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Abstract
Rationale and Objectives—Quantitative measurement provides essential information about
disease progression and treatment response in patients with Glioblastoma multiforme (GBM). The
goal of this paper is to present and validate a software pipeline for semi-automatic GBM
segmentation, called AFINITI (Assisted Follow-up in NeuroImaging of Therapeutic Intervention),
using clinical data from GBM patients.

Materials and Methods—Our software adopts the current state-of-the-art tumor segmentation
algorithms and combines them into one clinically usable pipeline. Both the advantages of the
traditional voxel-based and the deformable shape-based segmentation are embedded into the
software pipeline. The former provides an automatic tumor segmentation scheme based on T1-
and T2-weighted MR brain data, and the latter refines the segmentation results with minimal
manual input.

Results—Twenty six clinical MR brain images of GBM patients were processed and compared
with manual results. The results can be visualized using the embedded graphic user interface
(GUI).

Conclusion—Validation results using clinical GBM data showed high correlation between the
AFINITI results and manual annotation. Compared to the voxel-wise segmentation, AFINITI
yielded more accurate results in segmenting the enhanced GBM from multimodality MRI data.
The proposed pipeline could be used as additional information to interpret MR brain images in
neuroradiology.
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1. Introduction
Despite the best available standard therapies, including surgery, radiation, and
chemotherapy, the survival in patients diagnosed with Glioblastoma multiforme (GBM)
remains dismal at 14 months (1). Newer therapeutic strategies aiming at targeting specific
molecules are being developed and tested in clinical trials (2). Temozolamide
chemoradiation has significantly prolonged survival but produces pseudoprogression that is
difficult or impossible to distinguish from recurrence in 30-50% of patients (1, 3). In
addition, antiangiogenic therapies have been used in combination with conventional
chemotherapy in patients with recurrent GBM, demonstrating radiographic response rates of
35%–50% (4-6). These agents improve significantly patient quality of life but alter the
pattern of recurrence by a potent effect on tumor permeability, suppressing enhancement
within a solid tumor with a resulting increase in the frequency of infiltrative recurrence (7).

These therapy-induced alterations in the natural history and imaging appearance of treated
GBM have made imaging follow-up by conventional MRI difficult, which motivates
widespread ongoing research to discover additional imaging biomarkers and has led to a
revision in response criteria. Although the most commonly used imaging criteria for
evaluating treatment response are still based on measurement of enhancing tumor (the
Macdonald Criteria) (8), the increase in infiltrative recurrence and the difficulty in
distinguishing recurrence from progression has led to proposal of a new criteria for tumor
response that includes abnormality on T2-weighted or fluid-attenuated inversion recovery
(FLAIR) images as additional markers for progression (the RANO criteria) (9). The RANO
criteria also recommends the use of volumetric measurements of enhancing tumor because
reliance on cross product diameters is problematic and highly operator dependent in cases of
irregularly shaped tumor, multifocal tumor, or tumor with cystic or necrotic components.
Recently, volumetric measures were found comparable (10) or superior (11-12) to linear
diameter measures as indicators of tumor evaluation.

Volumetric methods have the advantage of more reproducibly and precisely measuring the
size of tumor and are being increasingly used in clinical settings. For example, volumetric
measurement of both the enhancing and non-enhancing tumor have been correlated to
progression free survival (PFS) and overall survival (OS) (7, 13). To date, the major barrier
to widespread adoption of these methods in clinical neuro-oncology has been that manual
and assisted manual segmentation methods are quite time consuming for the operator. Due
to presence of heterogeneous signal intensity in necrotic or cystic tumor and at the margin of
infiltrative tumors, it is difficult to segment a tumor by hand, and the development of
automatic or semi-automatic software tools that can provide efficient volumetric
measurement and assist longitudinal shape analysis for follow-up studies could provide
significant benefit.

