn
1ze{b tn{tn{1ð Þ IzaA>tn

� �
wtn{1 nw1ð Þ:

8<
: ð6Þ

The dynamic lose score at time tn is denoted in vector form by ,tn . We
obtain the update equation for ,tn by replacing Atn in Eq. (6) by A>tn

as
follows:

tn~
At1 1 n~1ð Þ,
Atn 1ze{b tn{tn{1ð Þ IzaAtnð Þ tn{1 nw1ð Þ:

�
ð7Þ

Finally, the dynamic win-lose score at time tn, denoted by stn , is given by

stn~wtn{ tn : ð8Þ

It should be noted that we do not treat retired players in special ways.
Players’ scores exponentially decay after retirement.

Predictability. We apply the dynamic win-lose score to results of
professional men’s tennis. The nature of the data is described in
Methods.

In this section, we predict the outcomes of future games based on
different ranking systems. The frequency of violations, whereby a
lower ranked player wins against a higher ranked player in a game,
quantifies the degree of predictability24,25. In other literature, the
retrodictive version of the frequency of violations is also used for
assessing the performance of ranking systems24,26–28.

We compare the predictability of the dynamic win-lose score, the
original win-lose score9, and the prestige score (Methods). The pres-
tige score, proposed by Radicchi and applied to professional men’s
tennis data6, is a static ranking system and is a version of the
PageRank originally proposed for ranking webpages29. We also
implement a dynamic version of the prestige score (Methods) and
compare its performance of prediction with that of the dynamic win-
lose score.

We define the frequency of violations as follows. We calculate the
score of each player at tn (1 # n # nmax 2 1) on the basis of the results
up to tn. For the original win-lose score and prestige score, we ag-
gregate the directed links from t 5 t1 to t 5 tn to construct a static
network and calculate the players’ scores. If the result of each game at
tn11 is inconsistent with the calculated ranking, we regard that a
violation occurs. If the two players involved in the game at tn11 have
exactly the same score, we regard that a tie occurs irrespective of the
result of the game. We define the prediction accuracy at the Ngpth
game as the fraction of correct prediction when the results of the
games from t 5 t2 through the Ngpth game are predicted. The

prediction accuracy is given by N ’
gp{e{v

� �.
N ’

gp{e
� �

, where

N ’
gp vNgp
� �

is the number of predicted games, v is the number of
violations, and e is the number of ties.

For the prestige score and its dynamic variant, we exclude the
games in which either player plays for the first time because the score
is not defined for the players that have never played. In this case, we
increment e by one.

The original and dynamic win-lose scores can be negative valued.
Equations (2) and (12) guarantee that the initial score is equal to zero

Figure 2 | Performance of prediction for the four ranking systems. (a) Dynamic win-lose score with b 5 1/365 and different a values. (b) Original win-

lose score with a 5 0 and 0.004835. (c) Prestige score with q 5 0.05, 0.15, and 0.3. (d) Dynamic variant of the prestige score with q 5 0.05, 0.15, and 0.3.
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for all the players for the dynamic and original win-lose scores,
respectively. Furthermore, any player has a zero win-lose score when
the player fights a game for the first time. Even though we do not treat
such a game as tie unless both players involved in the game have zero
scores, treating it as tie little affects the following results.

The prediction accuracy for the dynamic win-lose score, original
win-lose score, prestige score, and dynamic prestige score are shown
in Figs. 2(a), 2(b), 2(c), and 2(d), respectively, for various parameter
values.

Figure 2(a) indicates that the prediction accuracy for the
dynamic win-lose score is the largest for a 5 0.13 except when
the number of games (i.e., Ngp) is small. The accuracy is insensitive
to a when 0.08 # a # 0.2. In this range of a, we confirmed by
additional numerical simulations that the results for b 5 1/365
and those for b 5 0 are indistinguishable. Therefore, we conclude
that the performance of prediction has some robustness with
respect to a and b. We also confirmed that the accuracy mono-
tonically increases between a < 0.03 and a < 0.13. However, for
an unknown reason, the accuracy with a < 0.03 is smaller than
that with a 5 0 (results not shown).

Figure 2(b) indicates that the prediction accuracy for the original
win-lose score is larger for a 5 0 than a 5 0.004835. The latter a value
is very close to the upper limit calculated from the largest eigenvalue
of A (see subsection ‘‘Parameter values’’ in Methods). We also found
that the prediction accuracy monotonically decreases with a.
Nevertheless, except for small Ngp, the accuracy with a 5 0 is lower
than that for the dynamic win-lose score with a 5 0 and 0.08 # a #

0.2 (Fig. 2(a)).
Figure 2(c) indicates that the prediction by the prestige score is

better for a smaller value of q (see Methods for the meaning of q). We
confirmed that this is the case for other values of q and that the results
with q # 0.05 little differ from those with q 5 0.05. Except for small
Ngp, the prediction accuracy with q 5 0.05 is lower than that for the
dynamic win-lose score with 0.08 # a # 0.2 (Fig. 2(a)).