Tumor segmentation algorithms are classified into voxel-based or deformable shape model-
based methods. Fuzzy clustering methods (voxel-based) are among the more popular
approaches (14-18) and classify each voxel into either one of the normal brain tissues (gray
matter, white matter, and CSF) or tumor tissues. The algorithm developed by Philips et al.
(18) can differentiate clinically vital boundaries of tumor and edema from hemorrhage in
multimodal MRI. The performance of multimodal intensity-based clustering can be limited
by overlapping of intensity between tumor and normal tissues (19-20). To account for this,
additional features such as multi-dimensional intensity vectors have been designed for the
clustering. Clark et al. (21) has integrated knowledge-based techniques and multimodality
clustering to segment GBM tumors. Fletcher-Heath et al. (17) presented the first tumor
segmentation for non-enhancing MR data, including T1, T2, and proton density weighted
images, to track tumor size over time. Prastawa et al. (22-23) designed a knowledge-based
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tumor segmentation algorithm that learns voxel-intensity distributions from normal brain
and detects outlying tumor voxels. Kaus et al. developed a spatially varying statistical
classification algorithm using a template to moderate the segmentation obtained by
statistical classification (24-25).

A second class of algorithms use deformable shape models to segment tumor from normal
brain. These methods are derived from the traditional Snake model (26) that uses surfaces to
match tumor boundaries. The concept of these techniques is the use of energy function and
various shape models: the external energy derived from the matching degree between the
shape and the image features is used to distinguish tumor from normal tissues, and the
internal energy is used to constrain the tumor shape. In order to adjust for the change of
topology, implicit models such as level sets (27-32) can be used. Intensity distributions
within and outside tumor region have been used for level set segmentation (33-35).

Voxel-based segmentation algorithms can better adapt the segmented tumor shape to local
image, and deformable model-based segmentation schemes are more robust but generally
need proper initialization. To take the advantages of both algorithms, we propose an
AFINITI pipeline for segmenting MR images by combining them. In the first stage, the
voxel-based segmentation using the FSL FAST (36-37) is performed automatically for
initial tumor segmentation from T1-weighted images. The T2-weighted images are also
automatically segmented and combined with the T1 segmentation results. Then, a level-set-
based segmentation is used to refine the segmentation results with minimal manual input by
embedding the major functions of ITK-SNAP (38). These tools are integrated into one
pipeline with a single GUI. We validate the AFINITI pipeline by applying the software to 26
clinical GBM cases by comparing the results with those obtained using manual
segmentation.

2. Methods
a. Patients and Data

The protocol was approved by the institutional review boards for retrospective retrieval and
analysis of patient clinical and imaging data. Serial MRI scans from 26 consecutive patients
with diagnosis of GBM at Brigham Womens Hospital between 2004 and 2009 who had
interpretable high resolution MR scans were retrieved.

All MR scans were performed on 1.5T or 3T MRI scanners, and the imaging protocol
contains at least an axial 3D SPGR T1-weighted series covering the whole brain acquired at
a 5-10 minute delay after the intravenous administration of 0.1-0.2 mmol/kg gadopentetate
dimeglumine contrast agent, and an axial 2D T2-weighted MR sequences. The slice
thickness in all cases was between 1.0 and 1.5mm for 3D SPGR sequences and 6mm for the
2D FSE T2 weighted sequences. The typical 1.5T 3D SPGR parameters were set as:
TR=25ms, TE=6ms, FOV=200mm×240mm, Matrix=224×224.

Manual segmentation was performed under the supervision of two practicing faculty
neuroradiologists (GY & RH) by a research associate trained in neuro-anatomy and
neuroimaging (KS), and the final segmentations were reviewed and corrected jointly by GY
and RH to minimize the bias among ratters. Segmentation was performed using ITK-Snap
by manually tracing the boundary between the areas of abnormal enhancement and normal
tissue on the 3D SPGR images, excluding non-enhancing, presumably necrotic or cystic
portions of tumor but including areas of heterogeneous enhancement felt to represent tumor.
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b. The AFINITI Software Pipeline
The goal of AFINITI is to seamlessly implement the state-of-the-art neuroimaging tools into
one package to facilitate clinical quantification of GBM. The GUI for implementing and
visualizing the image processing modules was developed based on the ITK-SNAP
framework. Additional modules were added to assist users selecting input images,
specifying and adjusting segmentation parameters, as well as examining, editing and saving
results. To make the software user-friendly it takes DICOM series inputs for processing in
Section 2c. DICOM series with overlapping ROIs were written with modified DICOM tags
as the outputs so that the results can be presented on different viewing workstations and
distinguished from the original images. The AFINITI software pipeline was written using c+
+ and MS DOS batch scripting languages. The major tools embedded in the software
pipeline included preprocessing, the FSL FAST, and the modified level-set method in the
ITK-SNAP package.

c. Brain Tumor Segmentation Pipeline
Fig. 1 shows the framework of AFINITI. The preprocessing step mainly strips skulls from
T1-weighted images and co-registers T1-weighted images to T2-weighted images. A
deformable brain image registration was used to automatically align the skull-stripped
template image onto each individual image to remove the skulls (Fig. 2). The FSL FLIRT
was embedded to automatically calculate the transformation (degree of freedom was set to
6) between T2- and T1-weighted images for each patient.

Automatic segmentation step—In the software pipeline, we integrated the FAST tool
(39) for initial brain tumor segmentation. We classified the tissues into not only the normal
tissue types (WM, GM, and CSF) but also active tumor tissues (14-18). Fig. 3 shows an
example of segmentation using FAST. It can be seen that the segmentation results can be
noisy with many small vascular spots in normal tissues that were classified as tumor tissue.

To reduce the false positive spots, we developed a T2 mapping method to remove them. As
shown in Fig. 4.b, the T2-weighted image (Fig. 4a) was first registered onto the T1-weighted
image with initial segmentation of FAST overlapped. A low-bound intensity thresholding
was then applied to the registered T2-weighted image and only high intensity regions
covering all the segmented tumor regions but not the false-positive regions were kept.
Combining the T1 and T2 segmentation results and performing morphological shape
corrections, we obtained the final automatic tumor segmentation. Then, the tumor can be
automatically selected by using morphological operations. Therefore regions with small
volumes or flat shapes were deleted by applying 3D open operation. If the tumor seed points
are provided, a region grow operation will be performed to further remove false positive
regions. Fig. 4.e gives the final automatic segmentation of the tumor.

Interactive processing step—After automatic segmentation, level-set-based
segmentation can be further performed to interactively refine the results by visualization and
manually correction (40). These tasks were accomplished by embedding ITK-SNAP into our
software pipeline. ITK-SNAP is a software application used to segment structures in 3D
medical images. It provides semi-automatic segmentation using level set methods, as well as
manual delineation and image navigation.

Finally, after the segmented tumor result is accepted, the tumor volume, tumor center point
location, and the overlapping of the segmented tumor region on the original images were
automatically generated in the original DICOM format using a new series number.
According to the current neuroradiology workflow, the new data series can be uploaded to
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PACS server so radiologists can interpret the films of GBM patients by referring to the
segmentation results.

3. Results
All the GBM tumor patient cases were processed using the proposed AFINITI software
pipeline. Of all 26 cases, 24 were visually inspected and found satisfactory by GY, and 2
cases were further refined using the second step, namely level-set-based refinement. The
average time for the two cases using level-set-based refinement was approximately 4
minutes. Fig. 5 shows eight examples of the segmentation results. The first and the third
rows show the original T1-weighted images and the other rows give corresponding
segmentation results. Satisfactory results were obtained from clinical cases both before and
after tumor resection.

Quantitative measurements from manual segmentation and the results of AFINITI software
were compared (Table 1). Denoting the results of AFINITI as set A and those of manual
segmentation as M, the first and the second columns list the volume of the tumor segmented
(unit in ml) using AFINITI and manual methods, respectively. The third and the fourth
columns show the volumes of the intersection and union of the two results, i.e. ∣A⋂M∣ and
∣AUM∣, respectively. The fifth column gives the ratio of the intersection vesus AFINITI
results, i.e. ∣A⋂M∣/∣A∣, and the sixth column gives the ratio of the intersection vesus the
union, i.e. ∣A⋂M∣/∣AUM∣. Ideally, the results in the last two columns should be close to
100%. However, the Jaccard index is relatively small and the intersections match AFINITI
results better, indicating that the manual segmentation results in larger regions for the
datasets. To further investigate the performance, we correlated the AFINITI results with
manual results (Figure 6). The Pearson correlation coefficient for all the 26 cases is 0.96.