Figure 2(d) indicates that the prediction by the dynamic variant of
the prestige score is more accurate than that by the dynamic win-lose
score, in particular for small Ngp. Similar to the case of the original
prestige score, the prediction accuracy decreases with q.

The findings obtained from Fig. 2 are summarized as follows.
When a is between < 0.08 and < 0.2 and b is between 0 and 1/
365, the dynamic win-lose score outperforms the original win-lose
score and the prestige score in the prediction accuracy. For example,
at the end of the data, the accuracy is equal to 0.659, 0.661, 0.661, and
0.659 for the dynamic win-lose score with (a, b) 5 (0.08, 1/365), (0.1,
1/365), (0.13, 1/365), and (0.2, 1/365), respectively, while it is equal to
0.623 for the original win-lose score with a 5 0 and 0.631 for the
prestige score with q 5 0.05. However, the accuracy for the dynamic
variant of the prestige score with q 5 0.05 (i.e., 0.668) is slightly larger
than the largest value obtained by the dynamic win-lose score.

We also compare the prediction accuracy for the dynamic
win-lose score with that for the official Association of Tennis
Professionals (ATP) rankings. Because the calculation of the ATP
rankings involves relatively minor games that do not belong to ATP
World Tour tournaments, which we used for Fig. 2, we use a different
data set for the present comparison (see ‘‘Data’’ in Methods). The
prediction accuracy at the end of the data is equal to 0.637 for the
ATP rankings and 0.588, 0.629, 0.646, 0.650, and 0.649 for the
dynamic win-lose score with (a, b) 5 (0.08, 1/365), (0.1, 1/365),
(0.13, 1/365), (0.17, 1/365), and (0.2, 1/365), respectively. The pre-
diction accuracy for the dynamic win-lose score is larger than that for
the ATP rankings in a wide range of a (i.e., 0.11 # a # 0.39).

Robustness against parameter variation. Figure 2(a) indicates that
the prediction accuracy for the dynamic win-lose score is robust
against some variations in the a and b values. In this section, we
examine the robustness of the dynamic win-lose score more

extensively by examining the rank correlation between the scores
derived from different a and b values.

The Kendall’s tau is a standard method to quantify the rank cor-
relation30. In our data, the full ranking containing all the players, to
which the Kendall’s tau applies, contains players that only appear in a
few games. In fact, most players are such players6, and their ranks are
inherently unstable. In addition, it is usually the list of top ranked
players that are of practical interests.

Therefore, we use a generalized Kendall’s tau for comparing top k
lists of the full ranking31. We denote the sets of the top k players, i.e., k
players with the largest scores, in the two full rankings by R1 and R2.
In general, R1 and R2 can be different. For an arbitrarily chosen pair
of players r1, r2 g R1 < R2, r1 ? r2, we set�Kr1,r2 R1, R2ð Þ~1 if (1) r1

and r2 appear in both top k lists R1 and R2, and r1 and r2 are in the
opposite order in the two top k lists, (2) r1 has a higher rank than r2 in
one of the top k lists, and r2, but not r1, is contained in the other top k
list, (3) r1 exists only in one of the two top k lists, and r2 exists only in
the other top k list. Otherwise, we set�Kr1,r2 R1, R2ð Þ~0.�Kr1,r2 R1, R2ð Þ
is a penalty imposed on the inconsistency between the two top k lists.
We use the so-called optimistic variant of the Kendall distance
K 0ð Þ

t R1, R2ð Þ defined as follows31:

K 0ð Þ
t R1, R2ð Þ~

X
r1,r2[R1|R2

�Kr1,r2 R1, R2ð Þ: ð9Þ

We normalize the distance between the two rankings as follows32:

K~1{
K 0ð Þ

t R1, R2ð Þ
k2

: ð10Þ

A large value of K indicates a higher correlation between the two top
k lists. It should be noted that 0 # K # 1. In particular, when there is
no overlap between the two top k lists, we obtain K 5 0.

For the dynamic win-lose scores at tnmax , i.e., at the end of the entire
period, we calculate K with k 5 300 for different pairs of a and b
values. The results for b 5 1/365 and different values of a are shown
in Fig. 3. The top k lists are similar (i.e., K $ 0.85) for any a larger
than < 0.06. This finding is consistent with the fact that the predic-
tion accuracy is high and robust when a falls between < 0.08 and
< 0.2 (Fig. 2(a)).