It can be seen from Table 1 that there are a few cases where the automatic results yielded
lower volume measures than the manual results. Take the last two rows of Table 1 as
example, Fig. 7 shows the original images, the manual and AFINITI segmentation results,
and the overlapping images of these two cases. The tumor sizes measured from AFINITI
were generally smaller than those obtained from manual segmentation, suggesting that
human raters tend to over-segment tumor. During manual selection of the tumor regions, the
bright enhanced regions were marked while the small dark regions inside and close to the
tumor boundary were not selected. Therefore, although AFINITI results generated a more
detailed boundary of the tumor (Fig. 7.c), the volumes were slightly smaller. Considering the
Pearson correlation coefficient between AFINITI and manual results, they are highly
correlated, suggesting comparable performance for the proposed automatic tumor
segmentation pipeline.

We also compared AFINITI segmentation against voxel-based segmentation (FSL FAST).
Because the segmentation results of the voxel-based segmentation lacked spatial continuity
(see Fig. 3.d for example), they were further processed with tumor selection and
morphological operation for the comparison. No manual interaction was involved in any of
the 26 cases for the FAST algorithm. Table 2 lists the detailed segmentation results. The
student T-Test of the Jaccard indexes of AFINITI and voxel-based results (p-value =
0.0071) showed the advantage of AFINITI.

To further evaluate the agreement and systematic differences between segmentation
methods and manual segmentation, the Bland-Altman plots of the volume measures between
AFINITI and manual results, and between FAST and manual results, were shown in Fig. 8.
The horizontal axis is the average of the volume measure, and the vertical axis indicates the
difference between manual and automatic measures (manual – automatic). It can be seen
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that FAST generated relatively large errors as compared to AFINITI. Meanwhile, as stated
in the above discussions, AFINITI tends to yield less volume because of the detailed
segmentation of enhanced tumor regions (see Fig. 7 for details).

Finally, it is worth noting that the automatic process of AFINITI took approximately 20
minutes for each dataset using a workstation with 1.86G Hz Intel Core 2 CPU and 2 GB
RAM, and the average interactive refinement process took approximately 4 minutes of
operator time. In contrast, the time required for manual segmentation of the dataset varied
considerably, depending on the attributes of the tumor, ranging from 30 minutes to 90
minutes. In the proposed clinical workflow, the scanned data would be first automatically
routed to the AFINITI workstation for data processing prior to study interpretation, and the
segmented AFINITI output would be transferred as a new additional series of images onto
the PACS server along with the quantitative measurement of the tumor. The interpreting
radiologists would examine the overlays to confirm the accuracy of automatic segmentation
and incorporate the volumetric output into the clinical report as part of the standard
workflow.

4. Discussion
We present a software pipeline, an efficient toolkit for clinical GBM quantification, to
segment MR brain images of high grade brain tumor by combining the voxel-based and
deformable model (level set)-based algorithms. Evaluation of the software by comparison of
volumetric output with manual segmentation of the same clinical dataset showed a
significant linear correlation and high degree of overlapping. Although the process time used
for manual operation was not rigorously evaluated, use of the system reduced clinical
operator time required for segmentation and quantitation from approximately 30-90 minutes
per case to less than 4 minutes in the roughly 8% of cases that required correction and to less
than one minute in the majority of cases where the AFINITI output did not require
correction. It is not clear how the average processing time using software based on the
AFINITI method would compare with currently available commercial software for assisted
manual segmentation. Clearly, recently released commercial tools would be expected to
substantially decrease operator time compared with the open-source tools used in this study,
but it seems unlikely that even these tools could achieve a lower average operator time for
segmentation and quantitation that the AFINITI method provides. The software package was
evaluated using the typical clinical MRI data, although ideally the robustness of the
algorithm can be tested with different protocols, due to the availability of manual results we
did not compare the accuracy for different groups of protocols. This could be a future work
by using clinical studies from multiple scanners.

Nevertheless, the fraction of cases that require operator correction are clearly an area that
requires further development, possibly with incorporation of additional data types. In
addition, the processing time of 20 minutes is significant, although since this is proposed to
occur offline prior to expert interpretation, it is not a critical problem for current diagnostic
imaging workflow. This processing speed and the user-friendliness of the graphical interface
need to be further improved for full clinical translation of the methods presented as will
production of FDA approved software tools. Both of these improvements and full translation
will require product development resources that are beyond the scope of our lab, so we are
releasing the AFINITI software pipeline free of charge on our website http://www.cbi-
tmhs.org/AFINITI/ in the hope that other groups will be able to extend our work and that its
availability will motivate the development of fully translatable clinical tools.