For fixed values of a, the K values between the ranking with b 5 1/
365 and that with various values of b are shown in Fig. 4. K is almost
unity at least in the range 0 # b # 2/365. Therefore, removing the
assumption of the exponential decay of score in time (i.e., b 5 0) little

Figure 3 | Rank correlation between the two top 300 lists for the dynamic
win-lose score with b 5 1/365. Pairs of rankings with different values of a

are compared.
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changes the top 300 list. This finding is consistent with the result that
the prediction accuracy is almost the same between b 5 0 and b 5 1/
365 if 0.1 # a # 0.2 (see the previous subsection). Nevertheless, this
observation does not imply that we can ignore the temporal aspect of
the data. Keeping the order of the games contributes to the perform-
ance of prediction, as suggested by the comparison between the
prediction results for the dynamic (Fig. 2(a)) and original
(Fig. 2(b)) win-lose scores.

Dynamics of scores for individual players. In contrast to the
original win-lose score and prestige score, the dynamic win-lose
score can track dynamics of the strength of each player. It should
be noted that the summation of the scores over the individuals, i.e.,PN

i~1 stn (i), depends on time. In particular, it grows almost
exponentially for the parameter values with which the prediction
accuracy is high (i.e., a larger than < 0.08), as shown in Fig. 5.PN

i~1 stn (i) increases with the number of games, or equivalently,
with time because more recent players take more advantage of
indirect wins than older players. The increase in

PN
i~1 stn (i) is not

owing to the number of players or games observed per year; in fact,
the latter numbers do not increase in time6.

Therefore, for clarity, we normalize the win-lose score of each
player by dividing it by the instantaneous

PN
i~1 stn (i) value. The time

courses of the normalized win-lose scores for four renowned players
are shown in Fig. 6(a). We set a 5 0.13 and b 5 1/365, for which the

prediction is approximately the most accurate. The ATP rankings of
the four players during the same period are shown in Fig. 6(b) for
comparison. The time courses of the dynamic win-lose score and
those of the ATP rankings are similar. In particular, the times at
which the strength of one player (e.g., Federer) begins to exceed
another player (e.g., Agassi) are similar between Figs. 6(a) and
6(b). Figure 6 suggests that the dynamic win-lose score appositely
captures rises and falls of these players.

Discussion
We extended the win-lose score for static sports networks9 to the case
of dynamic networks. By assuming that the score decays exponen-
tially in time, we could derive closed online update equations for the
win and lose scores. The proposed dynamic win-lose score realizes a
higher prediction accuracy than the original win-lose score and the
prestige score. It is straightforward to extend the dynamic win-lose
score to incorporate factors such as the importance of each tour-
nament or game via modifications of the game matrix Atn . We also
confirmed the robustness of the ranking against variation in the two
parameter values in the model. Finally, the dynamic win-lose score is
capable of tracking dynamics of players’ strengths.

It seems that network-based ranking systems are easier to under-
stand and implement, and more scalable than those based on stat-
istical methods. The dynamic win-lose score share these desirable
features with static network-based ranking systems.

The applicability of the idea behind the dynamic win-lose score is
not limited to the case of the win-lose score. In fact, we implemented
a dynamic variant of the prestige score. It even yielded a larger

Figure 5 | Dynamics of the summation of the scores (i.e.,
PN

i~1 stn
(i)).

The lines correspond to a 5 0.15 (top), 0.13, 0.1, 0.08, 0.05, and 1025

(bottom). The results for a 5 0 are not shown because
PN

i~1 stn (i) often

takes negative values.
Figure 4 | Rank correlation between the two top 300 lists for the dynamic
win-lose score with fixed a values. Pairs of ranking, one with b 5 1/365

and the other with a general b value, are compared.

Figure 6 | (a) Time courses of normalized win-lose scores for Andre Agassi, Roger Federer, Rafael Nadal, and Novak Djokovic. (b) Time courses of the

ATP rankings for the four players.
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prediction accuracy than the dynamic win-lose score did. This result
implies that the idea of network-based dynamic ranking systems may
be a powerful approach to assessing strengths of sports players and
teams, which fluctuate over time. The dynamic win-lose score is
better than our version of the dynamic prestige score in that only
the former allows for a set of closed online update equations.
Establishing similar update equations for other network-based rank-
ing systems such as the prestige score and the Laplacian centrality
(see Introduction) is warranted for future work. Prospective results
obtained through this line of researches may be also useful in sys-
tematically deriving dynamic centrality measures for temporal net-
works in general.

Methods
Park & Newman’s win-lose score. The win-lose score by Park and Newman9 is a
network-based static ranking system defined as follows. We assume N players and
denote by Aij (1 # i, j # N) the number of times that player j wins against player i
during the entire period. We let a (0 # a , 1) be a constant representing the weight of
indirect wins. For example, if player i wins against j and j wins against k, i gains score 1
from the direct win against j and score a from the indirect win against k. Therefore,
the i’s win score is equal to 1 1 a. If k wins against yet another player ,, the i’s win
score is altered to 1 1 a 1 a2.