An additional significant weakness is that 2D input data was used for the T2-weighted
image analysis, which has larger between slice thickness (5~6mm). 3D T2-weighted whole
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brain image data was not available routinely at the time that the initial datasets were
acquired for this study, but because of rapid progress in 3.0T MRI, they are now routinely
available for clinical brain imaging. Adaptation of the software to perform segmentation on
high resolution 3D T2-weighted image datasets is important because inclusion of such
datasets would allow automated assessment of infiltrative progression as required for use of
the recently proposed RANO criteria for brain tumor follow-up, and would allow automated
computation of recently proposed image metrics such at rNTR that may be more predictive
of patient outcome (7).

The automatic tumor delineation pipeline could be applied in clinics by first automatically
routing the scanned data to the AFINITI workstation for automatic data processing prior to
study interpretation. After this, the segmented AFINITI output will be superimposed on the
original MRI images, and new images are generated with new series numbers under the
same patient ID. The data are then transferred onto the PACS server along with the
quantitative measurement of the tumor. The interpreting radiologists would examine the
overlay images together with the original sequences for diagnosis and for incorporating the
volumetric measures into the clinical report as part of the standard workflow.

Currently, after segmentation, quantitative measures of tumor can be obtained, relieving the
tedious work load for manual segmentation. The quantitative measures can be used in a
follow-up study that precisely gives the temporal changes for tumor evaluation. In the long
run, we foresee that computational image analysis could provide more detailed measures
after segmentation, such as heterogeneity measures, transition from enhanced tumor to
neucrosis, and transition from enhanced tumor to edema. Generally, in contrast enhanced
MR images, GBM consists of enhancing tumor, necrosis, and non-enhancing tumor,
including edema. In multimodal MR, enhanced tumor can be clearly seen from T1 post-
contrast images but non-enhanced tumor often overlaps with edema by visual assessment.
Quantitative segmentation is thus important to segment GBM in detail and to help
neuroradiologists determine the tumor margin and determine the aggressiveness of GBM.

5. Conclusion
We presented a software pipeline for GBM segmentation and demonstrated its applicability
to clinical data. The software adopts the current state-of-the-art tumor segmentation
algorithms and combines the advantages of the traditional voxel-based and deformable
shape-based segmentation methods. This provides automatic tumor segmentation based on
both T1- and T2-weighted MR brain data, with graphical and numerical output that can be
visualized and interactively refined using the embedded GUI based on the ITK-SNAP
framework. Finally, the software was incorporated into a conventional PACS-based MRI
interpretation workflow. Validation of results using clinical GBM data showed high
correlation between the AFINITI results and manual annotation and suggested significant
reduction in operator time for performing volumetric quantitation of GBM. The AFINITI
software pipeline is freely available from our public website.
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Fig. 1.
Brain tumor segmentation pipeline.
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Fig. 2.
Registration-based skull stripping method. a. Original image to be processed; b. the template
image; c. the segmented brain region of the template image; d. overlapping the brain region
onto the original image.
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Fig. 3.
Some examples of tumor segmentation results after FAST. (a) and (c) Input images; (b) and
(d) FAST segmentation results.
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Fig. 4.
Illustration of the combined T1 and T2 segmentation. (a) T2 image registered onto T1
image; (b) overlaying the segmentation result from T1 image onto T2 image; (c)
thresholding T2 image (blue shows the ROI filtered out); by adjusting the threshold we can
eliminate the enhanced big vessels close to the tumor; (d) after applying T2 thresholding, the
majority of false positive spots were removed; (e) other isolated spots are removed using
morphological operations.
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Fig.5.
Representative segmentation results. Row (a) and (c) are original images; row (b) and (d) are
the corresponding segmentation results.
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Fig. 6.
Correlation of the segmentation results.
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Fig. 7.
Difference between manual and semi-automatic segmentations: a. origal image; b. manual
segmentaion; c. semi-automatic segmentation; d. difference between manual segmentation
(background white shape) and semi-auto segmentation (highlighted red shape).
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Fig. 8.
Bland-Altman plots of the volume measures between AFINITI and manual results, and
between FAST and manual results, respectively.
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