The win scores of the players are given by

W~AzaA2za2A3z � � �

~A IzaAza2A2za3A3z � � �
� �

~A I{aAð Þ{1,

ð11Þ

w~W>1~ I{aA>
� �{1

A>1, ð12Þ

where W is the N 3 N matrix whose (i, j) element represents the score that player j
obtains via direct and indirect wins against player i, w is the N dimensional column
vector whose ith element represents the win score of player i, and 1 is the N dimen-
sional column vector defined by

1~ 1 1 � � � 1ð Þ>: ð13Þ

We similarly obtain the lose scores of the N players in vector form by replacing A with
Ai as follows:

~ I{aAð Þ{1A1: ð14Þ

The total win-lose score is given in vector form by

s~w{ : ð15Þ

Prestige score. The prestige score of player i, denoted by Pi, is defined by

Pi~ 1{qð Þ
XN

j~1

Pj
~wji

sout
j

z
q
N

z
1{q

N

XN

j~1

Pjd sout
j

� �
1ƒiƒNð Þ, ð16Þ

where q is a constant, ~wji is the number of times player i defeats player j during the
entire period (it should be noted that ~wji has nothing to do with the win scores

denoted by w in Eqs. (2) and (12)), sout
j :

PN
i0~1 ~wji0 is equal to the number of losses

for player j, d sout
j

� �
~1 if sout

j ~0, and d sout
j

� �
~0 if sout

j §1 The normalization is

given by
PN

i~1 Pi~1. We set q 5 0.15, as in ref. [6], and also q 5 0.05 and q 5 0.30.
To define a dynamic variant of the prestige score, we let ~wij used in Eq. (16) depend

on time. We define ~wij at time t by

~wji:
X

n

Atn j, ið Þe{b t{tnð Þ, ð17Þ

where Atn j, ið Þ is the (j, i) element of the win-lose matrix Atn , and the summation over
n is taken over the games that occur before time t. Substituting Eq. (17) in Eq. (16)
yields the dynamic prestige score Pi (1 # i # N) at time t. We set b 5 1/365, which is
the same value as that used for the dynamic win-lose score.

Data. We collected the data from the website of ATP23. Except when we compared the
prediction accuracy for the dynamic win-lose score with that for the ATP rankings,
we used single games in ATP World Tour tournaments recorded on this website. The
data set contains 137842 singles games from December 1972 to May 2010 and
involves 5039 players that participated in at least one game. Because the source of our
data set is the same as that of Radicchi’s data set6 and the period of the data is similar,
the number of games contained in our data and that in Radicchi’s are close to each
other.

In the comparison between the dynamic win-lose score and the ATP rankings, we
used all the types of single games recorded on the website of ATP. They include the

games belonging to ATP Challenger Tours and ITF Futures tournaments in addition
to ATP World Tour tournament games. We used this data set because it corresponds
to the games on which the calculation of the ATP rankings is based. The ATP
rankings are not available on a regular basis in early years. Therefore, we used the data
from July 23, 1984 to August 15, 2011. The data set contains 330796 games and
involves 13077 players that participated in at least one game.

Parameter values for the dynamic win-lose score. A guiding principle for setting the
parameter values of a ranking system is to select the values that maximize the
performance of prediction19,22. Instead, we set a and b as follows.

In the original win-lose score, it is recommended that a is set to the value smaller
than and close to the inverse of the largest eigenvalue of A9. If a exceeds this upper
limit, the original win-lose score diverges. For our data, the upper limit according to
this criterion is equal to 1/206.80 5 0.0048355. However, the dynamic win-lose score
converges irrespective of the values of a and b for the following reason. For expository
purposes, let us assign different nodes to the same player at different times tn (1 # n #

nmax). Then, Eq. (1) implies that any link in the network, which represents a game at
time tn, is directed from the winner at tn to the loser at tn or earlier times. Because there
is no time-reversed link (i.e., from tn to tn9 , where tn , tn9) and any pair of players play
at most once at any tn, the network is acyclic. The upper limit of a is infinite when the
network is acyclic9. On the basis of this observation, we examine the behavior of the
dynamic win-lose score for various values of a.

In the official ATP ranking, the score of a player is calculated from the player’s
performance in the last 52 weeks < one year23. The results of the games in this time
window contribute to the current ranking of the player with the same weight if the
other conditions are equal. The dynamic win-lose score uses the results of all the
games in the past, and the contribution of the game decays exponentially in time. By
equating the contribution of a single game in the two ranking systems, we assume
1|365~

Ð?
0 e{bt dt, which leads to b 5 1/365. In Results, we also investigated the

robustness of the ranking results against variations in the a and b values.
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